

THE SANDBLASTER SBX 2.0 ARCHITECTURE

John Glossner1, Mayan Moudgill1, Daniel Iancu1, Sanjay Jinturkar1, Gary Nacer1, and Michael Schulte1,2

1Sandbridge Technologies, Inc.
White Plains, NY 10601 USA
jglossner@sandbridgetech.com

2University of Wisconsin, Dept. of ECE
1415 Engineering Drive

Madison, WI, 53706, USA

ABSTRACT

Sandbridge Technologies has developed a new architecture
that supports wireless data rates necessary for 3.5G and 4G
systems. Building upon the Sandblaster 1.0 architecture, the
fully object code compatible Sandblaster SBX 2.0
architecture extends support for high bit-rate processing,
MIMO-OFDM acceleration, wider vector execution, and
code compression. Architectural performance improvements
range from 4x to more than 10x for a variety of signal
processing applications while providing 100% object code
compatibility with the Sandblaster 1.0 architecture. In this
paper we describe the base Sandblaster 1.0 architecture and
introduce the Sandblaster 2.0 enhancements.

1. INTRODUCTION

The architecture of a computer system is the minimal set of
properties that determine what programs will run and what
results they will produce [1]. It is the contract between the
programmer and the hardware. Every computer is an
interpreter of its machine language – that representation of
programs that resides in memory and is interpreted
(executed) directly by the (host) hardware. The logical
organization of a computer’s dataflow and controls is called
the implementation or microarchitecture. The physical
structure embodying the implementation is called the
realization. The architecture describes what happens, while
the implementation describes how it is made to happen.
 Programs for the same architecture should run
unchanged on different implementations. An architectural
function is transparent if its implementation does not
produce any architecturally visible side effects. An example
of a non-transparent function is the load delay slot made
visible in the architecture due to pipeline effects. Generally,
it is desirable to have transparent implementations. Most
DSP and VLIW implementations are not transparent and
therefore the implementation affects the architecture.
In 2002, Sandbridge Technologies first described at the
SDR Forum Technical Conference a multithreaded
architecture for SDR applications [2]. The core architecture,
called Sandblaster, supports deterministic real-time

execution, vector DSP operations, RISC-style control code,
and Java execution. The compound instruction set
architecture was optimized for communications and
multimedia applications. It includes a complete tool chain
which removes the need for tedious DSP assembly language
programming [3]. A well known problem for DSP
compilers is saturating arithmetic [4]. So called fixed point
(fractional) datatypes are non-associative and require
special treatment within a compiler. The Sandblaster
processor overcomes these limitations by providing both
vector architectural execution and compiler algorithms that
can determine the type of the variable and thus maintain
serial semantics even under parallel execution [5]. The
compiler is also able to automatically generate threads for
the processor [6]. It ensures all synchronization and works
in concert with automatic vector generation for efficient
code generation. Furthermore, ultra-fast simulation,
profiling, and debugging of code that is embodied in the
Sandblaster development environment is a key enabler of
fast application development [5].
 In the original 2002 publication, we described the
SB9600 baseband processor chip implementation. It
contained four Sandblaster cores, an ARM processor, and
an integrated set of peripherals. Handset operating
requirements have significant restrictions on power
dissipation. Techniques for achieving handset power levels
are described in [7]. The SB9600, renamed the SB3011, was
successfully fabricated in TSMC 90nm process technology
and is shown in Figure 1.
 The SB3011 contains four Sandblaster cores each
running at 600MHz, 1.5Mbytes of onboard SRAM memory
for L1 and L2 storage, multiple RF peripherals for MIMO
operation, an ARM9 running at up to 300MHz, and a
complete set of peripherals for smart phone integration.
Measured power dissipation of the core (processor) for
some important applications ranges from 45mW for GPRS
to 65mW (per core) for WCDMA. Having originally
published a 75mW per core target, measured results have
validated the design. Table 1 summarizes the key
Sandblaster parameters.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 1. Sandblaster SB3011 Chip

Technology 90nm
Processor Clock 600MHz
Power Dissipation 75mW @ 1V, 25C
On-chip Memory 1.5Mbytes
Peak DSP performance 2.4 GMACs

Table 1. Key Sandblaster Parameters (per core)

With a tool chain capable of automatically generating
parallel DSP code and a high-performance low-power chip
fully functional, a number of communications systems have
been implemented including WCDMA [8], GSM/GPRS [9],
1xEVDO [10], TD-SCDMA [11] , NTSC Video Decode
[12], WiMax [13], WiFi [14], GPS [15], AM/FM radio [16],
DVB [17], and SINCGARS [18].
 In addition to communications systems, the processor is
also capable of multimedia. A number of applications have
been developed including MP3 [19], MPEG4 [20], and
H.264 [21].

1.1 3.5G and 4G Systems Requirements

Table 2 shows the growing performance requirements for
future cellular devices. Not only are the bit-rate
requirements exploding but the video resolution is also
increasing.
 In communications systems, the increased performance
places additional processing burden in all areas of baseband

design. Particularly stressed are error correction codes such
as Viterbi, turbo, and LDPC codes. However, in addition,
most of the future high bit-rate systems will be MIMO-
OFDM systems. Therefore fast FFTs and matrix combining
are a requirement.

Timers
(2)

General
Purpose I/O

Smart Card
Interface

Sync Serial
Port

Keyboard
Interface

Real Time
Clock

UART/
IrDA

Audio
Codec

Interface

General
Purpose I/O

Timers
(2)

Power
Mgmt

Multimedia
Card

Interface

Multi Port
Memory
Controller

USB OTG
Interface

LCD
Interface

AHB APB
Bridge

Peripheral
Device Control

DMA
Controller

ARM926EJ-S
Processor
(32K/32K)

Vector Interrupt
Controller

DSP ARM
Bridge

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT INT

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
T

DSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B)

EXT INT

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT INTDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT INT

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
TDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
TDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B)

EXT IN
T

DSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B)

EXT INTDSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B)

EXT INT

DSP Complex

General
Purpose I/O

Serial
Interfaces
(SPI, I2C)

Clock Generation

10 –50MHz REF
REF1 REF2Ext. clks

Int. clks......

DSP Local Peripherals
TAP

(JTAG Port)

Timer I/O

RF Control

 3G 3.5G 4G
Cellular 384kbps 14.4Mbps 100Mbps
WLAN 11Mbps 54Mbps 108Mbps
Video QVGA WVGA 720p

Table 2. Cellular Terminal Technology Requirements

Due to the demanding requirements of next generation
communications systems, a number of instruction set
extensions for the Sandblaster processor have been
considered [22].
 The rest of this paper is organized as follows. Section 2
provides an architectural overview of both the Sandblaster
1.0 and 2.0 architectures. Section 3 provides architectural
performance results, and Section 4 provides some
concluding comments.

2. THE SANDBLASTER 2.0 SBX ARCHITECTURE

The instruction set for the original Sandblaster 1.0
architecture is very simple. In total there are about 70
instructions. In describing the architecture, we follow the
format described in [1]. We start with the original
Sandblaster 1.0 (SB1) architecture and describe the
modifications incorporated into the Sandblaster 2.0 (SB2)
architecture.

2.1 Backward Compatibility

Of primary importance is backward compatibility. All of the
instructions supported in the Sandblaster 1.0 architecture are
object code executable in the Sandblaster 2.0 architecture.
This is a key criterion for what distinguishes a true
architecture from an instruction set defined by its
implementation.

2.2 Spaces

Instructions and their operands must be obtained from a
storage space or an input source; the results are placed in a
storage space or an output sink. The Sandblaster
architecture supports memory, working store, and control
store spaces.
 The memory space is the storage space from which
programs are directly executed. There is no embedding of
other spaces within the memory space.
 The working store is the set of concisely specifiable
locations that temporarily contain operands or results of an
operation. The working store is broken into three spaces:

Memory Interface
ynchronous and
Asynchronous)

(S

Camera
Interface
Ehternet
Interface

TDM
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

PSD
Interface

Prog.
Timers/Gens

RX Data
TX Data

Real Time
Clock

AHB APB

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

general purpose registers (r), vector registers (vr), and
accumulator registers (acc).
The general purpose register file contains 16 entries of 32
bits each. A 16-bit datatype occupies bits 0 to 15 and a 32-
bit datatype occupies bits 0 to 31. The vector register file
contains eight entries. In SB1, each register file entry is 160
bits, treated as four 16-bit or four 40-bit elements. Notably,
the SB3011 implementation contains 4 cores each of which
has 8 copies of the register state (e.g. 8 threads) for a total
of 32 threads and 32 complete copies of the register state. In
SB2, each entry is 256 bits and is treated as eight 32-bit
vector elements or sixteen 16-bit vector elements. For
backward compatibility, four 16-bit and four 40 bit-
elements are mapped into each 256-bit entry.
 A vector encoding was chosen to preserve the number
of names required. It should be noted that a scalar processor
may require up to 16 unique names per each SB2 vector.
Thus, even with just eight 16-element locations, a scalar
processor could require 128 unique names.
 The accumulator register file contains four entries.
Each entry is 64 bits.
 The control store is the storage that contains the status
of the Sandblaster architecture. It contains the processor
status, a 32-bit Instruction Address Register (commonly
referred to as the PC), and other control state.

2.3 Memory (Storage) Access

In the Sandblaster architecture, the address space is a one-
dimensional vector of addresses. An address is a storage
element’s unique name. The name spaces of a language are
the disjoint sets into which the names of the objects are
grouped. In the Sandblaster architecture a set of successive
integers as addresses is assigned as the name-space of
specific objects. This provides an isomorphic mapping
between the set of all possible n-bit names and the set of
binary integers from 0 to 2n-1. This constitutes a dense,
ordered and measured set. Thus, the successor of a name
can be calculated by addition. This allows the same
mechanisms used for operations on data to be used for
comparisons and additions desirable for names.
 The address-set structure is linear with detection of
addresses beyond the ends of the installed segment. This
ensures that an increase in memory will not affect correct
execution of programs. The minimal memory address
resolution is an 8-bit byte. The byte ordering convention is
big-endian. Bits, bytes, half-words, etc. are numbered from
left to right. There is no requirement for data to be aligned
with the datatype size (although it is advisable whenever
possible).
 The architecture permits generalized use of a three-
address operand format. Because working store indices are
costly in bits, a working store element is used as the source
and destination of an operation. The base address specifies
the location of an array in memory. The Sandblaster

architecture does not provide for a separate base address.
The element address (sometimes referred to as an offset)
specifies an element within a data structure, relative to the
base address. It is placed in one of the general purpose
registers. The displacement determines the location of an
item relative to the current element address. It is placed
within the instruction format. The address phrase in the
architecture is offset + displacement. This effectively
requires a precombined base and element address. The
displacement is typically limited to a sign extended 4-bit or
16-bit immediate field shifted to be aligned to the vector
size. If a non-vector length displacement is required it must
be computed. Index arithmetic for memory addressing takes
place in the general purpose register file. All integer
operations available for normal computations are available
for index arithmetic.

Type Interpretation Vector Form
u8 1-byte unsigned integer n/a
w8 1-byte signed integer n/a
u16 2-byte unsigned integer u16[4], u16[16]
w16 2-byte unsigned integer w16[4], w16[16]
fx16 2-byte fraction fx16[4], fx16[16]
u32 4-byte unsigned integer u32[8], complex
w32 4-byte unsigned integer w32[8], complex
fx40 5-byte fraction fx40[4]

Table 3. Sandblaster 2.0 Datatypes

Addresses that refer directly to the machine-language names
for data are called direct addresses. There are no indirect
addresses (i.e. the use of a memory location that holds the
direct address). The architecture provides the following
direct address modes:
• Address = Register Offset + Immediate Displacement
• Address = Register Offset + Immediate Displacement;

Offset = gpr[ra] + Signextend(imm) << 3
• Address = Register Offset + Immediate Displacement;

Offset = gpr[ra] + Signextend(imm) << 5

2.4 Operations

An operation code (opcode) is the encoded specification of
the operation. A secondary operation is one implied by an
explicitly specified operation. An example is a sign test that
explicitly sets a condition code bit after an arithmetic
operation. In the Sandblaster architecture there are a few
secondary operations such as jump conditional. There are
also compound operations such as compare and branch that
are encoded in the same operation code.
 The architecture is comprised of a collection of fixed-
length datatypes. Table 3 summarizes the datatypes directly
supported by the SB2 architecture. The data length is
specified in an instruction by the operation code and the
working store that is used. Operations are provided for

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

integer, logical, and fixed-point datatypes. It should also be
noted that floating point is supported from a C-level
language viewpoint but it is emulated with native data
types. Each instruction specifies the type of its operands.
 The term “fixed point number” has different meanings
depending upon the domain of discussion. Computer
architects use the term generally to include any number that
has the radix point in a fixed position. This would include
all integer types (unsigned and 2’s complement integers)
where the position of the radix point is to the right of the
digits, but excludes floating-point numbers.
 From the computer architect’s viewpoint, the position
of the radix point does not affect the terminology, as long as
it is in a fixed position. However, a Digital Signal
Processing (DSP) use of the term implies a specific choice
of radix point with the position between the most significant
bit and the next most significant bit. DSP fixed-point
numbers are typically 2’s complement encoded with an
interpreted range of [-1 to 1). This alone does not create a
conflict in terminology. However, in common DSP usage,
operations on this type are implied to “saturate” to the
largest or smallest representable values. This complicates
mathematics because the arithmetic is non-associative. In
this paper we distinguish this by referring to DSP-style
fixed point as a fractional type (i.e. fx16, fx40).

Type Example Instructions Notes
Data Handling load vector & update

load vector reversed

Arithmetic add, sub, mpy, mac vector, mixed
types, sat opt.

Logical and, or, xor
sompare,
Shift

no rotate

sat opt.

Synchronizatio
n

load locked
store conditional

Transfer of
Control

jump (conditional)
call
branch eq || gt || lt
Loop

Power idle
Special SB1 shuffle, select

round, min/max
count leading sign/zeros
count trailing zeros
thread_id

Special SB2 FFT, Complex, FEC
broadcast
pack/unpack
GF operations

Table 4. Operations

Table 4 lists the classes of operations with some
representative examples. Data handling operations perform
no arithmetic and includes register-to-register moves, loads
from memory, etc. They provide a mechanism to move data
around within the machine. Moves within the vector register
file may be conditionally executed. Format transformation is
accomplished by sign extending a byte or half word value.
A round operation is also provided for precision reducing
operations.
 Arithmetic is provided for all datatypes. Operations are
available for all scalar and vector types. Some mixed mode
support such as multiply signed-unsigned is provided.
Optionally results from certain operations may be saturated
for proper “DSP” style execution. Particularly, saturation of
dot-product-type operations in 4-element vector form
produces results guaranteed to be equivalent to serial
execution of the operations with saturation after each
operation. Thus, with a saturating dot product, four 16-bit
elements are multiplied, saturated, added, and then saturated
again as if they were scalars. Notably, the 16-element
saturating vector dot-product-type operations in Sandblaster
2.0 do not follow this convention but instead maintain
maximum precision at each intermediate stage in the
computation. Note that the 4-element saturating form is still
available in the SB2 architecture.
 Logical operations are provided for And, Or, and
Exclusive-or functions. Vector versions of these are also
available including a vector nand. Additionally, vector
compare operations set a mask register which can be used to
select between elements of a vector. Shift operations are
provided both in logical and saturating form.
 Synchronization is performed with load locked and
store conditional operations. From these basic primitives
many conventional software synchronizations may be
constructed including semaphores.
 Transfer of control is typically accomplished by a jump
operation which may be dependent upon a condition or a
compare and branch compound operation which first
performs the comparison and then determines if a branch is
to be taken. A call instruction is provided with automatic
saving of the instruction address register. For many DSP (or
streaming) applications it is desirable to loop a number of
times on the same set of operations. If scalar architectures
are used the number of scalar names in conjunction with
typically visible pipelines precludes the usefulness of
looping type operations. A vector architecture with
transparent pipelines allows complete reuse of names.
 Figure 2 shows an example of a name saving
instruction sequence. Here a single compound instruction
with three compound operations for SB1 is shown. The first
compound operation, lvu, loads the vector register vr0 with
four 16-bit elements and updates the address pointer r3 to the
next element. The vmulreds operation reads four fractional
16-bit elements from vr0, multiplies each element by itself,

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

saturates each product, adds all four saturated products plus
an accumulator register, ac0, with saturation after each
addition, and stores the result back in ac0.

L0: lvu %vr0, %r3, 8
|| vmulreds %ac0,%vr0,%vr0,%ac0
|| loop %lc0,L0

Figure 2. SB1 Sum of Squares Inner Loop

The equivalent code in SB2 that performs 16 multiplies per
compound instruction is shown in Figure 3. The first
compound operation, lru, loads the vector register vr0 with
sixteen 16-bit elements and updates the address pointer r3 to
the next element. The rmulreds operation reads four fixed
point (fractional) 16-bit elements from vr0, multiplies each
element by itself, adds all sixteen products plus an
accumulator register, ac0, saturates the result and stores it
back into ac0.

L0: lru %vr0, %r3, 32
|| rmulreds %ac0,%vr0,%vr0,%ac0
|| loop %lc0,L0

Figure 3. SB2 Sum of Squares Inner Loop

In addition to traditional operations, a number of specialized
operations are provided. Some are application specific while
others are the result of microarchitectural features. Support
for multithreading is provided by allowing an instruction
stream to determine what thread it is executing in by
accessing a thread id register. This allows fast interruption
between independent instruction streams. Additionally, an
operating system may disable execution of specific
hardware threads by executing an idle instruction. This
turns off (if an implementation supports it) all execution
within a hardware thread. Significant power savings can be
achieved using this mechanism.
 As mentioned in the Section 1, certain operations are
difficult to execute in software when the data rates are very
high. The SB2 architecture provides application specific
instructions for FFTs, Galois Field arithmetic, and error
correction such as Viterbi, turbo, and LDPC codes. Also,
since the vector path is 16-elements wide there is now direct
support for broadcasting of a scalar to all vector
computations and support for a much richer class of
permutations and shuffles. Within the 16-element vector
unit, a native 32-bit vector element and complex arithmetic
are also supported.

2.5 Instruction Execution

The SB1 architecture increments the instruction address by
eight bytes each cycle. Three operation codes of 21-bits
each are grouped together in the instruction format and

issue as a single 64-bit compound instruction. The address
where the next instruction resides (called its location) is
always an 8-byte linear sequence arranged in a vector.
In the SB2 architecture the leftmost bit of the instruction
format now specifies whether the three operation codes are
issued in serial fashion or parallel fashion (as in SB1).
However, all branch targets must still be 8-byte aligned.

3. RESULTS

The architectural changes have added about 140 additional
instructions to the base Sandblaster 1.0 architecture. The
impact is significantly reduced instruction counts on
communications and multimedia codes. Basic vector
performance is enhanced by a factor of four through parallel
operations on sets of 16 elements. An improved shuffle
network may improve performance further. The execution
time of error correction and other application specific codes
may be reduced by much more than an order of magnitude.
 While we have not discussed microarchitectural
performance, it is anticipated that chip implementations
built using the Sandblaster 2.0 architecture will execute at
about the same clock frequency as the SB3011.

4. CONCLUSION

We have introduced the Sandblaster 2.0 architecture which
builds upon the Sandblaster 1.0 architecture. The new
architecture is object code compatible with the original
architecture and provides new operations to enable software
execution of future high speed wireless communications
systems such as 802.16e, HSPA, and LTE.

REFERENCES

[1] G. Blaauw and F. Brooks, Computer Architecture: Concepts

and Evolution, Addison-Wesley publishers, Reading,
Massachusetts, 1997.

[2] J. Glossner, E. Hokenek, and M. Moudgill, “Multithreaded
Processor for Software Defined Radio”, Proceedings of the
2002 Software Defined Radio Technical Conference, Volume
I, pp. 195-199, November 11-12, 2002, San Diego,
California.

[3] S. Jinturkar, J. Glossner, E. Hokenek, and M. Moudgill,
“Programming the Sandbridge Multithreaded Processor”,
Proceedings of the 2003 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), March 31-April 3, 2003, Dallas, Texas.

[4] P. Balzola, M. Schulte, J. Ruan, J. Glossner and E. Hokenek,
“Design Alternatives for Parallel Saturating Multioperand
Adders,” in Proceedings of the International Conference on
Computer Design (ICCD 2001), Austin , TX, IEEE Computer
Society Press, pp. 172-177, September, 2001.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

[5] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill, E.
Hokenek, M. Schulte, and S. Vassiliadis, “Sandbridge
Software Tools”, Proceedings of the 3rd annual Systems,
Architectures, Modeling, and Simulation (SAMOS)
Conference, pp. 142-148, Samos, Greece, July 21-24, 2003.

[6] S. Jinturkar, J. Glossner, V. Kotlyar, and M. Moudgill, “The
Sandblaster Automatic Multithreaded Vectorizing Compiler”,
Proceedings of the 2004 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, September 27-30, 2004.

[7] J. Glossner, K. Chirca, M. Schulte, H. Wang, N. Nasimzada,
D. Har, S. Wang, A. Hoane, G. Nacer, M. Moudgill1, and S.
Vassiliadis, “Sandblaster Low Power DSP”, in Proceedings of
the Custom Integrated Circuits Conference (CICC), Orlando,
Florida, October 2004.

[8] J. Glossner, D. Iancu, E. Hokenek, and M. Moudgill, “A
Reconfigurable Baseband for 2.5/3G and Beyond”,
Proceedings of the 2003 World Wireless Congress, pp.
MC.11-1-6, May 27-30, 2003, San Francisco, California.

[9] R. Kalavai, M. Senthilvelan, S. Agrawal, S. Jinturkar, and J.
Glossner, ” Implementation of GSM/GPRS Physical Layer on
Sandblaster DSP”, Proceedings of Software Defined Radio
Technical Forum (SDR Forum '06), Orlando, Florida,
November, 2006.

[10] S. Watanabe, Y. Kunisawa, D. Kamisaka, A Software Radio
Implementation of CDMA2000 1xEV DO on a Single DSP
Chip Designed for Mobile Hand Terminal, Proceedings of the
IEEE Vehicular Technology Conference, 25 – 28 September
2006, Montréal, Canada.

[11] S. Shamsunder and J. Glossner, “Reduced Complexity
Software Receivers for TD-SCDMA Downlink“, CD
proceedings at the 2004 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, September 27-30, 2004.

[12] V. Kotlyar, D. Iancu, J. Glossner, Y. He, and A. Iancu, “Real-
time Software Implementation of NTSC Analog TV on
Sandblaster SDR Platform,” Proceedings of the 4th Karlsruhe
Workshop on Software Radios, Karlsruhe, Germany, March
22-23, 2006, pp. 171-176.

[13] D. Iancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossner,
V. Surducan, V. Kotlyar, A. Iancu, G. Nacer, and J. Takala,
“Software Implementation of WiMAX on the Sandbridge
SandBlaster Platform,” Proceedings of the 6th Workshop on
Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS'06), Samos, Greece, July, 2006.

[14] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, and J.
Glossner, “Software Implementation of 802.11a blocks on
Sandblaster DSP”, Proceedings of Software Defined Radio
Technical Forum (SDR Forum '06), Orlando, Florida,
November, 2006.

[15] D. Iancu, J. Glossner, H. Ye, M. Moudgill, and V. Kotlyar,
“Rake Receiver Enhanced GPS System”, Proceedings of
Software Defined Radio Technical Forum, Volume A, pp. 97-
105, 16-18 November, 2004, Scottsdale, Arizona.

[16] D. Iancu, J. Glossner, H. Ye, Y. Abdelilah, and S. Stanley,
“Reduced Complexity Software AM Radio”, Proceedings of
the Symposium Trends in Communications (SympoTIC ’03),
pp. 122-125, Bratislava, SLOVAKIA, 26 – 28 October 2003.

[17] D. Iancu, H. Ye, Y. Abdelilah, E. Surducan, and John
Glossner, “On the Performance of Multiple OFDM Receivers
for DVB” Proceedings of the Joint IST Workshop on Mobile
Future & Symposium on Trends in Communications
(SympoTIC’04), Bratislava, Slovakia, pp. 1-4, October 24-26,
2004.

[18] B. Beheshti, J. Glossner, D. Routenberg, L. Zannella, and P.
Steensma, “Evaluation of Military Waveform Processing on a
COTS Reconfigurable SDR Processing Platform“,
Proceedings of Software Defined Radio Technical Forum,
Volume A, pp. 147-151, 16-18 November, 2004, Scottsdale,
Arizona.

[19] S. Jinturkar, V. Ramadurai, V. Kalashnikov, G. Nacer, and J.
Glossner, “Implementing MP3 Decoder on Sandblaster DSP”,
Proceedings of the 2006 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, November, 2006.

[20] S. Agrawal, S. Jinturkar, V. Ramadurai, M. Moudgill, and J.
Glossner, “Multithreading MPEG4 Encoder on Sandblaster
DSP”, CD proceedings at the 2005 Global Signal Processing
Expo (GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, October 24-27, 2005.

[21] V. Ramadurai, S. Jinturkar, M. Moudgill, and J. Glossner,
“Multithreading H.264 Decoder on Sandblaster DSP”, CD
proceedings at the 2005 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, October 24-27, 2005.

[22] S. Mamidi, E. R. Blem, M. J. Schulte, J. Glossner, D. Iancu,
A. Iancu, M. Moudgill, and S. Jinturkar, “Instruction Set
Extensions for Software Defined Radio,” accepted for
publication in the Journal on Embedded Systems, 2007.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

