
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

  
EXPERIENCES IN THE CO-DESIGN OF SOFTWARE AND HARDWARE 

ELEMENTS IN A SDR PLATFORM  
 

Magdalena Sánchez Mora (Institute of Microelectronics and Wireless Systems (IMWS), 
National University of Ireland Maynooth (NUIM), Ireland; msanchez@eeng.nuim.ie); 

Jörg Lotze (Centre for Telecommunications Value-Chain Research (CTVR), Trinity Col-
lege Dublin, Ireland; jlotze@tcd.ie); Gerry Corley (IMWS, NUIM, Ireland; 

gcorley@eeng.nuim.ie); Ronan Farrell (IMWS, NUIM, Ireland; rfarrell@eeng.nuim.ie)  
 
 

ABSTRACT 
 
 The Center for Telecommunications Value-Chain Research 
(CTVR) has developed an integrated software radio plat-
form, which consists of a RF transceiver, called the 
Maynooth Adaptive Radio System (MARS), and a software 
radio framework, called Implementing Radio in Software 
(IRiS). Developing a complete SDR system involves a wide 
range of disciplines. For example, the construction of our 
integrated software radio platform requires the interaction 
between the two subsystems: MARS and IRIS, which result 
in design challenges at hardware, firmware and software 
level. The experiences and challenges faced in achieving 
this integration will be described as well as a demonstration 
showing the working condition of the integrated software 
radio platform. The demonstration consists of an image re-
ception using DQPSK modulation with IRIS and MARS at 
2.41GHz.  This demonstrates the capability to implement 
more complex experiments in future, such as audio or video 
transmission, and cognitive radios for dynamic spectrum 
access techniques. The MARS platform’s software interface 
also opens new research opportunities for integration with 
other third party software radio frameworks. 
 

1. INTRODUCTION 
 
With the proliferation of reconfigurable radio software, it 
has become viable to develop low cost, high performance 
software defined radio (SDR) systems. The improving ma-
turity of the technology has reduced the cost and increased 
the reliability of these systems, to a level where they are no 
longer concept demonstrators but can be considered for 
mainstream applications.  Though the technology is improv-
ing, construction of a complete SDR system requires the 
integration of hardware, firmware and software components 
with an overarching system perspective on partitioning re-
sources and tasks within the system.  The level of complex-
ity and range of disciplines required presents severe chal-
lenges to most research or design teams. 

 There are several frameworks available for software 
defined radio and cognitive radios research.  The three we 
examined are IRIS, GNU Radio and OSSIE. IRIS is a ma-
ture and modular software radio framework that has been 
developed over the past number of years by CTVR [1] as 
part of their effort in cognitive radios. IRIS allows the dy-
namic construction of waveforms using a library of signal 
processing components. GNU Radio is a software applica-
tion for building and deploying software defined radio sys-
tems under a GNU General Public License [2], originally 
developed by the Massachusetts Institute of Technology 
(MIT).  The GNU Radio is most commonly used with the 
USRP RF front-end [3] with a customized API, although it 
can be integrated with other hardware platforms. The fact 
that it is open source, easy to use and has efficiently imple-
mented numerous signal-processing modules has made it 
very popular amongst the SDR research communities. The 
Open Source SCA Implementation-Embedded (OSSIE) is 
another open source software defined radio developed by 
Virginia Tech [4]. As with IRIS and GNU Radio, OSSIE is 
a tool for rapid development of SDR components and wave-
forms applications but is more complex and limited regard-
ing the amount of signal processing blocks available. 
 

 
TABLE I 

SOFTWARE  RADIO PLATFORMS 

 Strenghts Main Goal 

GNU Radio Open-Source Soft-
ware  & Easy to use 

Software Radio and  
efficient signal processing 

modules 

IRIS Rapid prototyping 
capabilities 

Cognitive Radio 

OSSIE Great Flexibility  & 
High Complexity 

Training & Education 

 
 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

OSSIE is primarily intended for use in educational and 
training applications, IRIS focuses more on cognitive radio 
and GNU Radio’s main goal is to provide a free and quite 
complete signal processing package that gives researchers 
the opportunity to explore radio systems (see Table I). A 
performance evaluation of OSSIE and GNU Radio is also 
presented at this conference [5]. Therefore, a wide range of 
research possibilities arises from the integration of MARS 
with these three radio frameworks. Elements of the 
reconfigurable radio platform were presented at SDR’07 
Technical Conference [6][7].  
 This paper describes the experiences in achieving the 
integration of MARS with IRIS and shows a demonstration 
of the two systems working together: an image file trans-
mission using DQPSK modulation. This demonstration 
proves that the integration was successfully achieved and 
allows more complex experiments to be carried out in fu-
ture, such as audio or video transmission. It also allows de-
veloping cognitive radio systems, using a cognitive engine 
to sense the environment, decide which waveform to use, 
and reconfigure the running radio to accommodate these 
decisions. One example of such a system is the cyclosta-
tionary feature detector presented in [8]. 
 The structure of this paper is as follows: Section 2 in-
cludes a detailed description of each of the components of 
the integrated software radio platform, Section 3 describes 
the radio configuration of the demonstrated case study, and 
Section 4 shows some test results including the constellation 
diagram and the recovered image. Section 5 presents the 
conclusions and ends by outlining the future research lines 
to be followed. 
 
2. INTEGRATED SOFTWARE RADIO PLATFORM 
 
Figure 1 shows the elements of the integrated software radio 
platform: MARS and a standard laptop computer. In order 
to enable the communication between IRIS and MARS, 
several software modules were developed such as a USB 
device driver, an API library, the firmware running on the 
USB microcontroller and two additional IRIS DSP compo-
nents. 

 

Figure 1. Integrated Software Radio Platform 

 The following subsections describe each of these 
components and the challenges encountered in the 
integration of the two systems focusing on the software 
aspects.   
2.1. Maynooth Adaptive Radio System (MARS) 
 

MARS was designed to be flexible, easy to use and 
inexpensive. To meet these requirements it was decided to 
use direct conversion receiver and transmitter architectures 
as this approach allows large baseband bandwidth, avoids 
the use of fixed IF filters and has a lower component count 
than comparable superheterodyne or low IF configurations. 
Data and control communication is performed via a USB 
interface between the transceiver and a laptop PC.  

A block diagram of MARS is shown in Figure 2. The 
transceiver connects to a PC via a USB 2.0 interface that has 
a maximum data transfer rate of 480Mbps. In the baseband 
section there are two 16 bit DAC's with a sample frequency 
of 200Msps and two 16 bit ADC's with a maximum sam-
pling frequency of 100Msps. These provide the I and Q sig-
nals to the RF transmitter and receiver boards. Although the 
ADC's and DAC's are capable of very high conversion rates, 
currently the maximum operating speed of the system is 
limited by the USB interface and the radio software running 
on the PC.  

Figure 2. Block diagram of MARS 

The RF transmitter operates between 2.1 and 2.45GHz, 
with a maximum output power of 24dBm and 256 levels of 
power control all under full software control. The RF 
receiver operates over the same frequency range, has a noise 
figure of 5dB, bandwidth of 40MHz and 48dB of gain 
control. A wider frequency range is possible with 
adjustment of the power amplifier matching network. 

Figure 3 shows a picture of MARS, which consists of 
several hardware elements including a radio transmitter, a 
radio receiver and a baseband interface. Both the RF 
transmitter and receiver boards plug into the baseband 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

boards in ´piggyback´ fashion through a series of SMB 
connectors, this makes for a low loss robust connection. 
 In our design, a key criterion was to explore the concept 
of pushing the software engine as close to the antenna as 
possible, therefore the responsibility for processing the raw 
IQ data was deemed to be a software engine task. 
 

 
Figure 3. MARS boars 

 
2.2. Firmware, USB driver and API library 
 
As we are dealing with a new SDR hardware platform that 
uses a USB microcontroller, a customized USB driver and 
firmware were developed. An efficient API library was also 
implemented in order to provide an interface with third 
party waveform applications. Figure 4 shows a high-level 
vision of the interconnection between the elements of the 
integrated radio platform. 

 

Figure 4. IRIS to MARS interface 

 As can be seen in Figure 4, the main requirements in 
terms of software are embedded code running on the USB 
microcontroller, an optimized USB driver and an API li-
brary providing an interface with third-party waveform de-
velopment tools, such as IRIS. The three modules were writ-
ten in the C language due to its low-level capabilities, speed 
and portability between a wide variety of PCs and operating 
systems. 
 The principal challenges were first to provide high-
speed and continuous data transfer without data loss, and 
second to enable the re-configurability of the hardware de-
vices. The debugging stage also required an additional effort 
due to the different location of the software modules: firm-

ware at hardware space, device driver in kernel space, and 
API library in user space. 
 High-speed data transfer without data loss was achieved 
by using optimized techniques in both the USB driver and 
the embedded code. The USB driver utilizes USB request 
blocks (URBs) [9][10] as the data structure for transmit-
ting/receiving information due to their ability to be queued. 
This queue of URBs guarantees that there will be always 
information waiting to be processed in the communication 
channel, which causes maximum usage of bandwidth and a 
continuous stream of information. The data loss problem 
was solved by using bulk transfer type guaranteed delivery 
of data [11]. Regarding the embedded code running on the 
USB microcontroller, the General Programmable Interface 
(GPIF) [12][13] was programmed directly instead of 
through the 8051 CPU as this programmable state machine 
provides the highest bandwidth achievable over the physical 
layer. The GPIF is powerful and versatile but added great 
complexity to our firmware development stage.   
 Regarding the hardware re-configuration capabilities, 
the API library includes C functions for configuring the 
sampling rate, the local oscillator frequency, the receive 
chain gain control, and other parameters. Changing any of 
these parameters is as easy as calling the appropriate func-
tion in software specifying the new parameter.  
 The API library, the USB driver and the embedded 
code provide the required interface between IRIS and  
MARS. It has been proven to work efficiently since the re-
ceived image in the QPSK experiment was perfectly recov-
ered with no data loss or visible degradation. The experi-
ment configuration and the obtained results are presented in 
Sections 3 and 4.  
 
2.3. Implementing Radio In Software (IRIS) 
 
The software radio framework utilized in our system is the 
IRIS software radio framework. IRIS has been under devel-
opment at Trinity College Dublin since 1999 [1]. It is a 
highly flexible and highly reconfigurable software radio 
platform for a GPP running either Windows or Linux. 
 The IRIS architecture is illustrated in Figure 5. The 
building blocks of an IRIS radio are DSP components, each 
performing a distinct task. Examples for such components 
are modulators, framers, or filters. Each of the components 
has a set of parameters and an interface to the control logic, 
which allow for re-use in different radio configurations. The 
control logic is a software component designed for a spe-
cific radio configuration, i.e., it is aware of the full radio 
chain while the processing components are not. This control 
logic can subscribe to events triggered by radio components, 
and change radio parameters or reconfigure the radio’s 
structure. A cognitive engine would therefore use this 
mechanism to control the radio.  



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

  The typical flow used to design a radio with IRIS is as 
follows. The radio designer writes an eXtensible Markup 
Language (XML) radio configuration specifying the radio 
components, their parameters and connections. Optionally 
the radio designer can implement a control logic for radio 
reconfiguration. On IRIS start up the XML file is parsed and 
the IRIS run-time engine creates the radio by instantiating 
and connecting the specified components. The run-time en-
gine then loads the control logic and attaches it to the com-
ponents. Finally the radio is started and blocks of data gen-
erated by the source component will be processed by each 
of the components in the radio chain. The control logic can 
react to events triggered by components, with anything from 
diagnostic output to a full reconfiguration of the radio. 

Figure 5. IRIS architecture 

 In order to integrate our RF transceiver with IRIS, two 
new IRIS DSP components needed to be developed to pro-
vide an interface through an optimized low-level API to 
interact with MARS. 
 These new components (one for transmit operation and 
one for receive operation) interact with the API library to set 
up the RF transceiver hardware. During radio operation, the 
IRIS components transmit or receive data to or from the 
hardware. 
 To avoid data loss in the receiver IRIS component, it 
was required to read continuously from MARS. We accom-
plished this by implementing the data fetch in a thread run-
ning independently of the DSP component. This thread con-
tinuously reads data from the hardware and inserts it into a 
buffer shared with the IRIS component. When this compo-
nent is executed, it reads the data from this buffer and out-
puts it to the next component in the radio chain. Care had to 
be taken to avoid performance problems due to unnecessary 
movements of data in memory. No data can get lost in the 
transmitter component, thus its implementation proved to be 
simpler. 
 These new components enable the transmission and 
reception of complex waveforms utilizing other DSP com-
ponents available in IRIS. 

 
3. INITIAL CASE STUDY 
 
To test MARS together with IRIS we successfully transmit-
ted an image. To isolate transmitter from receiver problems 
we decided to use the USRP front-end as transmitter, which 
is known to work, and focus on the receiver, which is more 
challenging to implement. The high level experimental 
setup is depicted in Figure 6. 

Figure 6. Experiment Setup 

 The transmitter radio components are depicted in 
Figure 7(a). The first component in the chain is the Image 
Reader, which reads a bitmap image and provides the data 
to the Framer component. The simple frame structure used 
for the initial case study starts with a frame check sequence, 
so that receiver can synchronize with each frame, followed 
by the payload length, the whitened payload and a check-
sum field. The payload is whitened with a pseudo random 
sequence known at the receiver, so that the data sent over 
the air appears random. This simplifies synchronization at 
the receiver. The DQPSK Modulator modulates every pair 
of bits to one of four phase shifts in the I-Q-space using 
differential encoding. To limit the spectral footprint of the 
signal, it is upsampled and filtered with a root raised cosine 
pulse shaper in the Upsampler and Pulse Shaper compo-
nents, respectively. This I and Q data is then transferred to 
the USRP by the USRP Transmitter software component, 
upconverted, and transmitted. 

 
Figure 7. IRIS transmitter and receiver chains 

 The first IRIS component in the receiver chain, shown 
in Figure 7(b), is the MARS Receiver software component as 
explained in Section 2.3. It receives I and Q data from the 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

RF hardware and makes it available to IRIS. The Matched 
Filter is another root raised cosine filter matched to the one 
used at the transmitter. It increases the SNR of the signal 
and removes inter-symbol interference introduced by the 
pulse shaper at the transmitter. It is likely that the local os-
cillator of the transmitter and receiver are not coherent. The 
Carrier Recovery corrects the frequency and phase offsets 
using a Costas loop [14]. After that the Clock Recovery 
component interpolates the data to the optimum sampling 
points for each symbol using a modified Mueller and Muel-
ler algorithm [15]. The DQPSK Demodulator converts these 
symbols back to bits by assessing the phase shifts between 
samples. In the Deframer that data is correlated with the 
known frame check sequence to find the beginning of a 
frame, the payload is extracted, converted to bytes, and de-
whitened. The Image Receiver component can then display 
this information in an image.  
 In the experiment we used a 1Msps transfer rate, with 
each symbol represented by four IQ samples. We are able to 
increase this rate, limited by the speed achievable on the 
USB 2.0 interface and the CPU performance of the laptop 
PC used. The results are presented in the following section. 

 
4. RESULTS 

 
The image selected for the experiment is a logo montage of 
the different institutions supporting this research as well as 
the IRIS logo. Figure 8 shows a screenshot of the receiver 
laptop with the recovered image on the left and a live con-
stellation diagram (before the demodulator) on the top. The 
screenshot also shows IRIS running on a Linux terminal and 
the xml file containing the receiver chain configuration (bot-
tom right).  

 The quality of the recovered image was consistently 
high with no visible errors. The DQPSK constellation dia-
gram clearly shows the DQPSK symbol positions. Even 
though there is some scattering of the symbols, it is not suf-
ficient to cause loss of data. 

 
5. CONCLUSIONS AND FUTURE WORK 

 
Achieving a sustained high performance between these dif-
ferent systems has proven to be a difficult challenge and in 
this paper we have showed the key issues encountered, and 
our corresponding solutions. High-speed and continuous 
data transfer was accomplished by using URBs in the USB 
device driver and by programming the GPIF in the USB 

Figure 8. DQPSK receiver laptop screenshot 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

microcontroller, both URBs and the GPIF provide the high-
est bandwidth achievable over the USB physical layer. Data 
loss was avoided by using bulk transfer type in the USB 
driver, which guarantees data delivery, and by implementing 
a multithread mechanism plus a circular buffer on IRIS.  
 The integrated software radio platform described in this 
paper means a big step forward in our SDR research activi-
ties and opens new opportunities for integration with other 
frameworks for software defined radio such us GNU radio. 
Also more sophisticated multimedia applications can be 
carried out, such as audio or video streaming, with a small 
additional effort since high-speed data communication was 
achieved as shown in this paper. And lastly the cognitive 
radio capabilities of the IRIS framework will be explored 
with MARS and compared against the USRP hardware plat-
form. 
 Further over-the-air RF performance measurements will 
be taken for a better indication of the MARS receiver qual-
ity, such as bit error rate, interference and blocking. Also the 
MARS transmitter will replace the USRP transmitter so the 
whole system functionality will be verified in subsequent 
experiments. Finally our future work includes using extend-
ing this platform to support large arrays of individually con-
trollable antennas and extending the frequency range and 
capabilities to explore next generation TETRA applications 
[16]. 
 
 

7. ACKNOWLEDGEMENTS 
 
Research presented in this paper was funded by a Centre for 
telecommunications Value-Chain Research (SFI 
03/CE03/I405) by Science Foundation Ireland under the 
National Development Plan. The authors gratefully ac-
knowledge this support. 
 

8. REFERENCES 
 
[1] P. MacKenzie, “Software and reconfigurability for software 

radio systems”, Ph.D. dissertation, Trinity College Dublin, 
Ireland, 2004.  

[2] Free Software Foundation, Inc. (2008) GNU radio - the GNU 
software radio, http://www.gnu.org/software/gnuradio/ 

[3] Universal Software Radio Peripheral – The Foundation for 
Complete Software Radio Systems, Ettus Research LLC, 
Mountain View, California, USA, Nov. 2006, 
http://www.ettus.com/downloads/usrp_v4.pdf 

[4] Open Source SCA Implementation – Embedded (OSSIE), 
http://ossie.wireless.vt.edu 

[5] A. Palomo, R. Villing, R. Farrell, “Software Defined Radio 
Architectures Evaluation”, SDR Technical Forum, Washing-
ton DC, October 2008. 

[6] M. Sánchez Mora, G. Baldwin, R. Farrell, “Software Engine 
Development for SDR”, SDR Technical Forum 2007, 5-9 
November 2007, Denver, Colorado. 

[7] G. Baldwin, L. Ruíz, R. Farrell, “Low-Cost Experimental 
Software Defined Radio System”, SDR Technical Forum 
2007, 5-9 November 2007, Denver, Colorado. 

[8] P.D. Sutton, K.E. Nolan, L.E. Doyle, "Cyclostationary Signa-
tures for Rendezvous in OFDM-Based Dynamic Spectrum 
Access Networks", 2nd IEEE International Symposium on 
New Frontiers in Dynamic Spectrum Access Networks, 
DySPAN, vol., no., pp.220-231, 17-20 April 2007. 

[9] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device 
Drivers, Third Edition, O'Reilly, 2005. 

[10] G. Kroah-Hartman, Linux kernel in a nutshell, O'Reilly, 2006. 
[11] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and 

Philips, Universal Serial Bus Specification, Revision 2.0, 
April 27, 2000. 

[12] Cypress Semiconductor Corporation, EZ-USB Technical 
Reference Manual, version 1.4, 2000-2006.  

[13] Cypress Semiconductor Corporation, EZ-USB® FX2™ GPIF 
Primer, 2003. 

[14] M. Xiao, T. Cheng, "Improved Implementation of Costas 
Loop for DQPSK Receivers Using FPGA", International 
Conference on Communication Technology (ICCT), vol., no., 
pp.1-4, Nov. 2006. 

[15] G.R. Danesfahani. T.G. Jeans, "Optimisation of modified 
Mueller and Muller algorithm", Electronics Letters, vol.31, 
no.13, pp.1032-1033, 22 Jun 1995. 

[16] L. Gao, R. Farrell, “Using SDR to embed WiMAX channels 
within the TETRA framework”, SDR Technical Forum, 
Washington DC, October 2008. 

 
 
 

 
 




	Home
	Papers By Alpha
	Papers By Session



