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ABSTRACT

Genetic Algorithm based weighted optimisation strategy for 

collaborative spectrum sensing is presented in this paper. It

is shown that imperfect reporting channel and different

mean SNR of secondary users have direct impact on the

performance of collaborative spectrum sensing. Under

channel fading, optimum collaborative spectrum sensing

problem is formulated as a nonlinear optimisation problem

and genetic algorithm is proposed as a solution approach. 

For a given probability of false alarm and given channel

conditions, optimal weights are assigned to the secondary

users to maximise global probability of detection at the

fusion centre. The simulation result shows that the

performance of proposed optimised collaborative spectrum

sensing scheme yields higher collaborative gain.

1. INTRODUCTION 

Tremendous growth of wireless services and applications in

the last decade has led to the overcrowding of spectrum.

Traditional approaches of spectrum access and allocation 

yield highly inflexible use of spectrum in which a large

portion of spectrum have been assigned to the privileged

users, often called Primary Users (PU), which have the

exclusive rights to use assigned bands. However, recent

measurements by Spectrum Policy Task Force (SPTF) 

indicate that many portions of the licensed spectrum are not 

used for significant periods of time [1]. The same claim has

also been made in the UK by the Office of Communications

(Ofcom) even though the entire spectrum is allocated [2].

This suggests that currently spectrum scarcity is mainly due 

to the inefficient fixed frequency assignments rather than

the physical shortage of the spectrum.

Cognitive Radio (CR) is an emerging technology to 

solve spectrum under-utilisation problem in the next 

generation wireless communication systems by

implementing opportunistic spectrum sharing [3]. Unlike

traditional spectrum access approaches, CR allows the 

unauthorised users, called Secondary Users (SU), to use the

licensed bands on a non-interfering basis with the PU. 

Therefore, CR has the potential to economically enhance the

spectrum utilisation efficiency. Spectrum sensing is a key

enabling functionality in the CR which makes opportunistic 

spectrum sharing possible. The main goal of spectrum

sensing is to obtain awareness about the spectrum usage and

the existence of PU in a certain geographical area. There are

several different complex sensing techniques ranging from

feature detection to energy level measurements, a brief

overview is given in [3]. Energy detector based local

spectrum sensing is used in this study because of its low 

complexity and computational power [4]. Although not

many, there are some hardware platforms available for 

implementing spectrum sensing algorithms e.g. GNU radio 

[5], Universal Software Radio Peripheral (USRP) [6] and

Shared Spectrum XG Radio [7]. 

Collaboration is proposed as a solution to the problems

that arise due to the uncertainties in the channel such as

fading and shadowing. It has been shown many times in the

literature that spectrum sensing performance can be greatly

improved with the collaborative or cooperative spectrum

sensing in which a number of SU share their sensing

information with each other, see [8-12] and references 

therein. Local observation (soft decision) or 1-bit local

decision (hard decision) from the cognitive SU fused at the

band manager node to make a global decision about the

presence of the PU [13]. It has been argued that soft

decision combining gives higher performance gains than

hard decision combining [14].

Various techniques for the optimisation of collaborative

spectrum sensing in terms of the fusion rule [12, 17],

number of users [15] and thresholds [16] are available.

However, most of the prior research work focused on the

case when secondary users are far away from the primary

user and hence the same mean SNR were assumed for all 

collaborating SU [8, 10, 12]. Moreover, previous research 

highlighted collaborative sensing techniques which combine

data or decisions from the cognitive users with equal

weights and with perfect reporting channels [8, 14].

Performance of collaborative spectrum sensing with noisy

reporting channel was considered for the case of hard 

decision fusion in [18].

Collaborative spectrum sensing schemes with weighted

user contributions have been recently proposed in [17] and 

[19]. In [17] average signal power at a secondary user was 

exploited to weight different collaborating cognitive nodes. 
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In [19] an optimal strategy for cooperative spectrum sensing

was presented and optimal weights for each SU in an

AWGN channel were derived analytically. However, the

shortcoming of existing literature in weighted collaborative

spectrum sensing (CSS) is that the perfect reporting channel

has been assumed and doesn't considered effects of fading

between PU and SU. 

In this paper, Genetic Algorithm (GA) based weighted

collaborative spectrum sensing strategy is presented to

combat the channel effects and to enhance the spectrum

sensing performance. The proposed optimum spectrum

sensing mechanism is based on a model that is realistic and 

also takes into account both channels i.e. channel between

primary user and the SU as well as the reporting channel. It 

is shown in this paper that the imperfect reporting channel

has a direct impact on the performance of collaborative 

spectrum sensing. Secondary users transmit their local

observations to the band manager and global decision made

at the band manager is based on a weighted combination of

the local test statistics from individual cognitive

collaborative SU (CCSU). The weight of each secondary

user at the band manager is indicative of its contribution to

the global decision. For example, if a secondary user has a 

high SNR signal, better channel conditions and a good

reporting channel then it is assigned a larger contributing

weight.

The optimum collaborative spectrum sensing problem

is formulated as a nonlinear optimisation problem in this

paper. For a given probability of false alarm and given

channel conditions, optimal weights are chosen in such a 

way to maximise global probability of detection at the

fusion centre. With a realistic fading channel it is hard to

derive an analytical expression for the optimum weights.

This paper propose a GA based solution to calculate

optimum weight for each secondary user that maximises the

global probability of detection.

The paper is organised as follows. In section 2 we

describe the system model considered in this paper. Section

3 introduces the spectrum sensing and collaborative

spectrum sensing framework in cognitive radio network and

details the problem formulation. In order to achieve

optimum spectrum sensing performance, GA is used to

calculate the weights for each collaborative user in section 

4. Simulation results are presented in section 5 and finally

section 6 concludes this paper. 

2. SYSTEM MODEL 

We consider a cognitive radio network, with M  secondary

users and a fusion centre, to sense a portion of the spectrum

in order to detect PU, as shown in Fig. 1. Suppose the

primary user is not far away from the M  secondary users

and each user has a different value of mean SNR depending

on its distance from the PU. We assume that all the 

collaborating cognitive SU lie inside the decodability region

of the PU. It is also assumed that SU have independent and

identically distributed (i.i.d.) observations.

Figure  1: Spectrum sensing system model in a cognitive

radio network

3. PROBLEM FORMULATION 

3.1 LOCAL SPECTRUM SENSING 

In this section, the local spectrum sensing problem is

formulated as a binary hypothesis testing problem [4]:
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since
i
 is the sum of squares of  Gaussian random

variables and it is well known that the sum of squares of

Gaussian variables follows a chi-square distribution [20]. So 
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where i is the mean SNR of i th secondary user. For a 

large number of samples , the test statistics  is normally

distributed and is given as [20],
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If the decision threshold at i th secondary user is
i
 then the

probability of false alarm and the probability of detection

for i th user is given by,
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3.2 COLLABORATIVE SPECTRUM SENSING 

The summary statistics at local secondary nodes  as 

defined in (4) is then transmitted to the fusion centre

through reporting channels. In this paper realistic reporting

channels with variable channel gains  are considered, as 

shown in Fig. 2.
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Figure  2: Schematic diagram of weighted collaboration at

the fusion centre 
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where 2

i
is the noise variance of reporting channels. A 

global test statistics is calculated at the fusion centre by

assigning weights  to the received observations  by, }{w }{y
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where the weight vector  is defined as 

and the received decision vector at the fusion centre is 

defined as . Weight vector w  at the 

fusion centre satisfies 
2

 where 
2||  denotes the

Euclidean norm. From (7) and (8) the distribution of  can 

be easily derived and is given as,
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where  is a diagonal matrix with elements of the

given vector on its diagonal and  denotes the 

variance operator. 

(.)diag
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To make a decision on the presence of primary user, the 

global decision statistics
c
 as defined in equation (8) is 

compared with a threshold 
c

y

. Global probability of false 

alarm and detection at the fusion centre is given as, 
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3.3 SPECTRUM SENSING UNDER FADING 

When the channel between primary transmitter and

secondary user is varying due to fading or shadowing, (6) 

and (12) gives the probability of detection conditioned on 

instantaneous SNR
i
. On the other hand, local and global

probability of false alarm as defined in (5) and (11) remains

same, as it is independent of 
i
. Under both cases of local 

and collaborative spectrum sensing, average probability of 

detection may be derived by averaging instantaneous 

probabilities over the fading statistics.
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where distributions of i  and c  are defined in (4) and (9) 

respectively (by replacing 

u y

i
 with the independent variable 

x ) and  is the PDF of SNR under fading. )(xf
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4. GA BASED OPTIMUM COLLABORATIVE 

SPECTRUM SENSING 

In this paper, main goal is to maximise the global

probability of detection (or alternatively minimise global 

probability of miss detection) for a given value of the global 

probability of false alarm. From (11) and (12),
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       Similarly, for fading channel, average probability of

detection can be obtained by averaging  over fading 

statistics as describe in section 3.3. Now optimisation

problem can be formulated as,
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       A Genetic Algorithm (GA) is used as a solution

approach to minimise  for a given value of
fQ . The 

GA has been proposed as a computational analogy of

adaptive systems by Holland [22]. They are modelled based 

on the principles of natural evolution and selection. The 

algorithm starts by randomly generating an initial

population (weights) and then computing and saving the 

fitness of each chromosome in the current population using

(15), which serves as a fitness function for the GA. Next,

using a selective algorithm, chromosomes are picked up

probabilistically from a mating pool to produce offspring’s

via crossover and mutation operations. This process is 

repeated until a satisfied solution is obtained or the

maximum generation number is reached. Details of the GA 

can be found in any standard text e.g. [21].

)(wf

5. SIMULATION RESULTS 

In this section, proposed GA based weighted collaborative 

spectrum sensing scheme is simulated and compared with

existing weighting schemes i.e. Equal Gain Combining

(EGC) and Proportional Combining (PC). EGC is the 

weighting scheme in which all the collaborating users have 

equal weights and in PC fusion centre assigns proportional 

weights to the cognitive users according to their mean SNR 

value. There are M  collaborating SU located at different 

positions within decodability region of the PU as shown in 

Fig. 1. Numerical results are obtained from simulations over 

1,000,00  noise realisations for the given set of noise 

variances. Noise variance of all collaborating users for the 

primary channel (i.e. channel between primary transmitter

and secondary users) is assumed to be  and noise 

variance of the reporting channel is assumed to be

dB. Value of N  is assumed to be 10 in all 

simulations.

1=2

i

1=2

i

For the case of local spectrum sensing theoretical 

results are compared with simulation results in Fig. 4. This 

figure shows the ROC curves for local spectrum sensing in 

AWGN and Rayelgih fading channel for a single secondary

user having 5=dB
. It is clear from Fig. 4 that channel 

fading degrades the performance of spectrum sensing. For

example in Rayleigh fading channel, in order to achieve 

m
, maximum achieveable probability of false alarm is 

0.4, which results poor spectrum utilisation and vice versa.
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Figure  4: ROC curves in AWGN and Rayleigh faded 

channel for a single node with 5= dB, 10=N

Fig. 5 shows probability of miss detection 
mQ  against 

probability of false alarm
fQ  with different number of 

collaborating users and their corresponding mean SNR

values. Perfect reporting channel is assumed here and the

channel between SU and PU is considered to be AWGN 

channel. Fig. 5 shows clearly that with an increase in the 
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number of collaborating users sensing performance

improves if all SU have same mean SNR. However, when

the cognitive users have different mean SNR values than the 

sensing performance degrades with equal gain combining.

Proportional weights assigned to different users according 

to their mean SNR values improves sensing performance as

compared to equal gain combining approach. From Fig. 5, it 

is concluded that users SNR have a direct impact on the 

spectrum sensing performance.
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Fig. 6 plots the 
mQ  versus 

fQ  for the case when 

cognitive users have different mean SNR and the reporting 

channel is not perfect i.e. practical AWGN channels exist 

between cognitive users and the fusion centre with different 

channel gains. Value of channel gain is dependent on the

location of the fusion centre and the CR and varying with

time. It can be seen from Fig. 6 that reporting channel gains 

degrade the performance of spectrum sensing. Without 

channel gains, PC performs better than EGC, but, in the 

presence of reporting channel, PC doesn't perform much

better than EGC. This is mainly because of the fact that in

the presence of imperfect reporting channel, optimum

weights of cognitive users are not only dependant on SNR 

values but also depend on reporting channel conditions. 

Under such conditions an analytical expression for the 

probability of detection is derived and optimum weights are 

calculated by using genetic algorithm. The result shows that

the proposed GA based optimal weights, denoted as 'OPT',

yield superior spectrum sensing performance in both cases 

i.e. with and without reporting channel gain.

In order to evaluate the performance of proposed

optimised collaborative spectrum sensing framework,

performance of GA based optimisation algorithm is tested 

assuming a fading channel. Three different cases were 

considered, case 1 refers to the case in which all the SU

have good reporting channel, case 2 is the case in which all

the collaborating cognitive users have a bad reporting

channel while in case 3 two of the collaborating users have 

strong channel while others have a bad reporting channel.

Good and bad reporting channel here means channels with 

high or low channel gains. As seen from Fig. 7 spectrum

sensing performance is worst for case 1 and best for case 3,

however, in all three cases, performance of the proposed

optimised thresholds outperforms.
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6. CONCLUSIONS 

In this paper we propose optimisation of weighted 

collaborative spectrum sensing in which different weights 

are assigned to collaborative users to improve collaborative 

spectrum sensing performance in terms of receiver 

operating characteristics curves. The optimum weight vector

is obtained by minimising a function using Genetic 

Algorithm, which maximises the probability of detection for 

a given probability of false alarm and given channel 

conditions. In this paper, realistic noisy reporting channels 

are considered with variable channel gains. It has been 
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shown in this paper that observation fusion with optimum

weights always outperform other weighting schemes

considered in the literature. Proposed GA based

optimisation scheme requires knowledge about local mean

SNR of all secondary users as well as reporting channel

conditions. In practical situations with a large number of

cognitive users, the bandwidth utilisation can be high. Our 

future research will investigate mechanisms to optimise

bandwidth utilisation for the collaborative framework

presented in this paper. 
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