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ABSTRACT 
 
In this work we use hidden Markov Models (HMMs) to 
model and predict the spectrum occupancy of licensed radio 
bands. The method can dynamically select different licensed 
bands for its own use with significantly less interference 
from and to the licensed users. It is found that by predicting 
the duration of spectrum holes of primary users, the CR can 
utilize them more efficiently by leaving the band, that it 
currently occupies, before the start of traffic from the 
licensed user of that band.   
      The impact of CR transmission on the licensed users is 
also presented. It is shown that significant SIR 
improvements can be achieved using HMM based dynamic 
spectrum allocation as compared to the traditional CSMA 
based approach. The results obtained using HMM are very 
promising and HMM can offer a new paradigm for 
predicting channel behavior, an area that has been of much 
research interest lately. 
 
 

1.  INTRODUCTION 
 
The organization of this paper is as follows. First we will 
briefly introduce cognitive radio and hidden Markov 
models. The use of HMMs in time series prediction is also 
discussed briefly. Next we discuss Markov-based Channel 
Prediction Algorithm (MCPA). Simulation results and 
conclusions are given later.  
 
   Recent measurements have shown that there are frequency 
bands even in urban areas that are largely unoccupied, some 
of them are only partially occupied and some are heavily 
used. These spectrum usage statistics give us a notion of 
spectrum holes which are defined in [1] as bands of 
frequencies assigned to a primary user, but at a particular 
time and specific geographical location, the bands are not 
being utilized by that user. The concept of the utilization of 
spectrum holes in CR using CSMA based band allocation is 
shown in Fig. 1. In this technique, the CR network identifies 
a spectrum hole and uses it until traffic from the primary 
user is detected. Once it detects primary user’s data 
transmission, the CR jumps out of the band it was 
occupying and looks for spectrum holes in other bands of 
interest.    

    
 

 
Figure 1: Illustration of spectrum holes in a cognitive radio network. 
Spectrum allocation is performed using a conventional CSMA based 
technique.  
 
 
 
   Spectrum utilization can be improved significantly by 
making it possible for a secondary user (who is not being 
serviced) to access the spectrum hole unoccupied by the 
primary user at the right location and at the right time. 
Cognitive radio has recently been proposed as a method to 
promote the efficient use of the spectrum by exploiting the 
existence of spectrum holes.  It observes the current 
spectrum conditions in the given band, and if it detects no 
traffic, it may start its data transmission using the same 
band. While engaged in the transmission, the radio may 
observe the signal of the incumbent user. In conventional 
CR design, if such signal is detected, the radio’s cognition 
cycle should direct itself to jump out of the spectrum to 
minimize interference. It should then look for other 
available spectrums to continue its data transmission. In this 
work, we propose a new way of utilizing the spectrum 
holes. Instead of jumping out from the frequency band after 
detecting the presence of signal from licensed user, we 
propose to perform a prediction on its usage behavior and 
then decide to remain in the same frequency band or move 
to another band. If correct prediction is performed, the CR 
can leave the current frequency band before detecting any 
signal from the primary user. We hope that our method will 
provide minimal collisions with the signals from the 
licensed users. 
 
      Our methodology can be explained as follows. Different 
HMMs first train themselves using spectrum usage patterns 
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of the incumbent users and once reliable models are 
developed, the spectrum manager decides which frequency 
to use based on the likelihood of spectrum holes of these 
bands. In this work, usage patterns are assigned binary bits 
with zeros indicating no traffic and ones indicating that the 
spectrum is being used by the incumbent user at that 
particular time. Hence we obtain binary vectors for each 
frequency band and use these vectors as training sequences 
for HMMs assigned for different radio bands. The HMMs 
will then predict the occurrence of spectrum holes in 
different bands and the cognitive engine will dynamically 
choose these available frequencies for its use.  
 
 

2.  THEORY 

2.1 Hidden Markov Models 
A hidden Markov process (HMP) [8] is a doubly stochastic 
process in which the generation of observation symbols 
depends on the emission properties of the states. Therefore, 
a state can generate more than one observation symbol and 
the state sequence is not directly observable given the 
observation sequence. 
 
Mathematically, an HMP can be defined as the pair 
{ , ; }t tX Y t∈N  of stochastic processes defined on the 
probability space ( , , )F PΩ . Here tX  and tY denote the 
hidden state sequence and the observation sequence 
respectively. The finite set ( , )X Y  is said to be a stationary 
finite state system (SFSS) if the following conditions are 
met: 
 
(i) ( , )t tX Y  are jointly stationary  

(ii) ( )1 1 1 1 1 1 1 1Pr , | ,t t t t
t t t tY y X x Y y X x+ + + += = = = =  

              ( )1 1 1 1Pr , |t t t t t tY y X x X x+ + + += = = . 
 
   The processes tX and tY are called the state and the output 
of the SFSS respectively. The mathematical model that can 
generate such a HMP is called a hidden Markov model 
(HMM). A HMM [6] is a finite state machine in which the 
observation sequence is a probabilistic function of states. It 
defers from Markov chains (MCs) [15] where the 
observation sequences is a deterministic function of states. 
In case of MCs, the states are directly observable from the 
observation sequence where as in case of HMMs, the state 
sequence is not directly observable for the observed data 
and is hidden. HMMs were first introduced as a pattern 
recognition tool by Rabiner [7] in the beginning of the 
1970’s.  Ever since, these models are used in many areas of 
sciences and engineering because of their strong 
mathematical structure and theoretical basis. Some of these 

applications are speech and handwriting recognition, DNA 
sequence analysis, wireless channel modeling, etc. 
 
   A discrete time HMM with N states and M symbols 
consists of an N N×  state transition matrix P that defines 
the probability of transitioning from one state to another or 
itself, an N M× output symbol probability matrix B that 
gives the probability of generating different output symbols 
while being in a particular state, and an N dimensional 
vector called the initial state probability vector that gives the 
probability of being in a particular state at the start of the 
process. A hidden Markov model is denoted as ζ = {P, B, 
π}. These parameters can be estimated using the Baum-
Welch Algorithm (BWA), which is basically a derived form 
of the Expectation-Maximization (EM) algorithm for 
HMMs. Due to the need for an online estimation in real 
world applications, we use a modified version of the BWA, 
called as the Forward-only BWA (FO-BWA) that can 
estimated HMM parameters on the fly. Details about FO-
BWA can be found from [2]. 
 
   For the case of binary sequences, the probability of 
generating the observation sequence given the model ζ can 
be written mathematically as  
 

     
1

'

1 1 2
1 1

( ) ... ( ) ( ) ... ( )|
T

N N
T

T
i i

P y y y y
= =

ζ = ∑ ∑ πB PB P PB 1    (1) 

 
Here B(yk) with k = 1, 2, …, T denotes the probability of 
generating symbol yk from different states. Because of the 
significantly long data size, we use the logarithm of 

1( )|TP y ζ , usually known as log-likelihood. We predict the 
next behavior of channel by finding the joint probabilities 

1( , 0 )|TP y ζ and 1( ,1 )|TP y ζ .  
 
   There seems to be an increased interest in data 
prediction/forecasting using HMMs recently. Some of the 
recent work includes stock market forecasting [9, 11], 
forecasting early conflict in southern Balkans [10] and 
predicting earthquakes. The main reason of such a wide use 
of HMM in prediction problems is mainly because of its 
strong theoretical foundations and tractability. This is 
mainly because of the fact that using HMM to forecast time 
series is easily explainable and has solid statistical 
foundation, properties that are not usually available in 
Artificial Neural Networks (ANNs) [12] and [14], which is 
also used frequently for predicting time series.   
 
2.2 Markov-based Channel Prediction Algorithm 

(MCPA) 
The spectrum occupancy is modeled as binary sequence 
with one determining that the spectrum is occupied at the 
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particular instant by the primary user and a zero denoting 
that the spectrum is unoccupied at that instant.  The 
spectrum usage pattern is modeled as exponentially 
distributed with channel occupancy ratio of more than 50% 
in all cases.  
 
 

 
Figure 2: Flowchart of the MCPA for a single primary user case. 

 
 
   Let us now explain the Markov-based Channel Prediction 
Algorithm (MCPA) that is used to predict the behavior of 
different channels and then performs spectrum allocation 
dynamically. Binary sequences are obtained based on 
channel statistics as explained earlier. Different HMMs are 
then trained for each frequency band of interest using these 
binary sequences. Forward-only BWA is used to obtain the 
parameters of HMMs, namely the state transition matrix P, 
output symbol probability matrix B, and the initial state 
probability vector π. The flowchart of the algorithm in case 
of single primary user is shown in Fig. 2.  
 
We predict channel behavior by finding the joint 
probabilities 1( , 0 )|TP y ζ and 1( ,1 )|TP y ζ . If we 
observe 1 1( , 0 ) ( ,1 )| |T TP y P yζ ζ> , this means that the 
probability of a particular frequency band being unoccupied 
is higher than the probability of it being occupied. We 
compare the two probabilities with a threshold δ such that 
the channel is used when 
 
                    1 1( , 0 ) ( ,1 ) δ| |T TP y P yζ ζ− ≥                       (2) 
 
      Simulations are performed using this criterion with 
different values of δ. Results of these simulations are shown 
later. Due to large data size, the true likelihood of the 
process tends to zero and we use split data likelihood [5] to 
estimate the true value of likelihood. Because of extremely 

low numerical values of these probabilities, we use the 
logarithm of these probabilities and find the ratio of log-
likelihoods to compare it with a threshold δ. In this process, 
the observation sequence is segmented into blocks of equal 
length and these blocks are considered mutually 
independent. The overall likelihood of the observed process 
is then the product of individual likelihoods. 
Mathematically, for block size of m and a total of n blocks, 
we can write 
 

                      1 1 ( 1)
1

( )| ( |T mk
m k

n

k

P y yP + −
=

ζ ζ= )∏                  (3) 

    
   The graphical illustration of MCPA technique is shown in 
Fig. 3. Note that the CR traffic leaves a particular band 
before the detection of data transmission from the primary 
user. In this way, we can significantly reduce the impact of 
CR network on the licensed users.  Simulation results have 
shown significant improvement in the SIR of licensed users 
by using the MCPA.  

 
 

 
Figure 3: Illustration of dynamic spectrum allocation using MCPA. 

 
    
The case of multiple primary users is just an extension of 
single user case. Different log-likelihood ratios are 
calculated and the channel that gives the highest probability 
of being unoccupied among all channels is selected for data 
transmission.  
 
 

3.  SIMULATION RESULTS 
 

We present the simulation results with four licensed users 
(here called interferers) and one unlicensed user. Each 
interferer has a unique spectrum usage pattern that has the 
occupancy probability of not less that 50%. Fig. 4 shows the 
graphical representation of the simulation setup. The four 
licensed users use their respective spectrum independently 
from each other and their transmissions follow the 
exponential distribution, which is a widely popular 
assumption. The slot duration of both primary user and CR 

Observe channel usage 
patterns and update 
HMM parameters 

Predict channel availability and 
unavailability using HMM 

If P(y,0 | ζ) > P(y,1 | ζ ) 
Transmit 

If 
 P(y,0 | ζ ) ≤ P(y,1 | ζ ) 
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network is assumed to be same here. Also, the system is 
assumed to be interference limited and noise is ignored in 
this study.  

 
Figure 4: Simulation scenario with four licensed users and one cognitive 
radio transceiver labeled as ‘TX’ and ‘RX’.  The primary users are labeled 
using upper case alphabets (A, B, C, and D).  
 
 

    
Figure 5(a), 5(b), 5(c) and 5(d) show the statistics of 
spectrum usage by the first, second, third and fourth 
primary users respectively.  The first plot shows the 
frequency of consecutive time slots when a particular 
spectrum is occupied whereas the second plot shows the 
frequency of consecutive unoccupied slots. 
       
   We present a comparison with a conventional CSMA 
based spectrum allocation technique and our proposed 
method of HMM based dynamic spectrum allocation. In 
CSMA based spectrum allocation scheme that we adopt, the 
CR uses the channel when it observes no activity by the 
primary user and quits it whenever it senses that the primary 
user has started sending data through that channel (which 
may be very difficult to perform in practice). So we expect 
some degradation in terms of SIR of the primary user 
because of the interference from the CR network that can 
not be completely avoided using the CSMA based 
approach. However, these possible collisions can be 
avoided by using the MCPA approach as the CR leaves the 
channel before the start of data transmission by the primary 
user. We perform a study to observe the impact on the 
licensed users by using these two techniques. We vary the 
power of the CR signal while keeping the powers of 
licensed signals constant and calculate the SIR at the 
receiver of the primary users. The CDFs of the SIRs in both 
cases (CSMA and MCPA) are plotted in Fig. 6. We can see 
an improvement of approximately 12dB by using Markov 
based dynamic spectrum allocation approach.  
 
Table I shows the BERs for different values of δ and their 
corresponding throughput for different ratios of log-

likelihoods. As we can see that the increase in this ratio 
gives better performance in terms of BER. At the same time, 
the throughput decrease because of tougher constraints that 
the radio has to fulfill in order to transmit its data. Fig. 7 is 
the BER plot for the different values of log-likelihood ratios 
used in the simulation. It also shows the average throughput 
associated with different values of threshold δ. It can be 
seen that increasing δ improves the BER performance of the 
CR, but at the same time it reduces the average throughput 
of the CR system. Figure 8 shows the percentage of time 
CR uses these four licensed bands for its data transmission.   
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Figure 5: Spectrum usage patterns of (a) - first licensed users, (b) - second 
licensed user, (c) - third licensed user and (d) - fourth licensed user. 
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Figure 6: Comparisons of the primary user’s SIR using CSMA based and 
MCPA based schemes. 
 
 
 
 

TABLE I 
PERFORMANCE OF THE MCPA IN TERMS OF BIT ERROR RATE AND 

THROUGHPUT.  
 

Ratio of 
 log-likelihoods 

No. of bits 
transmitted 

BER Throughput 
% 

~0 4352 0.0294 98.25 
0.0005 7905 0.0248 81.66 
0.0030 4384 0.0212 69.55 
0.0040 3016 0.0196 63.98 
0.0059 5579 0.0151 48.15 
0.0060 21794 0.00059 32.05 
0.0063 47074 0 27.47 
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Figure 7: Performance of MCPA with four primary users. 
 
 
 
 

                        (a)                                                                                

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Channels

P
er

ce
nt

ag
e 

of
 u

sa
ge

 b
y 

th
e 

C
R

 
(b) 

1 2 3 4
0

5

10

15

20

25

30

35

Channels

P
er

ce
nt

ag
e 

of
 u

sa
ge

 b
y 

th
e 

C
R

 
Figure 8: Percentage of time the cognitive radio uses four radio bands using 
(a) - CSMA based scheme and (b) - MCPA based scheme. 
 
 
 

4. CONCLUSION 
 

We conclude that HMMs can significantly aid in dynamic 
spectrum allocation in cognitive radio by performing 
accurate predictions of the channel states of licensed users.  
We see that by properly tuning HMM parameters we can 
obtain the performance comparable to BPSK case with just 
AWGN noise present in the system even though the CR is 
using frequency bands that are used by the primary users 
more than 50% of the time. This obviously comes with the 
cost of lowering the throughput as we put more strict 
condition on the use of licensed channel by increasing the 
threshold.  
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