

 INTERCONNECTING SCA APPLICATIONS

François Lévesque (francois.levesque@crc.ca), Steve Bernier (steve.bernier@crc.ca)

Communications Research Centre, Ottawa, ON, Canada
Tel/Fax: 613-998-2858/613-990-0316

ABSTRACT

The Software Communication Architecture (SCA) is a
component-based development (CBD) framework for
embedded systems. An important aspect of CBD is the
reusability of components. Components offering different
levels of services can be used in multiple instances and be
interconnected through ports to build assemblies. SCA
applications could also be considered as components
having a set of ports and therefore be aggregated to create
larger applications. However, the SCA specification, in
its present state, does not specify how applications can be
interconnected. This may create severe limitations for
radio networking, especially when interconnectivity
between different communications protocols is required
(e.g. FM to P25). This paper presents a simple way of
interconnecting applications and thus enabling application
reusability. The proposal is an extension to the SCA
specification but does not requires any new XML profile,
which guarantees backward compatibility with existing
tools and Core Frameworks.

1. INTRODUCTION

The SCA is a framework that enables component-based
development (CBD). The Software Defined Radio (SDR)
industry is pioneering the use of CBD for embedded
systems and so far, the SCA is unrivalled as a CBD
environment for those embedded platforms. Nevertheless,
several years of usage have revealed that the SCA Core
Framework specification [1] lacks support for at least one
important feature: inter-application connections. The lack
of standardization for this type of connection has lead to
the implementation of a number of proprietary solutions,
which is contrary to the SCA philosophy.

This paper describes why inter-application connections
are important and how they can be implemented with a
high-level of backward compatibility. Section 2 proposes
that reusability should not only be a property of
components but should also apply to applications. It also
draws a link between application reusability and inter-
application connections. Section 3 explains how the
concept of an aggregate application [2] can be used to add

support for inter-application connections. Section 4
discusses how the support for aggregate applications may
impact the implementation of a SCAv2.2.x Core
Framework.

2. APPLICATION REUSABILITY

Reusability is the corner stone of CBD. This fairly recent
programming paradigm elevates reusability one step
above source code. It provides reusability at the
executable level (e.g. the component level). Furthermore,
the SCA provides an additional degree of freedom in
terms of reusability thanks to CORBA. It supports
interoperability between components developed for
different operating environments (i.e. combination of
operating system and processor).

An SCA application can be defined as an assembly of
components (called Resources) and the specification
provides the mechanism to reuse these resources in
multiple applications. It is understood that the potential
for reusability of a component is directly related to the
level of granularity of the service it provides.
Components offering a service of a finer granularity will
be more reusable. For example, a component executing
forward error correction (FEC) functions will find itself
reused much more often than a component executing a
complete modem function. However, modeling at a small
level of granularity yields more components, which can
lead to excessive overhead.

Nevertheless, it is possible to implement a specific
functionality as one or many Resources. However, the
SCA currently only provides one mechanism to group
Resources; i.e. applications. In other words, an SCA
application cannot be made of an assembly of sub-
applications, it can only be made of one or many
Resources.

 SCA application := Resource+

This limitation of the SCA can have a negative impact on
portability of components at a fine level of granularity. In
the absence of a way to create a sub-assembly from a

Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

number of smaller components, developers implement
larger components. At the other end of the granularity
spectrum, this limitation also prevents developer from
using existing applications to create an aggregate
application. For instance, it is impossible to define a
cross-banding application that would be made of an AM
Receiver application connected to an FM Transmitter
application, and of an FM Receiver application connected
to an AM Transmitter application. The only way to model
this is to create a new application from the union of all the
Resource components of the four applications.

There are a number of drawbacks associated with the
creation of a large application composed of the
amalgamation of Resources from smaller applications.
First, the assembly knowledge already embedded into the
pre-existing applications must be properly duplicated.
This means developers must redo every connection
between components, redefine each overriding property
value, recreate all the uses-device relationships, and more.
This task is tedious and very error prone. Second, the
developer is forced to create a new assembly controller
for the new extended application. This step involves
duplicating the assembly control logic, which may
become very difficult to do especially when the source
code is not available for the assembly controllers of the
applications being combined.

Fundamentally speaking, the SCA makes it very difficult
to create aggregate applications because of its one-level
definition of application concept. It simply does not
provide the same level of reusability for applications as it
does for components. Ironically, the SCA already
supports inter-application connections through the
concept of external ports. This does allow deployed
applications to be interconnected but a Core Framework
cannot establish those connections since there is no means
to specify a list of inter-application connections. Inter-
application connection can only be supported through
proprietary extensions to the SCA specification.

3. AGGREGATE APPLICATION CONCEPT

For an SCA Core Framework to perform inter-application
connections, it must be able to coordinate the launch of
the applications that need inter-connections. In other
words, there must be a standard means to describe an
aggregate application. From a high-level point of view,
the concept of an aggregate application requires a slightly
different definition of the current application concept. It
requires a recursive definition.

 SCA application := (Resource | SCA application)+

This kind of recursive definition of an application is
already supported in other CBD architecture such as EJB
[3], the CORBA Component Model (CCM) [4] and
Deployment and Configuration (D+C) [5]. One important
property of this new definition is that it can be made
equivalent to the original definition. Indeed, by flattening
the recursion, an aggregate application ends-up being
composed of Resources only. The key difference with the
new definition is the extra knowledge it provides to
describe which Resources are part of sub-assemblies and
how they must be deployed. Thanks to this property,
existing Core Frameworks can easily support aggregate
applications since they are capable of deploying a group
of Resources.

4. IMPLEMENTATION OPTIONS

There are two main approaches for implementing the
concept of aggregate applications. The first one actually
does not require any changes to existing Core
Frameworks as it is completely supported through a
modeling tool. The second approach requires
modifications to Core Frameworks but makes the
aggregate application concept much more elegant and
versatile.

The modeling tool approach relies on the fact that the
aggregate concept is defined recursively and can be made
equivalent to the original SCA application definition as
explained in the previous section. In this approach, a
modeling tool provides a means to create aggregate
applications and to convert them into a single application
definition before deployment. This way, a Core
Framework only ever sees an application made of
Resources only. However, the down side to this approach
is that once the aggregate application is converted, the
aggregate knowledge is lost. Thus a Core Framework
cannot be precise in determining which sub application
might cause a deployment error. Also, monitoring tools
cannot represent the application as an aggregation, which
could also be useful. In addition, there are currently no
standards in the SCA modeling tools industry, making it
impossible to share aggregate applications across
different modeling tools. Of course, standardizing the
meta-data describing an aggregate application could solve
the sharing problem, but it would not necessarily solve
the debugging issues or the runtime monitoring tools
issues. In fact, once the aggregate application meta-data is
standardized, Core Frameworks can support the concept,
which helps address the drawbacks of the tool based
approach.

Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

The Core Framework based approach allows developers
to exploit the aggregate application concept at all levels:
modeling, deploying, monitoring and debugging. This
approach however requires changes to the behavior of
current Core Frameworks. But, as described in this paper,
those changes are not significant and can easily be made
optional for Core Frameworks implementers that do not
wish to support aggregate applications.

5. CORE FRAMEWORK SUPPORT FOR
AGGREGATE APPLICATIONS

Currently, SCA applications are described using meta-
data that can be generated by modeling tools. The file
format for application meta-data is the SAD XML file [6].
The structure of the SAD file mainly allows a developer
to identify which Resource component(s) the application
requires, how many instantiation of each component must
be created and how they must be interconnected.

One of the easiest ways to add support for aggregate
applications is to allow the SAD file to reference other
applications (i.e. sub-applications) in addition to
Resources. Alternatively, a new XML file could be
created to specifically describe aggregate applications.
However, during our evaluation it became obvious that
this new file would have the same structure as the SAD
file. Therefore, this paper concentrates on the option that
relies on a SAD file. The reminder of this section
describes the impacts of supporting aggregate
applications.

5.1 Impacts on the SAD file

To support aggregate applications, the SAD file must first
be modified so it can contain references to other SAD
files. This modification concerns the componentfile
section of the SAD used to identify the components that
are part of the application. Currently, the SCA specifies
references can only be made to components (i.e. SPD
files). Allowing references to an application (i.e. SAD
files) does not require a structural change to the file
format. It simply requires a change in the text of the
specification. The main impact of this change is that Core
Frameworks will have to deal with references to
applications.

The componentinstantiation section of the SAD file is
where a developer specifies how many instantiation of
each component must be created. This currently applies to
Resource components only and therefore needs to be
extended to applications as well. Once again, no structural
change is required to the SAD file format; only changes
to the text of the specification. The same is true for the

sub-elements of componentinstantiation. The usagename,
the componentproperties, and the findcomponent
normally apply to Resource instance, but will be used for
an application instance. The usagename will be used to
define the name of the Application instance. The
componentproperties will be used to override the default
value for the application properties. And finally, the
findcomponent will optionally be used to define the name
the application will be registered with in the naming
service.

When a Core Framework encounters a reference to a sub-
application, meaning a componentinstantiation for an
application, it must instantiate an ApplicationFactory and
use it to instantiate the sub-application. As a result, the
Core Framework will obtain a reference to the
Application object that is a proxy to the sub-application.
That reference needs to be stored as it will be needed for
connections and for shutdown.

Connections with sub-applications must be established
through Application objects to preserve encapsulation of
the sub-applications. The Application object is a proxy to
an instantiated application. However, because of this, it is
not possible to use all five types of connections the SCA
supports [2]. In fact, this is already the case for
connections between components of a node assembly.
The following two types of connections cannot be
supported by a Core Framework:
“deviceusedbythiscomponentref” and
“devicethatloadedthiscomponentref”. The reason being
that an Application object can’t have “usesdevice”
relationships and can’t be loaded on a SCA Device. The
domainfinder type of connection could be supported but it
would require a structural change to the SAD file. The
domainfinder element would It require a new type named
“application”. Finally, the componentinstantiationref and
findby type of connection can easily be supported the
same way they are for regular components.

5.2 Impacts on the ‘Application’ object

The Application object is created when an application is
launched. It is created by an ApplicationFactory and acts
as a single point of entry for interactions with an
application. In short, it is proxy to the application
component assembly. The Application object also is used
to provide deployment information. It does so by through
six attributes. To get access to the sub-applications of an
aggregate application, the Application object must
provide a new attribute. This new attribute provides a
sequence of references to Application objects. This way,
any runtime monitoring tool can recursively explore the
Application objects to tally all the components.

Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5.3 Impacts on the Domain Manager

The DomainManager also provides deployment
information regarding instantiated applications. This
information is provided through a sequence containing a
reference to each Application object created. In other
words, it contains one entry for each instantiated
application. With the current SCA specification, the
Application objects contained in that sequence are
completely independent from one another. They can be
created or released with no effect on other applications.
This property however changes with the support of
aggregate applications. Releasing a sub application would
definitely have effect on the aggregate application it
belongs to.

For this reason, we don’t recommend adding the sub-
application to the DomainManager’s sequence of
applications. Only the Application object for regular
standalone application or for an aggregate application
should be listed. Runtime monitoring tools can still
expose the sub-applications through the new Application
object attribute.

The DomainManager’s provides another attribute that
also might have been affected by the concept of aggregate
application. The attribute is a sequence containing one
ApplicationFactory for each application that has been
installed. The deployment of an aggregate application
leads to the creation of one ApplicationFactory for each
sub-application. But again, adding each sub
ApplicationFactory to the DomainManager’s list would
only add confusion and create problems if one of those
sub-factories was released before the ApplicationFactory
of the aggregate application.

The only minor impact on the DomainManager is related
to application installation. Since the new application
meta-data (i.e. SAD file) may reference other
applications, the installation service must be modified to
extend the validation to the sub-application meta-data.

6. CONCLUSION

This paper explained why application reusability is
important and presented an approach to interconnect
SCA-based applications. Modifications required to the
SCA specification to support the aggregate application
concept from a SAD file were described. Most of the
changes are simply textual. No change to the SAD file is
required but to connect applications using a new
domainfinder ‘application’ type. However, for backward

compatibility purpose, it has been suggested to make the
support of aggregate applications optional to the SCA and
to define related requirements in a new SCA extension
document. As for SCA Core Frameworks, tools wishing
to support this SCA extension would have to be slightly
modified.

7. REFERENCES

[1] Software Communications Architecture Specification,

Version 2.2.2, 15 May 2006.
[2] F. Lévesque, C. Auger, S. Bernier, and H. Latour, “JTRS

SCA: CONNECTING SOFTWARE COMPONENTS,”
Proceedings of the 2003 Software Defined Radio Technical
Conference, Vol. 1, pp. SW2-001, 18 November 2003.

[3] JSR-220 Enterprise JavaBeans™, Version 3.0, 8 May
2006.

[4] CORBA Component Model Specification, Version 4.0,
formal/06-04-01.

[5] Deployment and Configuration of Component-based
Distributed Application Specification, Version 4.0,
formal/06-04-02.

[6] Software Communications Architecture Specification
Appendix D: Domain Profile, Version 2.2.2, 15 May 2006

Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

