

FPGA DESIGN TO SUPPORT A CORBA COMPONENT

Changhoon Lee (HY-SDR Research Center, Hanyang Univ., Seoul, Korea;

daljoon@dsplab.hanyang.ac.kr) ; June Kim (HY-SDR Research Center, Hanyang Univ.,
Seoul, Korea; nzneer@dsplab.hanyang.ac.kr) , Seungheon Hyeon HY-SDR Research
Center, Hanyang Univ., Seoul, Korea; hsheon@dsplab.hanyang.ac.kr); and Seungwon

Choi(HY-SDR Research Center, Hanyang Univ., Seoul, Korea;
choi@dsplab.hanyang.ac.kr)

ABSTRACT

The Common Object Request Broker Architecture
(CORBA) standard that supports the Field Programmable
Gate Array (FPGA) is not generally used because it is
difficult to implement and to develop using Hardware
Description Language (HDL). In this paper, we propose a
way to design an FPGA to support a CORBA. For FPGA to
support the CORBA, an embedded microprocessor
implemented in FPGA, a peripheral component interconnect
(PCI)-based CORBA software, is used. The PCI-based
CORBA improves data transfer throughput.

1. INTRODUCTION

CORBA is a standard structure to create, distribute, and
manage distributed processing objects in a network.
CORBA enables programs which are in different places in a
network and are developed by various venders to
communicate through an interface broker. CORBA is an
essential part of the Software Defined Radio (SDR) system
that supports reusability, portability, and interoperability of
the waveform application.
 To implement a CORBA middleware, CORBA and its
operating system (OS) are required. Systems like Digital
Signal Processor (DSP) and General Purpose Processor
(GPP) have their own operating systems. A few
modifications and additions of source code enable the
microprocessors to implement CORBA
 FPGA, however, has no embedded operating system.
For this reason, it has been difficult to implement and to use
CORBA middleware. In this paper, to implement CORBA
middleware in FPGA, a microprocessor is implemented by
using the open IP core on FPGA and PCI-based CORBA
middleware is loaded on the microprocessor. The traditional
way to communicate with other system in CORBA is via
Ethernet but it requires many software stacks and doesn’t
guarantee real-time requirement of wireless communication
system. Because we can expect high performance
throughput and real-time response by using the PCI bus,

FPGA uses a PCI bus to communicate with other system
and PCI-based CORBA were favored in our system. Also,
all IP cores are designed using open source and open core
which allows the reduction of development costs.
 This paper is organized as follows. In Section 1,
existing research trends and background are presented for
the proposed FPGA design to support the CORBA
component. In Section 2, an FPGA design for supporting
CORBA components is proposed and described in detail. In
Section 3, a simple experimental test is performed to
confirm the proposed FPGA design.

2. FPGA DESIGN FOR CORBA

This section explains the FPGA design to support a
CORBA component with a detailed description of each part.
Figure 1 is a diagram of the FPGA design. To use CORBA
components, we implement a reduced instruction set (RISC)
microprocessor on FPGA using the CPU IP core. We also
use the memory interface core to control external FLASH
and SDRAM. The PCI IP core is used to communicate with
other processors via the PCI bus. The signal processing
component is the component which performs signal
processing corresponding with the CORBA component. The
signal processing component and CPU exchange the data
and control signal with each other via the memory interface.
The CORBA component is loaded into the CPU to control
the signal processing component. In other words, the
CORBA component is the proxy component of the signal
processing component. Finally UART, which is supported
by the UART IP core, is used for monitoring the CPU.

2.1. Wishbone protocol

The wishbone protocol is used to communicate between
cores. The wishbone system-on-chip (SOC) interconnection
architecture for portable IP Cores is a flexible design
methodology for use with various IP cores. In the past,

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

protocols between IP cores have been problematic due to
the absence of a standard and poor reliability.

Figure 1. Block diagram of the FPGA design for CORBA.

By using the wishbone protocol, we can enforce
compatibility between IP cores and design reusability. The
wishbone protocol makes it easy to consider the needs of
both a core developer and an end user.

2.2. Wishbone BUS

IP cores that communicate using the wishbone protocol are
connected to the wishbone bus [3] and are divided into two
parts: wishbone master and wishbone slave. Once a
wishbone master gets a grant signal by a wishbone arbiter,
the wishbone master takes possession of the wishbone bus.
There are two methods of wishbone interconnect: shared
bus interconnect and crossbar switch interconnect. In this
paper, the shared bus interconnect is used for the wishbone
bus because the compact design structure of the shared bus
interconnect requires fewer logic gates and routing
resources compared to a crossbar switch interconnect. In a
shared bus interconnect, each master has the same priority
to take possession of the wishbone bus in turn. Figure 2
shows the structure of the wishbone bus using the shared
bus interconnect. The wishbone bus assigns an address to
each wishbone slave. When a wishbone master controls a

wishbone slave, the wishbone master has to access the
assigned address. There are two wishbone masters that
originate from the CPU IP core: the instruction wishbone
master and the data wishbone master. There are six

ishbone slaves controlled by wishbone masters.

 Figure 2. The structure of the wishbone bus.

.3. PCI IP core

is 100Mb/s. The throughput of PCI
ommunication is better

.4. CPU IP core

OPENRISC 1200
(OS : Linux)

PCI IP
 core

Memory
Interface

core

Memory
Interface

core

UART IP
core

Signal
processing
component

Signal
processing
component

FLASH SDRAM RS232

General Purpose Processor
(MPC8280)

Digital Signal Processor
(TMS320C6455)

FPGA (XC4VLX100)

WISHBONE BUS

PCI BUS

w

2

The PCI IP core [4] is used to interface between FPGA and
other system like DSP and GPP. PCI is used because it has
been developed to support a fast 32-bit or 64-bit standard
interface. Furthermore, it is useful for scalability because
the PCI bus is used for multiplex structure between the
address bus and the data bus [1],[2]. To implement CORBA,
TCP/IP communication was used traditionally. Not only
Ethernet communication but also PCI communication,
RapidIO communication, and etc. can be used to
implementation. In the paper, we chose PCI communication
for following reasons. In an embed environment, using PCI
communication is more general than using Ethernet
communication. The maximum speed of the PCI
communication is 133MB/s but the maximum speed of
Ethernet communication
c

2

The embedded CPU IP core [5] is an essential requirement
of CORBA for FPGA. Once the CPU IP core is embedded
in FPGA, the FPGA acts like a microprocessor which is
able to load an operating system such as Linux, ucLinux.
This allows FPGA to execute the CORBA middleware. In
this paper, openrisc 1200 is used as the CPU IP core.
Openrisc1200 is a CPU using the Harvard architecture
which physically separates storage and signal pathways for
instructions and data therefore the instruction wishbone bus
and data wishbone bus send the desired commands to
components connected to the wishbone slave bus. The
components can be used by wishbone masters.
Openrisc1200 is a type of RISC that uses complex software

CPU
Instruction

WBM1

External
communication

WBS1

Bootloader

WBS2

LINUX,
CORBA

WBS3

Debug

WBS4

FPGA
CORBA

component

WBS6

FPGA
CORBA

component

WBS5

CPU
data

WBM2

WISHBONE BUS

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

processing to enhance computer speed so hardware loads
can be reduced. In this paper Linux is adopted as an
operating system and CORBA components are embedded
onto Linux. The CORBA components in this paper are FFT
nd IFFT. Detailed applications are explained in the next

d by the CPU and the decompressed data is
en saved into SDRAM. As a result, the CPU is driven by

he FPGA
esign. Since debugging is essential to implementing an

mmended.

loaded in the CPU. As stated above, CORBA component is

 Figure 3. Other components (FFT/IFFT) for CORBA.

3. EXPERIMENTAL TEST

B Protocol (GIOP) message to
erform the FFT process.

a
section.

2.5. Memory interface

Memory interface is one of the wishbone slaves. It controls
and uses SDRAM and FLASH through the wishbone
protocol. Two memory interface cores are used and
connected to SDRAM and FLASH. SDRAM and FLASH
run Linux in the CPU. To run the Linux environment, the
FLASH saves a binary file to use as a boot loader. The boot
loader enables the CPU after the system is powered up. The
FLASH also saves compressed Linux and CORBA
components as binary image. Because FLASH has little
storage and is slow, low-complexity Linux is the optimal
operating system for implementing CORBA. In this paper
we use 16MB of FLASH capacity. After the CPU is driven
by FLASH, compressed Linux and CORBA components are
decompresse
th
the FPGA.

2.6. UART IP core

The UART IP core [6] is the one of the wishbone slaves that
enables communication with an external monitoring
program through a serial port. Through the UART IP core,
the RS-232 transceiver is connected to a serial port. The
UART interface is not involved in implementing CORBA
for FPGA directly. However, UART IP provides the
internal CPU status with external program such as
HyperTerminal™. To implement CORBA for FPGA, we
can monitor necessary information through the UART IP
core. By using this information, we can debug t
d
FPGA Design, a UART IP core is reco

2.7. Other components for CORBA

Previous subsections discussed essential parts required to
implement FPGA design for CORBA. This subsection
details other components that are needed for CORBA. This
paper adds FFT and IFFT components as wishbone slaves.
To connect FFT/IFFT IP core with CPU, an memory
interface core is added. One side port of the memory
interface connects to the wishbone bus and the other port
connects to the FFT/IFFT core. Figure 3 shows the structure
of the FFT/IFFT IP core. To enable the core to be controlled
by CORBA component, CORBA component should be

compressed and saved to FLASH in binary. The developer
can design IP cores like GPIO, CTC, etc. according to the
wishbone standard. Then the developer should add IP core
to wishbone slaves and write the proxy CORBA component
using preferred language like C or C++ to connect the IP
core with CORBA software bus.

In this section, based on the detailed block in section 2, we
experimentally evaluate the performance of our FPGA
design. We know how data is transferred to FPGA and how
the process is performed. Figure 4 shows the board for
FPGA design. The board was produced to develop and
implement an SDR system. An experimental test was
performed as follows. GPP transfers data to FPGA and
FPGA perform FFT to the data. FPGA uses IFFT for the
data FFT sent. Finally the data processed by IFFT is sent to
GPP. We compare the data returned with the original data.
 In Figure 1, FPGA is connected to other processors
through the PCI bus. In this paper, FPGA is connected to
GPP(MPC8280) through the PCI bus. We confirm
procedures for FFT and IFFT. We compress Linux, FFT
CORBA, and IFFT CORBA component and then the
compressed data is saved in FLASH with boot loader data.
Compressed data is uncompressed by the CPU and SDRAM
saves uncompressed image of Linux, FFT CORBA
component, and IFFT CORBA component i.e. FPGA
becomes a microprocessor and FFT and IFFT CORBA
components are embedded in FPGA. MPC8280 sends
FPGA a General Inter-OR
p

Memory
Interface

core

Signal
processing
component

(FFT)

Internal
RAM

W
B

Memory
Interface

core

Signal
processing
component

(IFFT)

Internal
RAM

W
B

WISHBONE BUS

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 4. Board to implement FPGA design for CORBA.

FPGA receives the GIOP message from the PCI bus and
then sends it to the CPU through the PCI IP core and
wishbone bus. CPU decodes the GIOP message. FFT
CORBA component transfers the data from the GIOP
message to the FFT IP core and makes the FFT IP core
perform FFT on the data. The CPU receives the performed
FFT data and the data is sent to IFFT CORBA component.
The IFFT IP core performs IFFT on the data. The CPU
receives the IFFT data and encodes a GIOP message by
using the IFFT data. The GIOP message is transferred to
MPC8280 through the wishbone bus, PCI IP core, and PCI
bus. MPC8280 decodes the GIOP message and compares
the data from the GIOP message with the original data.

4. CONCLUSION

In this paper, we proposed an FPGA design for CORBA.
We chose a PCI interface for fast communication between
processors. The CPU was built in FPGA so that we could
execute another operating system with the desired CORBA
middleware. All sources of IP core we used are open source
and therefore don’t require licenses. This allows developers
to reduce development costs. If we embed CORBA in
FPGA and connect a related signal processing IP core using
a wishbone bus, we can control and use the IP core
anywhere in the system. In conclusion, using the proposed
FPGA design, we have provided a solution to implement an
SDR system.

5. REFERENCES

[1] “PCI system Architecture” Tom Shanley and Addison –

Wesley , June 1999
[2] “explanation of PCI BUS and design interface card”

International Technology Information Institute
[3] “specification for the WISHBONE System-On-Chip(SOC)

Interconnection Architecture for Portable IP Cores Revision:
B.1” Silicore Corporation January 8 , 2001

[4] “PCI IP core specification” Miha Dolenc and Tadej Markovic ,
July 16 , 2004

[5] “Openrisc 1200 IP core Specification” Damjan Lampret ,
September 6 , 2006

[6] “UART IP core specification” Jacob Gorban , August 11 , 2002

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

