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ABSTRACT 

 
In this paper novel approaches to implementation of several 
processing blocks required in the LTE standards are 
analyzed and benchmarked. In particular, implementation of 
the algorithms is assumed to be based on a flexible software 
based baseband processor. The blocks discussed in this 
paper are the FFT, the DFT and the Viterbi Decoder. 
 
This platform therefore requires the implementation to be 
completely in software. This poses an important constraint, 
as typical hardware based implementations use very specific 
hardware architectural features to minimize the 
computational latencies. On the other hand a software 
implementation requires utilization of the general purpose 
(i.e. load/store) instructions of a processor, as well as its 
specialized instructions (e.g. butterfly and complex 
multiplications).  Software based platforms have typically 
limited  on chip (fast) memory, that may restrict storage of 
operating parameters required to set up an algorithm. 
Therefore novel techniques to maintain all time critical data 
in the fast memory become necessary in these 
implementations.  
 
The Third Generation Partnership Project (3GPP) has been 
defining the Long Term Evolution (LTE) for 3G radio 
access. LTE project aims to ensure the continued            
competitiveness of the 3GPP technologies for the future 
LTE focuses on download rates of 100 Mbit/s, upload rates 
of 50 Mbit/s per 20 MHz of bandwidth, increased spectrum 
efficiency, and sub-5ms latency for small IP packets. 
 

1. INTRODUCTION 
 
Reconfigurable radio systems are radios that can change to 
different communication protocols as they move between 
different radio environments. An example would be moving 
from a wireless LAN 802.11b to 802.11a and then to EV-
DO (Evolution Data – Optimized). Researching the 
development of a Reconfigurable Radio Architecture that 
will concurrently support multiple radio protocols over 
multiple frequency bands across multiple wireless 
networking environments is an active area of R&D in the 
industry. The Reconfigurable radio realizes the convergence 
of computing and communications by allowing a flexible 

communications for any handheld computing device. As 
more digital processing is applied to the radio system, the 
promise of software based digital baseband processors 
controlling a reconfigurable RF front end approaches 
reality.   
 
Software Defined Radios (SDRs) have the potential of 
changing the fundamental usage model of wireless 
communications devices. These transceivers are often 
conceptually divided into two major sections: the Baseband 
Processing Section and the RF Front End. This division is 
simply a matter of convenience as the technological states 
of the two sections are at different stages. The baseband 
section which is responsible for all symbol level and bit 
level computations is typically implemented as 
reconfigurable hardware architecture or a digital signal 
processor (DSP).  
 
“The SDR Forum, working in collaboration with the 
Institute of Electrical and Electronic Engineers (IEEE) 
P1900.1 group, has worked to establish a definition of SDR 
that provides consistency and a clear overview of the 
technology and its associated benefits. Simply put Software 
Defined Radio is defined as : "Radio in which some or all of 
the physical layer functions are software defined" 
 

2. THE TARGET BASEBAND PROCESSOR 
 

The SB3500 is the second generation of SandBlaster-based 
low power, high performance System on a Chip (SoC) 
products developed to serve the Software Defined Radio 
(SDR) modem applications space. As was the case for the 
prior generation product (the SB3011), it too is a multi-core 
device, however containing 3 'SBX' DSP cores (as opposed 
to 4), and an ARM926 processor, all interconnected by a 
high speed network (HSN). The ARM is intended to 
support protocol stacks and OS function, in addition to all 
the peripheral device support (such as SDIO, LCD, Camera, 
USB, PS/2, Smart Card, UART, DMA, AC-97/I2S, Vector 
Interrupt Controller, GPIO's) and external memory 
interfaces (Static & Dynamic Memory Controllers). The 
SBX DSP's each support a high rate Parallel Streaming Data 
(PSD) interface for the IQ baseband data, and possess the 
control interfaces (SPI, I2C, interrupt/timer functions, 
GPIO's) that are typically seen in most radio Front Ends; 



 

they are intended to serve the primary function of Mbps 
wireless radio baseband data processing in software, making 
for a 'standards agnostic' radio platform. 
 
Of notable improvements in this generation of the 
Sandblaster™ core one should cite a flexible 16-wide vector 
processing unit that could execute all the identified 
algorithms at the desired performances. The key kernels 
used to drive the design of this SIMD (Single Instruction 
Multiple Data) unit were derived from the various 3.5G and 
4G standards/proposals and includes FIR, Pilot search, 
Descrambling, Despreading, Derotation, Complex 
Correlation, complex FFT (256 - 8192 points), Viterbi 
(constraint length 7 & 9), Turbo, and LDPC.  
 
Each core delivers a peak of 9.6Gmacs/s once operated at 
600MHz. The SB3500 therefore is capable of triple this 
amount or 28.8Gmacs/sec. The element-wise operations 
supported in this SIMD unit include common operations 
such as logical, shift and arithmetic operations that read 2 
registers, which perform 16 short or 8 integer operations in 
parallel, and write the results back to a third register. 

 
3. DISCRETE FOURIER TRANSFORM 

 
This code is a set of functions which perform variable-size 
DFT's on 16 bit I/Q data. This is performed by utilizing the 
generalized Cooley-Tooky factorization method in which a 
DFT input block (which is not a power of two in size) can 
be decomposed into radix-2 FFT's and then reassembled to 
obtain the correct output. The radix-2 FFT's in this case are 
performed using the existing 4,8,16,32,64, and 256 RPU 
FFT blocks. The reassembly is performed by utilizing RPU 
complex multiply instructions to multiply the radix-2 FFT 
outputs by specialized DFT twiddle factors. To reduce code 
size and complexity, only branch-3 and branch-5 
factorizations were utilized. For example, to perform a 360-
sized DFT, the complex-valued input block would be 
factorized as follows:  
360 DFT = 5 * 72 DFT's = 5 * (3 * 24 DFT's) =  
 5 * [3 * (3 * 8 FFT's)]  
 
Each factorization step would constitute one additional 
depth in the factorization tree and would require 
multiplication with twiddle factors. The Cooley-Tooky 
method dictates that the DFT be evaluated as a tree structure 
where each depth of the tree constitutes evaluating a series 
of sub-DFT's. One solution is purely recursive, composed of 
mutually recursive functions, each of which go down one 
branch of the tree and spawn off different branches. This 
solution was attempted but resulted in higher cycles counts 
(due to greater function call overhead). The new, and 
enhanced, solution involves an iterative approach in which 
every sub-DFT, at every depth of the tree, is evaluated 

sequentially in a loop by just one function. Since the tree 
structure, and types of sub-DFT's, are different for each 
DFT size, the best way to encapsulate such a break-down 
for each DFT is to place the dissolution in a C-style table 
which each sub-DFT function is represented by a function 
pointer to an appropriate handle. This table allows the user 
to select the appropriate trade-offs between speed and 
memory. Since this enhanced version of the DFT 
implementation also allows for the dynamic, vectorized, 
creation of twiddle factors, the user can edit this table to 
decide which twiddle factors they would like the DFT 
functionality to dynamically create and which ones should 
be statically defined. The table maintains pointers to the 
twiddle factors for each sub-DFT and also pointers to the 
handler functions which would dynamically evaluate these 
twiddle factors.  
 
A single DFT function is called by the user which then calls 
each handler, in a tight loop, to evaluate the sub-DFT's for 
the entire level of the DFT tree in one single uninterrupted 
flow. This reduces the massive function call overhead 
encountered in the standard implementation and also 
reduces code size. As a result, this particular 
implementation is more suited for use with applications 
under tighter memory and cycle controls.  
 
For each DFT size, interleaving is done once on the input 
data. The interleaving performs both decimation (by 3 or by 
5 depending on the factorization) as well as the necessary 
bit reversal (always done for any FFT) all in one. For each 
DFT there is a specific interleaving required depending on 
how the DFT is factored. The SB3500 scatter DMA is used 
to speed up interleaving.  
 
In accordance with the LTE standard, the following DFT 
sizes were implemented and tested on the SB3500 
hardware: 12, 
24,36,48,60,72,96,108,120,144,180,192,216,240,288,300,3
24,360,384,432,480,540,576,600,648,720,768,864,900,960,
972,1080,1152,1200, and.1296 
 

The following 3500 hardware cycle counts were achieved 
(including the scatter DMA's). In each case, the amount of 
time to perform the actual DFT is less than the LTE real-
time constraint for the SB3500 (~10700 thread cycles) when 
sampling at 30.72 Mhz. Furthermore, note that the DMA 
can be performed concurrently with other operations and so 
its latency can be completely hidden and absorbed. 
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Figure 1 - DFT Cycle Counts 
 

4. FAST FOURIER TRANSFORM 
 

The FFT class of instructions all perform 4 complex 
butterflies. The instructions rfft0s, rfft1s, and rfft2s use 3 
vector unit’s registers in the following manner: one output 
(vt), one input (va), and one weights (vb). A butterfly 
involves a pair of complex inputs used with one complex 
weight to compute a pair of complex outputs. The three 
instructions differ in which input, output, and weight indices 
are used. The instruction rfft0s uses consecutive pairs of 
inputs and writes to consecutive pairs of outputs. It should 
be used for the first FFT stage. The instruction rfft1s uses 
alternate pairs of inputs and writes to alternate pairs of 
outputs. It should be used for the second FFT stage. The 
instruction rfft2s uses pairs of inputs with a stride of 4 and 
writes to pairs of outputs with a stride of 4. It should be 
used for the third FFT stage.  
The instructions rfftls and rffths should be used for all 
subsequent FFT stages. They use 3 vector registers in the 
following manner: two input/output (vt, va), one weights 
(vb). For each butterfly, one complex input is used from vt 
and one complex input is used from va, and the complex 
outputs are written back to same locations in vt and va. The 
instruction rfftls uses the lower half of vt and va for inputs 
and outputs, while the instruction rffths uses the upper half 
of those vectors.  
 
For an N point FFT, each stage requires N/2 complex 
butterflies, and there are log2N stages in total. Since each 
FFT instruction performs 4 complex butterflies, each stage 
requires N/8 FFT instructions. For the first 4 stages, there 
are no additional load/store penalties. For all subsequent 
stages, it takes 11 cycles per 8 FFT instructions for a total of 
11N/64 cycles per stage (approximately N/6 cycles).  
 
Therefore a good estimate for the total number of cycles for 
an N point FFT is (N/8)*logN for N <= 16 and 

(N/8)*log(16) + (N/6)*(logN - 4) = (N/2) + (N/6)*(logN - 
4) = (N/6)*logN - (N/6) for N > 16.  
 
Note that this does not include bit reversal which must be 
performed before the main FFT algorithm. Bit reversal takes 
20 cycles per 64 complex elements shuffled, or 20N/64 for 
an N point FFT (approximately N/3 cycles). The final 
formula for cycles in an N point FFT is:  
(N/8)*logN + (N/3), N <= 16  
(N/6)*(logN + 1), N > 16  
 
For the examples coded up that yields:  
64 point : 75 cycles  
256 point : 384 cycles  
512 point: 853 cycles  
1024 point: 1878 cycles  
2048 point: 4096 cycles  
4096 point: 8875 cycles  
 

5. VITERBI DECODER 
 

These functions implement different versions of a 1/3 rate, 
variable-length, SIHO viterbi decoder designed for a k=7, 
tail-biting code. Note that, in this case, none of the symbolic 
bits are systematic (this is based upon a 100% parity code). 
The optimized, pipelined, decoder is designed to be the 
central piece in the LTE blind decoding process for the 
PDCCH. The decoder is designed to perform decoding for 
all DCI sizes specified in the standard and achieves a 
performance of 6 cycles per decoder output bit. Like all SB 
library kernels, it is encapsulated in an easy to used 
functional format that accepts a sequential array of 16 bit 
soft input bits and produces a sequential array of unpacked 
hard output bits. Note that the SB3500 architecture allows 
for the viterbi decoder's forward ACS stage (composed 
exclusively of 16-way vectorized RPU instructions) to be 
instruction pipelined with the traceback stage of a previous 
decoding block (both can occupy the same instruction 
packet). As a result, the latency of the traceback stage can 
be completely hidden and absorbed.   
 
The optimized 1/3 rate decoder can accept DCI sizes from 7 
(1 + constraint length) to 96. Since the ACS stage consumes 
75% of the cycles, performing it in parallel with the 
traceback stage would yield a further 25% reduction in 
cycles. The metrics given below are for the case in which 
the ACS stage and the traceback stage are cascaded one 
after the other. 
 



 

 

Figure 2 - Viterbi Decoder Cycle Count 
 

6. CONCLUSION 
 
The important conclusion derived is that in the context of an 
SDR implementation, various critical blocks of the LTE 
baseband processing can indeed be implemented entirely in 
software without the usage of any hardware accelerators. 
This important conclusion provides for a feasible solution 
for a multi-mode SDR supporting current wireless and 
cellular 2G and 3G standards, as well as emerging 4G 
standards. 
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