
IMPLEMENTATION OF A COGNITIVE RADIO MODEM

Peiman Amini (University of Utah, Salt Lake City, UT, USA+; pamini@ece.utah.edu)
Ehsan Azarnasab(+; azarnasa@ece.utah.edu), Salam Akoum (+; akoum@ece.utah.edu)

Xuehong Mao(+; mao@ece.utah.edu), Harsha Rao (+; hrao@ece.utah.edu)
Behrouz Farhang-Boroujeny (+; farhang@ece.utah.edu)

ABSTRACT

Design and implementation of a cognitive radio modem on the
Small Form Factor (SFF) Software Defined Radio (SDR) platform,
provided by Lyrtech and Texas Instruments (TI) is reported. Filter-
banks were used for spectrum sensing and this method is shown
to exhibit superior performance in terms of the spectral dynamic
range when compared to the conventional Fast Fourier Transform
(FFT) techniques, i.e. periodogram method. To ensure reliability,
a distributed sensing method is considered. Packet detection and
channel equalization are performed using a cyclic preamble. A
fractionally spaced equalizer is used for both channel and timing
recovery. The different processing tasks are divided between a TI
c64x+ DSP and a Xilinx Virtex IV FPGA while an ARM9 core is
used for interfacing and running the Greenhills operating system.
Measurement results from channel sensing are presented to show the
high spectral dynamic range obtained using the filterbank sensing
method.

1. INTRODUCTION

In disaster situations, it is absolutely crucial for law
enforcement, rescue agencies, and other first responders to
have the ability to communicate and exchange information
quickly and reliably. Since wired networks cannot survive all
types of disasters and are often impractical, communication
through wireless networks is the ideal choice. Given the
relative scarcity of available spectrum, coupled with the
amount of time required to approve new users, the issue of
spectrum access is the hardest task in the development of
wireless networks geared towards first responders. Cognitive
radio technology is the natural choice to overcome this
access problem. First responders can use the idle portions
of the spectrum to communicate with each other [1]. In this
presentation, the Family Radio Service (FRS) band is chosen
to implement a cognitive network of nodes able to transmit
voice and data traffics with different Quality of Service (QoS)
requirements [2].

Construction of a cognitive network for first responders
presents many difficult challenges, the most obvious of which
is how to fulfill the “awareness” requirement. Each node
must be able tosensethe channel for primary users,i.e. to
identify the presence oflicensedcommunications over the
portions of spectrum, and share this information with the
other nodes to allow the cognitive nodes to communicate
reliably while avoiding the legacy devices. In our problem
setup, 200 carriers (25KHz bandwidth each) are used by the
cognitive radio to transmit voice or data provided that the
legacy users are not using the channel. The method used

for sensing should feature a high spectral dynamic range to
enable the detection of the low power users. We choose the
filterbanks sensing method [3], [4]. Filterbanks perform better
than FFT in terms of detecting low power users when users
with high power and low power are present.

The sensing is done in each node in the network and the
results are passed to a base station which combines all the
sensing information to compile a channel state information
(CSI), which is then transmitted to all the nodes. The CSI is
also used by the base station for channel allocation. Control
channels are used for exchanging sensing information and
control messages such as channel assignment between the
leaf nodes and the base station.

Packet assembly is performed such that the voice and data
traffics pass through the same signal processing blocks at the
transmitter and at the receiver. Cyclic preamble is appended
to the payload to be used in packet detection and carrier
recovery. A fractionally spaced equalizer is used for channel
and timing recovery. The equalizer is trained with the cyclic
preamble and tuned with a decision directed algorithm [5].

The cognitive radio modem is implemented on the Lyrtech
Software Defined Radio Platform [6]. Design decisions such
as dividing the tasks between the FPGA and the DSP, and
choosing the appropriate methods to implement each block
are made in order to optimize the usage of the resources on
the hardware. We simulate the functional modem in MAT-
LAB and Simulink. We then use System generator for DSP
for the implementation of the FPGA blocks and SIMULINK
and Real Time Workshop to develop the individual modules
for the DSP. TI Code Composer Studio is used to combine
the DSP subsystem on the board. Networking simulations are
performed in DEVSJava and the Hardware in the loop (HIL)
technique that we have developed, [7] is used to implement
the networking algorithm, when hardware resources are not
available.

The rest of the paper is organized as follows. The system
design, comprising of channel sensing, transceiver setup, and
the MAC Layer are presented in Section 2. In Section 3,
we describe and analyze the design decisions we have made
for the implementation of the system. The implementation in
DSP and FPGA are then described in Section 4, followed by
the sensing measurement results in Section 5. We finally talk
about the implementation status and draw our conclusions in
Section 6.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



2. PROBLEM SETUP

In this section, we present our sensing methodology which
is the most important part of the cognitive radio. Then we
describe the signal processing algorithms that we have chosen
to implement a functional cognitive radio with minimal
complexity. The system is broken down into four parts: (i)
Channel sensing, (ii) Transmitter, (iii) Receiver, and (iv)
MAC layer.

A. Channel Sensing

Choosing an appropriate channel sensing method is a key
element in developing a functional cognitive radio system.
This method should take into consideration the discrepancy
in the received power levels from the different users and
needs to feature a high dynamic range in order to reliably
detect the spectrum holes.

While FFT has been long suggested as one possible
sensing method [8], it suffers from spectrum leakage caused
by the large side lobes in the frequency response of the
filters that characterize each sub-carrier [9]. This results in
significant inaccuracy and low dynamic range. On the other
hand, the multi-taper method (MTM), suggested by Haykin
as the optimal channel sensing method [10], comes at the
expense of extra computational complexity. In our solution,
we propose using filterbanks to sense the channel. By using
filterbanks, the side lobes of the filters associated with each
sub carrier can be made arbitrarily small by adjusting the
filter length and other design specifications [3], [4]. The
signal power of the output of the filterbank is used to estimate
the signal spectrum.

In our system, we sense the channel 10 times per second.
To sense the channel, each node halts its transmission for
a specific amount of time, collects the necessary samples
and runs the filterbanks sensing algorithm. The sensing
information is next reported to the base station. The base
station collects the sensing results from all the cognitive
nodes, including itself, and broadcasts the compiled CSI
results to all the leaf nodes in the network.

B. Transmitter

The software defined modem provides two modes of
operation to process two different types of services. One
service is a 19.2 kbps computer-to-computer data stream
while the other service is a 16 kbps Continuously Variable
Slope Delta Modulation (CVSD) vocoded voice. The data
stream is encoded using a rate1/2, constraint length 7,
convolutional encoder. The encoder generates two outputs
using the two generator polynomialsx6 + x5 + x4 + x3 + 1
and x6 + x4 + x3 + x + 1. The data stream, constructed
from the outputs of the encoder, is interleaved using a simple
row-column block interleaver. The output of the interleaver
is divided into groups of three coded bits and each group is
mapped to an 8-PSK constellation using Gray mapping.

For the voice stream, we use a Reed-Solomon (RS)(63,
51, t=6) encoder having a generator polynomialp(x) = x6 +
x + 1. This has the ability to correct up to 6 random byte
errors and does not need to be followed by an interleaver. The
encoded voice stream is divided into groups of two coded bits
and mapped using a Gray code to a QPSK constellation.

To use only one digital upconverter from baseband to
Intermediate Frequency (IF) for both services, the packet
assembly is done such that the symbol rate at the input of
the pulse shaping filter is 20 kbps for both data and voice
streams. The transmitted packet consists of two major parts: a
192-sample cyclic preamble, generated using three identical
Binary Phase Shift Key (BPSK) modulated pseudo noise
(PN) sequences of length 64, and a payload constructed using
the data or voice streams output of the symbol mappers.

Upconversion is done using Cascaded-Integrator-Comb
(CIC) filters [11] and a novel pulse-shaping filter (PSF)
whose coefficients are chosen to achieve the Nyquist-M
property while at the same time compensating for the CIC
passband drop [12]. This combined CIC and pulse shaper
(CPSCIC), when compared with other methods available in
the literature, has been proven to achieve less passband ripple,
more stopband attenuation and less ISI. Moreover, combin-
ing the pulse-shaping filter and the CIC compensator filter
allowed us to save a great amount of space on the hardware.
The upconverted signal is finally modulated to Intermediate
Frequencies (IF) for transmission over the channel.

C. Receiver

The received signal is first down-converted by means of a
CPSCIC matched to its transmitter counterpart. The baseband
signal is then passed to the synchronization and channel
equalization modules, both of which implemented in the
fractional space. The fractional spacing between the samples
is chosen to beTs/2, whereTs is the symbol interval. The
portion of the receiver performing the synchronization is
shown in Fig. 1.

The received signaly(t) can be modeled as:

y(t) = x(t − τ − (nTs/2))ej2π((f+∆fc)t+θ) (1)

wherex(t) is the transmitted signal,τ is the time offset,∆fc

is the carrier offset andθ is the phase offset. We have ignored
channel noise for brevity.

Synchronization is performed using a cyclic preamble.
Cyclic preamble is chosen in our model because it can serve
the dual purpose of estimating the timing and carrier offsets
while at the same time equalizing the channel effects when
coupled with a cyclic equalizer [13]. The repetition structure
of the cyclic preamble allows us to detect the start of the
packet as well as the carrier offset. This method exhibits good
performance and is easy to implement. Packet detection is
performed by computing the autocorrelation of the received
signal. We correlate the signal with a shifted version of
itself and find the position of the preamble by identifying

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



Fig. 1. Receiver block diagram after digital down conversion.

the interval over which the autocorrelation is significantly
large [5].

On the other hand, the carrier offset is estimated using the
following equation, [5]:

∆fc =

6

{∑
n

x(n′)·x∗(n)

}
π(N + 1)Ts

(2)

where the summation is over one cycle of the preamble,
6 (·) represents the phase angle in radians, and∗ denoted the
conjucate.

After compensating for the carrier offset, we make use
of a fractionally-spaced adaptive equalizer to compensate
for the channel distortion, any residual carrier offset and to
obtain the correct timing phase [5]. The equalizer coefficients
obtained using this algorithm are further fine-tuned using a
decision-directed adaptive scheme. The half symbol-spaced
cyclic equalizer is shown in Fig. 2.

Fig. 2. Half symbol-spaced cyclic equalizer

In this figure, p[n], n = 0, 1, . . . , N represents a cycle
of the preamble. The received signal is given byy0 =

[y[n], y[n − 2], . . . , y[n − 2N ]. w = [w[o], w[1], . . . , w[N ]
denotes the equalizer coefficient vector. The following equa-
tions describe the adaptation algorithm at stepi.

e[i] = p[i mod N] −wH[i]yi (3)

w[i + 1] = w[i] + 2µe?[i]yi (4)

where H denotes the Hermitian operators, andyi is a
cyclically rotated version ofy0, delayed by 2 samples for
each shift. The adaptive algorithm minimizes the mean-
square error denoted by‖e‖2. e = [e[0], e[1], . . . , e[N ]]T

is used to obtain the optimal equalizer coefficientsw. We
chooseN equal to 64. Fig. 3 depicts the eye diagram of
the received signal after packet detection, carrier recovery
and cyclic equalization, respectively. Synchronization was
simulated in MATLAB and Simulink. The signal to noise
(SNR) was set equal to 9 dB. The normalized carrier offset
is assumed to be 0.001.

D. MAC Layer

The MAC layer is designed to manage the medium access
so as to co-exist with primary users. Coexistence is the
primary goal in this design as well as in other CR systems,
such as IEEE 802.22 [14]. The medium access method, as
defined in the smart radio challenge problem statement [2], is
frequency-division multiple access (FDMA). Secondary users
(SUs) use frequency-division duplexing (FDD) to communi-
cate with each other.

Control channels are used for coordinating sensing in-
formation, controlling leaf node communications and other
management tasks. Our setup features uplink and downlink
control channels. The uplink is based on Aloha while the
downlink is a base station controlled broadcast channel used
to broadcast sensing information and other management
packets. We choose Aloha over carrier sense multiple ac-
cess collision avoidance (CSMA/CA) because in the latter,
channel sensing is not always possible; it is governed by the
channel environment and the propagation delay. The base
station receives and compiles the channel state data from
all of the leaf nodes, including itself. The base station then
broadcasts the compiled channel allocation table to all the
leaf nodes. This allocation table is retained by the base

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b) (c)

Fig. 3. Eye diagram of the received signal (a) after packet detection (b) after carrier recovery (c) after equalization

station and the leaf nodes until the conclusion of the next
sensing interval. Each cognitive node stops transmitting and
then senses the entire channel periodically. If the current
sensing information differs from the last compiled channel
state information, following a random delay, the channel state
data is transmitted by each leaf node to the base station.
More detailed description of our MAC Layer design and
implementation can be found in [1] and [7].

3. SYSTEM LAYOUT AND HARDWARE REQUIREMENTS

The cognitive radio modem was implemented on a Small
Form Factor (SFF) Software Defined Radio (SDR) devel-
opment platform provided by Lyrtech in collaboration with
Texas Instruments (TI) and Xilinx. The SFF SDR is a self-
contained platform consisting of three separate modules: the
digital processing module, the data conversion module and
the RF module.

The base of the platform is the digital processing module.
It is designed around the TMS320DM6446 (also called
DM6446) Digital Media Processor (DMP) System on Chip
(SoC) [15] from TI and Virtex-IV XC4VX35 FPGA from
Xilinx. DM6446 combines an Advanced Very Long Instruc-
tion Word (VLIW) 64x+ DSP and Reduced Instruction Set
Computer (RISC) ARM926J-S cores, where the ARM micro-
controller is mainly set to run the INTEGRITY Real-Time
Operating System (RTOS) while DSP performs complex
data processing. The data conversion module is equipped
with a 125 MSPS, 14-bit dual channel ADC and a 500
MSPS 16-bit dual channel interpolating DAC provided by
TI. The RF module is configured to have either 5 or 20
MHz bandwidth with working frequencies of 200-930 MHz
for the transmitter and 30-928 MHz for the receiver. The
SDR modem implementation is divided into different tasks
each consisting of several modules. The SFF SDR platform
gives the designer the option to choose the silicon device
that is most suitable to the task being developed. We use
the INTEGRITY and SMSHELL API provided by Lyrtech
to target the board while we develop our signal processing

tasks on the DSP core and the FPGA. The division of
tasks between the DSP and the FPGA was made based on
the availability of resources, the inherent characteristics of
these cores, and the extra functionalities offered by TI and
Xilinx. We make use of the already available Xilinx Logicore
Blocksets for FPGA and the optimized DSP libraries written
for vectors of complex numbers for C64x+ core. For instance,
a Viterbi Algorithm was first written and optimized for
the DSP, but considering the realtime required rate in the
problem definition, the algorithm alone took 40% of the
available time for processing. On the other hand, using the
Viterbi decoder in the Xilinx Logicore performs the same task
much faster. Traditionally, the algorithms that require fast and
complex calculations but can be parallelized are best fit for
the FPGA, while algorithms that require sequential analysis
and decision making such as cognition and networking are
usually implemented on the DSP. We note that it is hard to
draw such a distinction between the functionalities of FPGA
and DSP since DSPs are nowadays offering more pipelining
and FPGAs are able to run sequential processing.

Interfacing between the DSP and FPGA is done using
the Video Processing Sub-system (VPSS) data port. The
DSP VPSS is a DM6446 DSP 16-bit synchronous video
transfer port modified to support transfer of non-video data to
and from the DSP. The VPSS consists of a Video Process-
ing Front End (VPFE) and a Video Processing Back End
(VPBE). The VPFE is used as an input interface to the DSP
and the VPBE as an output interface from the DSP to FPGA.
In the FPGA, a VPSS data port module, also consisting
of a VPBE and a VPFE, is implemented to interface with
the DSP VPSS. The data bus inside the FPGA is a 32-bit
and the VPSS of DM6446 DSP bus is a 16-bit [6]. On the
other hand, custom registers, a shared memory of eight 32-bit
words between the DSP and the FPGA On-Chip Peripheral
Bus (OPB), are used as configuration registers. As a result,
the fast VPSS 32-bit bus, is our gateway between DSP and
FPGA.

The tasks developed for the FPGA are implemented using

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



the System Generator for DSP. System Generator, an add-on
to Simulink provided by Xilinx, produces a highly optimized
FPGA realization, since each module used in the architecture
maps to an FPGA library component that has been care-
fully constructed and optimized for the FPGA target device.
Moreover, the System Generator provides us with a visual
representation of the system that not only serves as the design
specification, but as the behavioral simulation model and the
source definition for the hardware. The system Generator
implementation also facilitates the rapid investigation of
various design options in the system [16], [17].

To develop the DSP subsystem, the algorithms targeting
the DSP processor are first implemented in Simulink blocks.
The Real-Time Workshop (RTW) is next used to produce the
first version of the code for the individual Simulink blocks.
Each block is then individually tested in Simulink external
simulation. Although RTW is able to generate stand-alone C
code for the Simulink blocks, it can only be used for rapid
prototyping and testing since the code it generates is not
optimized for a specific DSP or GPP target. The RTW gen-
erated code often needs extra memory and processing power
and the optimization burden is put on the compiler only. The
RTW thus cannot be used to implement the complete DSP
subsystem whose requirements include realtime performance
in terms of memory and speed and special data alignment. To
overcome this problem, a Target Language Compiler (TLC)
file is developed to customize the code generation. In writing
the TLC, it is feasible to use optimized TI DSP libraries
DSPLib [18] and compiler optimization techniques such as
giving feedback to the compiler. Furthermore, the wrapper
TLC (unlike inline TLC) saves a single version of each
algorithm and therefore simplifies code maintenance. The
wrapper TLC code (written for the individual blocks) can
be reused in the independent compilation of the complete
DSP subsystem project, without involving the RTW. Finally,
the C code of the complete DSP subsystem (either generated
by RTW or written as wrapper TLC is compiled by TI
Code Composer Studio (CCS). CCS makes use of the high
performance VelociTI architecture of DM6446 to optimize
the code down to the programming level optimization (using
the -pm switch).

4. IMPLEMENTATION OF THE DESIGN

The distribution of the SDR modem components between
the DSP core and the FPGA is shown in Figures 4. The
VPBE and VPFE are used to transfer the data streams back
and forth between the two modules while the custom registers
are used for handshaking.

Since FPGA is logic based, any changes we make to
the values saved in the custom registers are monitored and
responded inside the FPGA. We use the custom registerRf

to indicate the services required by DSP to be done by
FPGA. Depending on the type of data processing required
from the FPGA, the DSP specifies a command number inside

the custom registerRf and then transfers the data through
the VPSS. Similarly, the custom registerRd is used by the
FPGA to inform the DSP about the characteristics of the bit-
stream arriving at the VPFE in the DSP subsystem. The DSP,
being sequence based and often running an endless loop, uses
the content of theRd register to select the appropriate DSP
function to be applied on the incoming data. The transmission
is initiated, as shown in Figure 4, in the DSP core. The binary
source is an arbitrary bitstream of voice or data incoming to
the DSP. The voice data is input from the pcm3008 stereo
audio codec at 48 KHz and encoded by the Continuously
Variable Slope Delta Modulation (CVSD) having a data rate
of 16kbps. The binary voice stream is zero padded to achieve
a data rate of 20kbps. The data traffic, on the other hand, is
a fixed computer-to-computer data stream. This data stream
has a lower bit error rate than the voice stream and is
retransmitted in the MAC layer (if missed or corrupted) to
ensure data integrity of critical information.

The transmit packet is sent to the FPGA through the VPSS.
The custom registerRf is set to zero if the source is audio
and one if non-audio. In the FPGA, depending on the data
content, either Reed Solomon (RS) coding or convolutional
coding combined with interleaving is performed. Following
the source coding in the FPGA, the binary vectors are
retransferred to the DSP (Rd = 0) to perform modulation
and framing. 8-PSK modulation is used for the data stream
while QPSK is used for voice as per the problem statement.
The binary vector is finally sent back to the FPGA (Rf = 2)
to upconvert the signal to intermediate frequency (IF) and
eventually transmit it over the air. Digital up conversion in the
FPGA consists of three blocks. A novel combined CIC and
pulse shaper (CPSCIC) that follow the Nyquist-M criterion,
a CIC integrator, and a Direct Digital Synthesizer (DDS) to
modulate the signal to the IF frequency. The CPSCIC filter
we used is a 80-tap FIR filter generated using the Xilinx
FIRCOMPILER provided by the System Generator for DSP.
The baseband signal was modulated to an IF frequency of
30 MHz at a sampling rate of80 MHz. Note that in the SFF
SDR platform, the FPGA has access to IO, Data Conversion
(DConv) and RF modules.

At the receiver side, two separate functionalities are first
performed in the FPGA, digital down conversion (DDC) and
sensing. To downconvert the received signal to baseband,
a CIC differentiator and a CPSCIC filter are used. The
resulting signal is then passed to the DSP (Rd = 1) where
synchronization tasks and symbol demapping are performed.
After demapping, the signal is passed back to the FPGA
for decoding (Rf = 2 for voice andRf = 3 for data).
The decoded signal is finally passed to the DSP (Rd = 2).
Sensing is activated in the FPGA every 100 ms by means
of a timer. This timer activates the sensing module 10 times
a second for almost 4µs. The timer control circuit disables
the transmitter functionality while the sensing is performed.
The sensing data is first demodulated to baseband by means

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



RS Decoder
RS Enoder

Viterbi

FS Equalizer

FPGA (Vitex IV, XC4VX35)DSP (c64x+)

↓M1 ↓M2CPSCIC

From RF Frontend

Demodulation

Rd = 1

Carrier RecoveryPacket Detection

Demapping

Rf = 2

Rf = 3
Rd = 2

From RF Frontend

Demodulation

Rd = 3

Sensing Timer Rd = 3

↓M3 Lowpass FilterAGCFilterbank Sensing

Binary Data

DSP (c64x+)

Binary Source

Symbol Mapping

Framing ↑M1 ↑M2 Modulation

Conv Encoder

To RF Frontend

Rf = 0

Rf = 1

Rf = 2

Rd = 0

(a) Transmitter (b) Receiver
FPGA (Vitex IV, XC4VX35)

Interleaver
Deinterleaver

CPSCIC CIC &

CIC &

V PBEV PFEV PBEV PFE

Fig. 4. System data flow

of a DDS whose frequency is centered at the IF frequency.
A lowpass polyphase decimator is used to filter the required
signal band and bring the sampling rate down to5 MHz.
Note that in order to make use of the maximum dynamic
range of the ADC, An automatic gain amplifier (AGC) is
developed in the DSP to control the gain of the analogue
amplifiers available on the data conversion module before
the signal is digitized. The resulting signal is then sent to the
DSP (Rd = 3) for further processing.

In the DSP, the DSPLib library for C64x+ is used for
efficient implementation of the filterbank sensing. A filter-
bank is implemented in polyphase structure using 256 8-
tap polyphase elements which are the decimated coefficients
of the described prolate filter in section 2. The output of
the polyphase elements are then passed through FFT. The
output energy of the filterbanks is then averaged over three
decimated samples. The sensing information is compared
with a tunable threshold to locate possible active primary
users and create a 32-byte channel state information. This
information is then transmitted to the basestation. The bases-
tation compiles the sensing information from all of the users
and creates a common CSI to be used for channel assignment.

5. MEASUREMENTRESULTS

We have used a vector signal generator to generate a
signal that emulates the effect of the primary users on
the channel. 10000 samples are generated in MATLAB
and are used as input to the signal generator. The signal
generator modulates the signal and transmits over the fre-
quency range 462 MHz to 467 MHz. Six sinewaves are
added and then passed to the function generator. The func-
tion generator modulates these sinewaves to 463.278MHz,
463.367MHz, 463.456MHz, 463.545MHz, 463.624MHz, and
463.985MHz. The sinwaves at 463.278MHz, 463.456MHz,

and 463.624MHz are transmitted at 25dbm power. The ones
at 463.367MHz, and 463.545MHz are transmitted at -15dbm.
463.985MHz sinewave is transmitted at -9dbm.

The Power Spectral Density (PSD) of the received signal is
presented in Fig. 5. 2048 samples are used for the filterbank
with prototype filter of length 2048. The results of FFT, FFT
with a Hanning window and filterbank are averaged over
three decimated sample. The calculated PSD from 462MHz
to 467MHz for these three methods are depicted in Fig. 5.
As we can see filterbank sensing is able to show all the
transmitted sinewaves clearly. FFT, on the other hand, has a
considerable spectrum leakage which results in missing the
three sinewaves at 463.367MHz, 463.545, and 463.985MHz.
FFT with hanning while having better dynamic range than
FFT, also misses two of the sinewaves.

6. STATUS OF IMPLEMENTATION, CONCLUSION AND

FUTURE RESEARCH

A single cognitive radio transceiver is developed to per-
form both cognition and transceiver tasks. We first simulated
our modem in MATLAB and then migrated the simulation to
Simulink. We used System Generator for DSP to implement
the FPGA modules of our system. Real-time workshop and
wrapper TLCs are used to develop the individual modules
for the DSP. Code Composer Studio was used to combine all
the DSP modules.

At present, we have only one RF frontend available to
us. Using an arbitrary signal generator, the interference of
primary users over 462 MHz to 467 MHz is emulated.
We are able to show that our cognitive node can move to
an unoccupied frequency band when a primary user starts
transmitting on the carrier that is currently in use. Our
measurement results show that filterbank sensing method has
less spectrum leakage than FFT, as predicted in [3], [4].

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

M
ag

ni
tu

de
 (d

B
)

 

 

FFT
FFT with Hanning window
Filterbank

Fig. 5. Power Spectral Density (PSD) measurements by FFT, FFT with hanning window, and filterbank

Our network functionality is simulated in DEVSJava. We are
able to implement a part of our networking algorithms using
the HIL technique [7]. We are currently awaiting more SFF
SDR platforms to progress towards the complete functional
cognitive network. We will then be able to test the complete
functionality of our transceiver as well as the cognition and
the MAC layer implementations.

After implementing our network, we plan to use the
available wireless testbed of the Flux Group [19] as a primary
user network and study the effect of different types of
primary user traffics on our cognitive radio as well as the
effect of possible interference from the cognitive network on
the legacy networks. Our proximity with the FLUX group
provides us with this exciting opportunity.

ACKNOWLEDGMENTS

We would like to thank the hardware and software sup-
port that we have received from SDR Forum, Lyrtech,
Texas Instruments, Xilinx, Mathworks, Greenhills, Prismtech,
Zeligsoft, and Synplicity. It has been a challenge to learn
this extraordinary collection of hardware and software, but
indeed, a rewarding one. We are truly grateful to all support-
ing companies.

7. REFERENCES

[1] P. Amini, D. Palchak, X. Mao, S. Talbod, S. Akoum, and
S. Abbasi, “Smart radio challenge proposal: Spectrum access
for first responders,” Smart Radio Challenge, Available at
http://www.ece.utah.edu/˜pamini/proposal.pdf ,
Tech. Rep., September 2006.

[2] “Smart radio challenge,”http://www.radiochallenge.org/.
[3] P. Amini, R. Kempter, R. R. Chen, L. Lin, and B. Farhang-Boroujeny,

“Filter bank multitone: A physical layer candidate for cognitive radios,”
2005 Software Defined Radio Technical Conference, November 2005.

[4] P. Amini, R. Kempter, and B. Farhang-Boroujeny, “A comparison of
alternative filterbank multicarrier methods in cognitive radio systems,”
2006 Software Defined Radio Technical Conference, November 2006.

[5] B. Farhang-Boroujeny,Signal Processing Techniques for Software
Radio. avilable at http://www.ece.utah.edu/˜farhang ,
2007.

[6] “Lyrtech SFF SDR development platform technical specs,”
Lyrtech Inc., Available at http://www.lyrtech.com/
publications/sff_sdr_dev_platform_en.pdf , Tech.
Rep., February 2007.

[7] E. Azarnasab, P. Amini, and B. Farhang-Boroujeny, “Hardware in the
loop, a developement strategy for software defined radios,”Software
Defined Radio Conference, 2007.

[8] T. Weiss and F. Jondral, “Spectrum pooling: and innovative strategy
for the enhancement of spectrum efficiency,”IEEE Communications
Magazine, vol. 42, no. 3, pp. S8–S14, March 2004.

[9] T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual interfer-
ence in ofdm-based spectrum pooling systems,”IEEE 59th Vehicular
Technology Conference, VTC 2004-Spring, vol. 4, pp. 1873–1877, May
17-19 2004.

[10] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, February
2005.

[11] E. Hogenauer, “An economical class of digital filters for decimation
and interpolation,”IEEE Transaction on Acoustic, Speach, and Signal
Processing, vol. 29, April 1981.

[12] S. Talbot and B. Farhang-Bouroujney, “Pulse shape filter design in dig-
ital modems employing CIC filters,”SDR Forum Technical Conference,
November 2006.

[13] B. Farhang-Boroujeny, “Cyclic equalization options in software-based
radios,” SDR Technical Conference, November 2007.

[14] The IEEE LAN/MAN Standards Committee, “802.22 wg on wireless
regional area networks (WRANs),”http://www.ieee802.org/22.

[15] “TMS320DM6446 digital media system-on-chip,” Lyrtech
Inc., Available at http://focus.ti.com/docs/prod
/folders/print/tms320dm6446.html , Tech. Rep., March
2007.

[16] C. Dick, F. Harris, and M. Rice, “Synchronization in software radios -
carrier and timing recovery using fpgas,”In Proceedings of the IEEE
symposium on Field-Programmable Custom Computing Machines,
2000.

[17] “System generator for dsp reference guide,” Xilinx Inc., Tech. Rep.,
August 2007.

[18] “TMS320C64x+ DSP Big-Endian Library Programmer’s Reference,”
Texas Instrument, Tech. Rep., March 2006.

[19] “Emulab network simulation testbed,”http://www.emulab.net/.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved


	Home
	Search by Session
	Search by Author



