
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

RAPID PORTING OF AN SCA-COMPLIANT FM3TR WAVEFORM

Per Johansson, Zhongren Cao, William Hodgkiss (California Institute for Telecommuni-
cations and Information Technology – Calit2, University of California San Diego, La Jol-

la, CA 92093; pjohansson@soe.ucsd.edu, zcao@soe.ucsd.edu, whodgkiss@ucsd.edu)

ABSTRACT

In this paper, we describe the software architecture and our
experience in porting an existing (voice) implementation of
the FM3TR waveform to a new software defined radio
(SDR) platform – the SDR-4000 from Spectrum Signal
Processing. Data communications was not part of the origi-
nal code base and was included as part of the project. Initial-
ly, analog communications was demonstrated at SDR-4000
IF (20 MHz) which included frequency hopping over a 3.2
MHz bandwidth. Then a National Instruments RF up-
converter and down-converter was added to each SDR that
enabled over-the-air communications between three SDR-
4000 units. The entire project was completed in 9 months.
The design and partition of the FM3TR waveform into SCA
components across the GPP, DSP, and FPGA hardware of
the SDR-4000 is discussed.

1. INTRODUCTION

The Joint Tactical Radio System (JTRS) program was estab-
lished to provide next generation radio systems for US mili-
tary forces [1]. By adopting software defined radio (SDR)
technology and leveraging on the inherent programmability
using software, the JTRS program aims to provide afforda-
ble, high-capacity, and flexible waveforms for rapid field
deployment. The cornerstone for achieving this objective is
the use of a standardized open architecture – the software
communication architecture (SCA), which defines the
common interfaces of waveform components [2].
 SCA enables software reuse, hence, reduces the devel-
opment time and associated costs. To facilitate software
reuse, the JTRS Joint Program Executive Office (JPEO)
maintains an Information Repository (IR), where waveforms
are stored and shared by JTRS partners. Ideally, a new JTRS
radio can be built efficiently by downloading existing wave-
form components from the JTRS IR and combining them
with minimum changes on a specific host platform. Within
the JTRS community, this process is called waveform port-
ing. There are two levels of code portability that facilitate
the waveform porting process [3]. First, the waveform com-
ponents in the IR which are written for one particular host
and/or environment can be moved to another with minimal
changes to the original code. Second, regardless of diverse

features and requirements of different host environments,
there should be a common core framework defined to in-
stall, initiate and control waveforms and radio functionali-
ties.
 Here, we describe the porting of an existing implemen-
tation of the Future Multi-waveform Modular Tactical Ra-
dio (FM3TR) waveform in the IR to a different SDR plat-
form – the SDR-4000 from Spectrum Signal Processing [4].
The FM3TR waveform was initially developed as an inter-
national cooperative effort between the United States, Ger-
many, France and the United Kingdom to develop a re-
configurable communication system for ground and air-
borne applications. The Government Furnished Software
(GFS) FM3TR source code is an implementation based on
this international effort [5]. The FM3TR waveform imple-
ments frequency hopping over both VHF and UHF military
bands (30 MHz - 400 MHz), using continuously variable
slope delta (CVSD) modulation for voice digitizing. The
FM3TR waveform defines two operational modes: voice
and data [6]. The FM3TR waveform is an open standard and
used as an instrument to promote international interoperabil-
ity. It is also a reference waveform chosen by the SDR Fo-
rum [7] as a test and demonstration vehicle. Therefore,
FM3TR is an ideal tool to promote the SCA and study
waveform porting issues.
 The SDR-4000 is a commercial off-the-shelf (COTS)
multi-purpose software reconfigurable transceiver [4]. It
comes with a comprehensive software stack including an
SCA Core Framework with development tools, Spectrum's
quicComm hardware abstraction layer and API library, and
a real-time operating system (RTOS) with an integrated
development environment.
 In this paper, we will discuss in detail the design of the
ported SCA-compliant FM3TR waveform. This will include
a description of both the software portion of the waveform
implemented in the SDR-4000 as well as the RF up/down-
conversion portion of the waveform implemented in Nation-
al Instruments hardware. The rest of this paper is organized
as following. In Section 2, we introduce the targeted lab
system setup. The design and partition of the FM3TR wave-
form into SCA-compliant components is discussed in Sec-
tion 3. The porting experience is described in Section 4,
followed by discussion and conclusions in Section 5.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

2. FM3TR LAB SYSTEM SETUP

The targeted FM3TR lab system setup is illustrated in Fig-
ure 1. Three SDR-4000 units intercommunicate using the
FM3TR waveform and support two applications: push-to-
talk (PTT) and instant text messaging (ITM). The incom-
ing/outgoing PTT (PCM samples) and ITM (ASCII messag-
es) are carried in UPD/TCP/IP packets over Ethernet (100
Mbps) using available communication APIs supported by
the GPP OS on the SDR-4000. Since it is a local communi-
cation link only and the applications are of a low-rate type,
the TCP/IP/Ethernet performance is sufficient. In the lab
setup, the SDR-4000 development laptops are hosting the
PTT and ITM applications.
 The FM3TR waveform has two operation modes: voice
and data. The FM3TR voice mode is based on a 16 KHz
PCM that is CVSD coded. The voice mode is utilized by the
PTT application to carry voice between PTT “terminals”,
i.e. laptops in the lab configuration. Both the PTT applica-
tion and FM3TR voice mode are well documented in the
FM3TR base code, which was the existing implementation
to be ported. The base code was ported with minor modifi-
cations. No provisions for media access control is provided
for the voice mode, i.e. the PTT application does not first
check if the media is busy before starting a PTT session but
leaves it to the user to not initiate sending while receiving.
 The FM3TR data mode uses the same basic radio trans-
port channel (16 kbps) as the voice mode, but with addition-
al Reed-Solomon (RS) coding to give better bit error protec-
tion, i.e. a robust mode is introduced for data traffic. This
brings down the user data rate to 9.6 kbps. The FM3TR spe-
cification [7] describes an option for ARQ support which
requires the system to be able to operate in frequency divi-
sion duplex mode. In this optional mode, acknowledgments
are sent simultaneously on a separate frequency, from the
(data) receiving unit to the (data) sending unit. However, for

this project only half-duplex mode is supported by the radio
modem. A simple ARQ scheme for half-duplex data mode
was included in the project to improve the data mode capa-
bility. This ARQ scheme is hosted by a data link control
(DLC) component. No provision for media access control is
assumed for the data mode (same as for the voice mode), i.e.
messages are sent without a prior check to determine if the
media is busy or not. If messages collide the system relies
on the ARQ scheme to resend the packets.
 A National Instruments up-converter (PXI-5610) and
down-converter (PXI-5600) are used in the lab as the RF
front-end for each unit. In the transmitter path, the PXI-5610
up converts the IF output of SDR-4000 to RF frequency. In
the receiver path, the PXI-5600 down converts the FM3TR
RF signal to IF frequency before being digitized by the
SDR-4000 ADC.

3. SCA-BASED FM3TR COMPONENTS

This section describes the system components in terms of
software functional blocks for the FM3TR voice mode and
data mode implementation on the SDR-4000. These wave-
form components are a mix of ported FM3TR base code and
new developed code for the data mode. The overall partition
of the FM3TR waveform is depicted in Figure 2, with com-
ponents existing in the base implemented code, newly added
components, and OS supporting functions illustrated, re-
spectively.

3.1. FM3TR SCA Components on the GPP

The following SCA resources (see Figure 2) reside on
the SDR-4000 GPP:
• Net Device (Data/Voice): the Net Device functions
handle the platform specific transport of voice and data
packets between the SDR-4000 and the application PC.

SDR-4000

FM3TR RF
Radio links

Ethernet

SDR-4000
Terminal A

PTT PCM 16
ITM

SDR-4000
Development

SDR-4000

Terminal B

Ethernet
PTT PCM 16

ITM

SDR-4000
Development

Terminal C

Ethernet

NI PXI-
5600/5610

NI PXI-
5600/5610

NI PXI-5600/5610
Figure 1:FM3TR Lab System Setup

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

There is one Net Device component for each operational
mode (voice and data) and the interfaces towards the GPP
based FM3TR waveform components are SCA specific, i.e.
CORBA based. The interface between the application PC
and the SDR-4000 is TCP/IP/Ethernet based and will also
host buffers to handle temporary rate differences between
the units.
• Data Link Control (DLC): the DLC is an SCA resource
that performs segmentation and reassembly of the data mes-
sages to and from the ITM application. The ARQ functio-
nality also resides in the DLC resource.
• Reed-Solomon (R-S) Codec: the R-S Codec is an SCA
resource that encodes outgoing data packets into an R-S
block code and decodes received R-S encoded blocks. The
system uses an RS (105, 72, 7) inner codec and optionally
an outer per-hop RS (16, 14, 5) codec. The latter allows for
an optional per hop ARQ scheme in full-duplex systems.
This system will, however, be half duplex only.
• Data MAC: the Data MAC is an SCA resource that
converts the format between data frames and data symbols
grouped into 21 hops to match the R-S coding format. A
total of 6 frames (24 data hops) are generated, including two
end of message (EOM) frames that also carries data.
• Voice MAC: the Voice MAC is the original SCA re-
source ported from the base code. The CVSD encoded voice

is sent/received on a per frame basis. At the end of a PTT
session two EOM frames are sent out.
• MHAL Modem Device: an SCA compliant MHAL
Modem Device resource encapsulates the voice and data
packets (sent from the Voice MAC and Data MAC respec-
tively) into the MHAL frame structure and sends the frames
to a corresponding MHAL function in the DSP.
• CVSD Codec: the CVSD codec resource is ported di-
rectly from the FM3TR base code. The codec converts the
16 bit, 16 KHz PCM voice into 1-bit encoded voice at 16
kbps.

3.2. FM3TR SCA Components on the DSP

 The DSP part of the SDR-4000 hosts the following
FM3TR modem components:
• MHAL_Comm: the MHAL_Comm component takes
care of the MHAL header encapsulation and de-capsulation
of the packets sent to and received from the GPP.
• Data Conditioning: a preamble is added to the packet,
consisting of a 2350-bit phasing pattern and a 256-bit synch
pattern. The synch pattern contains a 32-bit pattern (A-code)
that the receiver will correlate on to determine the start of a
packet. Moreover, padding between the hops in each frame
is added to account for the ramp-up and ramp-down delays

SDR-4000 DSP

New code OS supported functions

Baseband I&Q
100 KHz

Net De-
vice

(Data)

SDR-4000 GPP

Platform
Specific
Comm.

(Ethernet)

ADC

SDR-4000 FPGA

Digital
up/down
converter

Freq. Hop-
ping

DAC

Analog
RF

Front
End

FM3TR base code

DLC R-S

Codec
Data
MAC

Net De-
vice

(Voice)
CVSD
Codec

Voice
MAC

MHAL
Modem
Device

Right OutLeft In Data In

Data OutRight InCtrl

Ctrl

Left Out
CVSD Audio In Port

CVSD Audio Out Port

CVSD Out Port

MAC In Port

CVSD In Port

MAC Out Port

MAC Modem Out Port

MAC Modem In Port

Voice In

Voice Out

SCA-CF

Platform
Specific
Comm.

Platform
Specific
Comm.

MHAL
Comm

Data Condi-
tioning

Add S-code
(Data/Voice)

CPFSK
Modulation

Platform
Specific
Comm.

MHAL
Comm

S-code
Correlator

(Data/Voice)

A-Code
Correlator

CPFSK
Demodulation

SDR-4000

Figure 2: FM3TW SCA-based Waveform Components for the SDR-4000 platform

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

that occurs as the radio hops between frequencies (250 hops
per second).
• S-code: in order to differentiate between voice, data and
ACK messages, a combination of four 32-bit code words (S-
codes) as part of the synch pattern, makes up code points to
identify the packet types.
• CPFSK Modulation/Demodulation: a Continuous Phase
Frequency Shift Keying modulation is used in FM3TR. The
output of the modulator is a 100 KHz I&Q signal with 4
samples per symbol.
• A-code Correlator: after demodulation the receiver cor-
relates for the A-code for start of message.
• S-code Correlator: once an A-code is found, correlation
for the 4 subsequent S-codes follows to determine type of
packet (voice, data, or ACK)
• Frequency Hopping: for each hop, a signal will be sent
to the FPGA up/down converter to change the center (IF)
frequency according to a predetermined hopping pattern.

3.3. FM3TR Components on FPGA

 The FPGA of the SDR-4000 hosts the following func-
tions:
• Digital Up-conversion: the 25 KHz baseband signal
(sampled at 100 KSPS) is up-converted to a 20 MHz IF sig-
nal (sampled at 96 MSPS) that includes hopping within a
3.2 MHz frequency window at 250 hops per second. This
signal is then sent to the system’s DAC to be converted into
an analog waveform.
• Digital Down-conversion: after ADC, the 20 MHz IF
signal is down-converted and de-hopped to the I&Q signal
at 100 KHz sample rate.
• Frequency Hopping: the up/down conversion changes
the center frequency according to a pre-determined hopping
pattern based upon signals sent from the DSP.

4. PORTING FM3TR TO SDR-4000

Each SDR-4000 IDS (Integrated Development System) unit
includes the following hardware and software components.
 The hardware includes: A modem unit consisting of
two boards interconnected in a mezzanine configuration
(200 MB/s full-duplex over ePMC). One board is the PRO-
4600 SDR, which is a heterogeneous processing engine em-
ploying a combination of Xilinx Virtex-4 FPGA,
TMS320C6416T DSP and MPC8541E GPP. The other
board is the XMC-3321, which is a dual channel transceiver
module that supports industry standard 10.7, 21.4 and 70
MHz IF frequencies through the use of dual 14-bit A/D
converters sampling at up to 105 MSPS and dual 14-bit D/A
converters sampling at up to 300 MSPS. A rear panel transi-
tion module (TM2-4900) provides connectivity to the PRO-
4600 Gigabit Ethernet module, a high-speed serial, RS232
and JTAG interfaces. The chassis has five cPCI slots with

front access for mounting modem board sets (PRO-4600
and XMC-3321) and rear access for mounting transition
modules (TM2-4900) [4].
 The software of the SDR-4000 platform includes:
Green Hills INTEGRITY Operating System and MULTI
IDE Integrated Development Environment; Green Hills
Slingshot JTAG device and MPServe software; Spectrum’s
quicComm SW library; the PRO-4600 and XMC-3321
software API is provided via Spectrum’s quicComm SDK,
which abstracts the underlying hardware and provides users
with basic link level access to communication between the
processors in the SDR-4000; Windows XP development PC;
Xilinx ISE Foundation FPGA Tools; Texas Instruments
Code Composer Studio; SCARI++ Software Communica-
tions Architecture (SCA) Core Framework from CRC; ORB
Express from Objective Interface Systems (OIS) [4].
 Voice and data packets generated from the application
PC pass through the FM3TR modem built on the SDR-4000
from the GPP to DSP, then FPGA before being sent out to
RF. The GPP sends voice and data packets encapsulated in
MHAL packets. The modem code on the DSP expands the
data with additional headers and guard times. A four times
up-sampling is also implemented per symbol. Frequency
hop control data is embedded in the beginning of each hop
sent to the FPGA. In the FPGA, further up-sampling is per-
formed along with digital up conversion, which transforms
the data into digital IF format for the DAC and RF up-
conversion. The reverse process takes place in the receiver
chain.

4.1. Porting FM3TR GPP Components

The CRC’s SCA Architect enables and automates XML
development with regard to the CORBA connections be-
tween components, as well component development utiliz-
ing multi-tier inheritance (properties, device types, devices,
component types, components). In addition, SCA-compliant
component skeleton code is generated to aid the porting of
the component C++ code. This significantly reduces the
coding effort.
 The process of porting FM3TR to the SDR-4000 in an
SCA sense involves two major steps -- node development
and application development.
 SCA devices belong to an organizational unit called a
node, which contains an executable device that loads and
executes the SCA application. Device components that in-
terface external (actual) devices are also installed on the
node, together with other essential SCA components such as
the Domain Manager, Log Server, and an Event Channel
(IDM Channel, which controls the state machine of every
connected SCA device). The actual node itself is merely an
XML construct, and with SCA Architect, provides for a
very simple visual way of generating XML files. Nodes are
used by the Device Manager in SCA to determine which

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

devices to load as well as which IDM Channel and Log
Server connections to make and if any startup parameters
are to be sent to each device. For the SDR-4000, node de-
velopment consists of simply importing an already existing
node implementation and appending the FM3TR devices
developed for the FM3TR waveform, i.e., Net Devices,
Voice devices and Modem devices. Once the node devel-
opment was completed, the device binaries, as well as all
generated XML files were installed into the SCA operating
environment for the SDR-4000 unit, i.e. on the development
laptop with an NFS path for the SDR-4000 to load the sys-
tem.
 SCA components are grouped into an organizational unit
called an application. This is similar to how devices are
grouped into a node, with the main difference that an SCA
application describes and defines all the CORBA data con-
nections and data flows that are made between components
and devices (component-to-component as well as compo-
nent-to-devices). Note that even if an SCA application is
independent of hardware, it makes CORBA references to
devices that it expects to exist on the target platform, and
thus, can only be ported to platforms that provide the same
device components (and same CORBA device names as
well) in their respective nodes. In addition to the connec-
tions between application components, an extra component,
known as the Assembly Controller, is responsible for start-
ing, stopping, shutting down, and unloading any application
component. Even though the Assembly Controller is a com-
ponent itself, it is special in the sense that the application
node designates it and will allow applications such as CRC's
Radio Manager to install, configure, load/unload, and
start/stop an installed application. Once the application
component development is complete, an application must be
exported to a zip file for installation by the Radio Manager
(part of the SCARI++ software suite). After the application
is installed, it can be started, stopped, or shut down. Log-
ging of message monitoring, viewing connections between
components and devices, etc. can also be done with the Ra-
dio Manager.

4.2. Porting FM3TR Modem (DSP) Components

The FM3TR modem base code was developed for a TI
C5416 DSP and we needed to port it to a TI C6416 DSP on
the SDR-4000 platform and add necessary inter-processor
communication channels (to the GPP and the FPGA). The
main tasks for the FM3TR modem porting to the SDR-4000
platform included:
• Porting the already implemented FM3TR voice (PTT)
capability to the SDR-4000 Radio Hardware.
• Implementing the Data (ITM) capabilities for the
FM3TR on the SDR-4000 in accordance with the FM3TR
extended specification and design decisions.

• Use the MHAL specification for communication be-
tween the DSP and the GPP according to the MHAL speci-
fication.
• Develop code for frequency hopping control, which
sends hopping signals to the FPGA on each frequency hop.
 The porting of the FM3TR mode (DSP) code was
straightforward and most of the code provided in the base
modem implementation was reused. Modifications were
made to adapt the code to the SDR-4000 platform and also a
data mode was added.
 A central controller was added for managing the re-
quest, processing and forwarding of packets to and from
GPP and FPGA in order to decouple the base modem code
from the SDR-4000 specific code. This is in line with the
code portability requirement discussed in Section 1. A
wrapper library was added for communication links to the
FPGA and GPP (based on the quicComm library from Spec-
trum Signal Processing). During the process, the following
was done to port the base modem implementation of
FM3TR (voice only) and implement FM3TR data mode on
the SDR-4000:
• Two new message types namely ITM and ITM_ACK
were added.
• A new set of S-Codes to differentiate between VOICE,
ITM and ITM_ACK messages were defined.
• The Receiver was modified to support detection of the
different message types.
• The FM3TR modem control structure was modified to
recognize ITM and ITM_ACK messages.
• The FM3TR modem was modified to send only Pream-
ble and EOM for ITM_ACK packets, i.e. no actual data is
sent.
• MHAL data encapsulation was added for the communi-
cation between the FM3TR application (GPP) and the
FM3TR modem (DSP).

4.3. Implementing FM3TR Modem FPGA Components

Each FM3TR frame of voice or data consists of five hops, in
which the first 4 hops carry information and the last hop
contains a synchronization pattern. The transmission and
receiving frequencies change for each hop, which is con-
trolled by the FM3TR modem. The frequency hopping is
realized in the digital domain via hopping the IF frequency
before DAC. The DSP sends control messages to the FPGA,
signaling the frequency of each hop. Note that the data
frame detection is done by the FM3TR modem (DSP) func-
tions, i.e. functions residing in the FPGA have no know-
ledge about whether the received data is valid or not.
 During transmission, the control messages are embed-
ded in the data flow as inbound control messages. Each hop
starts with 5 zero symbols (20 samples) to give the tran-
sceiver guard time for the frequency change and, likewise,
ends with 15 zero symbols (60 samples) for the next fre-

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

quency transition to follow. The first sample of a hop is
modified to carry the frequency hopping message for this
hop. This message is identified by the FPGA and switches
the transmission frequency accordingly. The sample value is
changed back to zero before transmission. Using these in-
bound control messages for frequency hopping makes it
easy to synchronize between the frequency hopping and the
hop sequences of the data flow.
 During reception, the DSP sends control messages to
the FPGA to set the receiving frequency for the next hop as
soon as it finishes receiving the 320 information samples
(80 symbols) of the current packet. The control message is
sent using the data channel as described for the transmis-
sion: when the FPGA receives this control message, it sets
the receiving frequency accordingly.
 Data transmission between the DSP and the FPGA uses
the Spectrum quicComm channel interface. The interface to
the DSP is based on C function library calls that send and
receive data. To the FPGA, the interface is provided by the
TEM (Transport Endpoint Manager), which defines signal-
ing protocols to transmit and receive data. On both ends of
the channel, there are buffers for the data. The quicComm
channel works in the “burst transmission mode” in which
the data stream is split and then packed into packets for
transmission. The packet size must be a multiple of 64
bytes.
 The digital IF up/down conversion functions are im-
plemented in the FPGA on the XMC3321 board. There are
two parts in the implementation. One is the signal
processing part, which performs the up and down sampling
and conversion between the baseband signal and the IF sig-
nal. The other part is a wrapper for the TEM interface,
which provides a simple FIFO interface (much simpler than
the TEM interface) for data communication to and from the
channel.
 The TEM wrapper was implemented in VHDL and has
logic controls and transitions between different states.
VHDL tools are easy to use for simulating these functions.
The signal processing part is designed and implemented
using the System Generator tool, which is a combination of
the Matlab Simulink toolbox and the Xilinx FPGA synthe-
sizer. The signal processing system was first designed in
System Generator where simulations for system verification
are performed. A netlist was then generated from the Sys-
tem Generator model and incorporated in the VHDL wrap-
per files for final bitstream generation. The results of the
actual output can be compared with the System Generator
model output to verify the accuracy of FPGA operations.

4.4. RF Front End

SDR-4000 only outputs or accepts IF signals. To perform
IF-to-RF up/down conversion, National Instrument hard-
ware is used consisting of an up-converter (NI PXI-5610),

down-converter (NI PXI-5600), and an RF preamplifier (NI
PXI-5690) with both fixed (+30dB) and variable (-10 to
+20dB) gain in-box. A Virtual Instrument (VI) program
using LabView was developed that controls and configures
both the PXI-5610 and PXI-5600 for desired RF operation.

5. DISCUSSION AND CONCLUSIONS

The FM3TR porting project was a success and a real-time
over-the-air demonstration of push-to-talk (PTT) and text
messaging (ITM) applications was presented at the 3rd
JTRS Science & Technology Forum [8]. Based on this ex-
perience, we believe that a successful waveform porting
project always has two aspects – the radio system design
and the SCA-compliant waveform partition. The radio
communication functions, such as synchronization, proto-
cols, etc., as well as operations of applications and how they
fit on the target hardware platform will need to be investi-
gated and verified. Some project or platform specific func-
tions that do not exist in the base code for porting will need
to be developed. At the same time, the partition of wave-
form into SCA-compliant components will need to be eva-
luated and revised. Furthermore, a reliable hardware plat-
form and appropriate software tools can drastically reduce
the development effort.

6. ACKNOWLEDGMENT

This work was supported by the Joint Program Executive
Office of the Joint Tactical Radio System (JPEO JTRS)
through SPAWAR Systems Center – Pacific under contract
no. N66001-08-D-0155/T.O.0001.

7. REFERENCES

[1] http://jpeojtrs.mil
[2] “Software Communication Architecture Specifications,” Ver-

sion 2.2, Nov. 2001.
[3] D. Stephens, B. Salisbury, and K. Richardson, “JTRS Infra-

structure Architecture and Standards,” in Proceedings of the
IEEE Military Communications Conference (MilCom 2006),
Oct. 2006.

[4] Spectrum Signal Processing, “SDR-4000 Software Defined
Radio Small Form Factor Transceiver Platform,”
http://www.spectrumsignal.com/products/3u/sdr_4000.

[5] J. Marks and R. Belly, “Software Radio Cooperative Research
Project (SRCRP),” OMG Third Software-Based Communica-
tions (SBC) Workshop, March 2008.

[6] FM3TR Technology Group, “Test Waveform Specifications,
Issue 1.0”, February 4, 1998, Revised March 2006, document
number FM3TR/TWS/v0.4/, June 4, 2006.

[7] http://www.sdrforum.org
[8] The 3rd JTRS Science & Technology Forum, 26-29 January

2009, http://jtrs.calit2.net.

	Home
	Papers by Author
	Papers by Session

