

PARTIAL RECONFIGURATION CONCEPT IN A SCA APPROACH

Michel Sarlotte (Thales, Colombes, France; michel.sarlotte@fr.thalesgroup.com)

Bruno Counil (Thales, Colombes, France; bruno.counil@fr.thalesgroup.com)
Paul Gelineau (Thales, Cholet, France; paul.gelineau@fr.thalesgroup.com)
Remy Chau(Thales, Colombes, France; remy.chau@fr.thalesgroup.com)

Daniel Maufroid (Thales, Colombes, France; daniel.maufroid@fr.thalesgroup.com)

ABSTRACT

Continuous services improvement for Software Defined
Radio system leads to use non Corba capable devices such
as DSP and FPGA to meet the data rate requirements. The
current version of the SCA (Software Communication
Architecture) which provides solution for GPP
implementation does not covered properly FPGA platform
even if latest releases introduces MHAL [1] concept. This
paper describes some results achieved in using partial
reconfiguration Virtex capabilities. We focus especially on
the technologies to manage partial reconfigurability on non
Corba enabled devices.

1. INTRODUCTION

JTRS program since the end of the 90’s tried to define
common approach to facilitate the portability of waveform
and the reconfigurability of a SDR receiver. The objective is
to be able to port any waveforms onto any platform. This
leads to the SCA [2] and Core framework concepts suitable
for pure SW component such as GPP. Application of this
approach to DSP is under progress and preliminary analysis
and proposal has been raised for FPGA and several
upstream programs work on this topics. FPGA technology
provides intrinsic reconfiguration capability but full
configuration is time consuming and in most of the cases
does not meet the system availability requirement.

The paper focuses on the partial reconfiguration technology
and process itself and not on the portability features. It
presents briefly the targeted architecture and the applied
design flow to use partial reconfiguration. HW and SW
architecture implemented within the SoPC are described.
We conclude by the perspective offered by this technology
and by an identification of complementary upstream studies
to be held to solve the remaining key issues.

2. PLATFORM OVERVIEW

The demonstrator platform is based upon a ML405
evaluation board delivered by Xilinx composed by a Virtex-
4 FX20 component and several transceiver components for
connectivity purpose such as USB, Ethernet, … .The board
provides also audio and video facilities. An overview of the
physical demonstrator and its environment is provided
below (fig 1).

Figure 1: Demonstrator overview

2.1. Hardware architecture

The HW architecture is build around the PPC405 embedded
within the FPGA FX20 devices. Classical interfaces are
directly managed by the core and the embedded SW. The
reconfigurable module is plugged onto the OPB bus and
fully drives the audio interface.

The FPGA is the main component of the demonstrator.
Indeed, the Virtex-4 FX includes a PowerPC 405 that
controls:

WEBCAM
 VIDEO

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

• The partial dynamic reconfiguration through the
Internal Configuration Access Port (ICAP).

• The non-stop display of a video controlled by the
PPC 405, through the camera connected on the
USB controller and the TFT screen connected on
the VGA chipset.

• The dialog with the GUI residing on the laptop by
Ethernet link.

• The SystemAce chip which allows the PowerPC
405 to access to a Compact Flash memory which
hosts the Operating Environment (OS, …).

• Audio processing modules

Concerning the audio processing part of the demonstrator,
the FPGA includes a controller which manages the AC97
Codec chip. A microphone and a speaker are connected to
this chip. The AC97 Codec is used as a ADC/DAC. The
audio processing module resides on a dynamic
reconfigurable region of the FPGA so the user can change
audio effects on the voice by activating the partial
reconfiguration.

2.1. Software architecture

The software architecture of the demonstrator aims to
provide an architecture compliant with SCA and which
enables to take advantage of the Xilinx Virtex 4 partial
reconfiguration technology. The Operating Environment is
based on the Linux Monta Vista Operating System, MICO
ORB the Thales CoreFramework.

The SCA enables applications (typically radio waveforms)
to be deployed dynamically into a hardware platform. The
hardware platform is abstracted by a set of software
components named logical devices in the SCA
specifications. These logical devices have two functions: to
enable applications to access to hardware resources in an
independent way of their implementation, and to enable to
load and to execute software on processors of the platform
(GPP, DSP, FPGA). Management of application
deployment is realized by another software module named
Core Framework (CF). When the CF has to deploy an
application, it relies on the logical devices present in the
platform to load and to execute components of the
application on the different processors of the platform.

Architecture of the demonstrator focalizes on the definition
and the realization of an SCA compliant logical device
which enables a CF to load partial bitstreams in FPGA
reconfigurable areas. First element is to define the
granularity of device(s) compared to the number of
reconfigurable areas. It is possible to make one SCA logical
device to reconfigure all areas, or a device for each area.

The second option was chosen for the demonstrator. This
option enables to define a more flexible architecture. It is
easier to adapt the architecture when the number of
reconfigurable areas changes, it just has to be added or
removed an instance of the device.

Software architecture of the demonstrator is composed of
FPGA Area Devices to load dynamically partial bitstreams
in reconfigurable areas, a GPP Device to load and to
execute software on PPC 405 and of a CF software which
manages deployment of applications on reconfigurable
areas and on PPC 405 GPP.

Figure 2: Detailed HW/SW architecture

In the demonstrator, only one reconfigurable area was
defined, so only one FPGA Area Device was instantiated. It
enables the CF to load dynamically the content of its
corresponding reconfigurable area, using the ICAP driver
located in the operating system.

3. DESIGN FLOW

Standard design flow is dedicated to generate complete
bitstream not taking into account partial reconfiguration. To
succeed in using this innovative technology dedicated
approach has to be applied. The main issue is related to the
physical view of the module and more precisely the
“footprint” i.e. the physical interface of the partial
reconfigurable module must be identical for the different
versions and the static design could be considered as a
socket.

In this paragraph, we will present the hardware workflow
and provide general guidelines to develop reconfigurable
platform. The figure below shows the hardware design flow
and the tools used at each step:

XILINX
SYSTEM ACE

FPGA Virtex-4 & PowerPC 405
XC4FX20 - FF668-10ETHERNET

PHY

AC97
Codec

PRM : Audio Processing

AC97
Controller

CHIPSET
VGA

Mic

Speakers

UART

DDR
128 MB

ICAP

TFT
SCREEN

PC

PC

Camera

Static region

Partially reconfigurable
region

Motherboard components

CYPRESS
USB

ML405 Xilinx board

CoreConnect buses
and controllers

SCA Environment

BUS
MACRO

BUS
MACRO

Drivers

Operating System

Object Request Broker

SCA Core FrameWork

SCA CF loads partial reconfigurable module

PowerPC 405

SW
Layers

HW
Layers Audio InAudio Out

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 3: Design flow

Step 1 – HDL description & behavioral simulation
Partial reconfiguration requires a hierarchical design
approach that must be strictly followed during the HDL
coding process. Global logic such as IO buffers, clock
buffers and DCMs must be in the top-level design unit.
Multiple base design modules and partially reconfigurable
modules are instantiated as black boxes in the top-level
module. In our case, the system integrates a PPC405 sub-
system generated by EDK tools from Xilinx [3], [4] and
completed by our own content. However, the instantiated
DCM required by the processor and the SDRAM controller
have been displaced from the intermediate level to the top-
level.The reconfigurable modules cannot contain any clock-
related primitives.

All PR modules for a given reconfigurable region must be
pin compatible with each other, i.e. have the same port
definitions and entity names. Consistent naming allows each
of the PR modules to be linked from the same top-level
description.

At this time, the complete VHDL model is available to
perform the behavioral simulation and to verify that the
functional requirements are met. The reconfigurability
aspect is not managed here; all the versions of the
reconfigurable modules have to be validated separately.

Step 2 – Modular RTL synthesis
The PR flow requires separated netlists for each module and
preserved hierarchy at the top-level.All the modules
instantiated at the top-level are synthesized one at a time in
macro mode (no automatic IO insertion) using standard
synthesis tool. The various IP used is generated by EDK or
the Coregen utility from ISE.

Step 3 – Bus macros insertion & top-level synthesis
As previously explained, the physical footprint of the
module must be unchanged for the various configurations of
the module. Specific cell, called Bus macros (BM) , have
been created by Xilinx in order to lock the routing between
the PR modules and the static part of the design. BMs are
slice-based pre-placed and pre-routed hard macros that can
handle up to 8 bits of data in a fixed direction and offer an
enable control. These bus macros are inserted on every
signal of the PR modules interfaces, except for the global
signals such as clocks. The type of bus macro is mainly
chosen depending on topological criteria (edge of the PR
region, signals direction).

The structural top-level HDL description – a collection of
black boxes instantiations – is synthesized.

Step 4 – Floorplanning
The PR implementation flow is tightly driven by placement
constraints provided in the User Constraints File (UCF).
PlanAhead is a graphical floorplanning tool able to create
these constraints.

A PlanAhead project is created for each version of the PR
modules. The netlists are imported in the tool just as the
initial IO location constraints.

PlanAhead brings the notion of “Pblock“. A Pblock gathers
one or more design units on which a set of attributes may be
assigned. The PR modules are Pblocks characterized by an
area range and a “RECONFIG” mode. The range allocated
to a PR Pblock must encompass all the logic resources
needed for the module. PlanAhead is able to estimate the
amount of required/available resources in a given Pblock.
All the static modules belong to the same Pblock which
does not have any area range attribute.

All the Virtex-4 primitives instantiated in the top-level
netlist have their location to be locked. It is particularly the
case for the clock primitives (DCMs, BUFG) and the bus

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

macros. In PlanAhead, this task is performed by dragging
and dropping the primitives onto the floorplan view.

At this stage, PlanAhead performs a design rule check in
order to identify potential violations hard to fix during the
P&R. Afterwards, PlanAhead exports all the data required
by the place & route step. The “Partial Reconfig. Mode” has
to be used to perform this export. All the information are
stored in the final UCF file.

Step 5 – Non-PR implementation & timing verification
This step is crucial for design debug, aids initial timing and
placement analysis, and helps in determining the best area
range and bus macros locations.

The place & route process can be driven by PlanAhead after
the design has been exported in “Area mode”, or performed
by means of Xilinx ISE tool. Because the PR flow does not
provide any simulation model, a post place & route
simulation can only be achieved at that time.

Step 6 – PR implementation
PlanAhead is used again to manage the PR implementation
after the design has been exported in “Partial Reconfig.
mode”. For each step of the PR flow, the designer has to
customize some parameters and PlanAhead launches the
Xilinx implementation commands in batch mode.

The Budgeting step builds a skeleton of the top-level
design.
The Static Logic Implementation step performs the place &
route of the non reconfigurable part of the design, including
the PPC405 sub-system and the ICAP primitive used in the
reconfiguration of the FPGA. The PR Module
Implementation step performs the place & route of ONE
version of the reconfigurable modules.

The final Assemble step merges the static part and all the
PR modules to create bit files for configuring the FPGA.
The PR flow provides a full bitstream for the initial
configuration of the FPGA and, for each PR region, a
partial bitstream corresponding to the implemented module
plus a blank bitstream intended to “clean” the PR region.

Once the PR flow parameterization is well settled,
PlanAhead can generate script files which could be used to
generate new version of the design

Step 7 – Platform integration
This step consists in finalizing all the files to load onto the
target board. The various operations are managed by script
files based on standard Xilinx commands (data2mem,
promgen). The boot software is incorporated into the full
bitstream which will be stored in the configuration memory

connected to the FPGA. The application software is
programmed in the flash memory. At start up, the boot
software copies the application software to the SDRAM and
launches its execution. The partial bitstreams are arranged
in a dedicated table located in the flash memory. The
application software reads the reconfiguration data in the
flash memory and sends them to the ICAP.

The design flow described above is operational and allow to
develop reconfigurable devices even if some limitations still
exist in the various tools due to their youth. Strong
improvement has been achieved during the last years.

4. RESULTS AND PERSPECTIVES

The feasibility of dynamic on the fly reconfiguration has
been assessed by this demonstrator leading to really flexible
solution. Issues are related to the complete design flow and
mainly the SW version consistency. Indeed, the
reconfigurability is managed by the PPC and the SW stack
running on it. The ICAP driver generated by the HW design
flow should be compliant with the OS, CoreFramework and
the ORB running on the power PC. Furthermore, stack layer
for standard IP such as Ethernet, USB provides also some
constraints in term of SW configuration. Prospects relative
to the SDR demonstrator with FPGA partial reconfiguration
are multiple.

The main result of the study is the proof of the concept, i.e.
it is possible to use the FPGA partial reconfiguration
technology in an SDR environment.

Integration of this technology in SCA-compliant
architectures enables to reduce time necessary to reload
FPGA firmware. This is important, as requirements for time
of boot and waveform switching is very constrained in SDR
terminals, especially when it is compared with previous
legacy terminals. It also enables to reduce size of memory
necessary to store the firmware, because only firmware
which is loaded dynamically has to be stored with other
waveform parts. The optimization of the FPGA size leads to
a static power consumption reduction compared to a
complete

This solution also offers the possibility to reduce the Bill-
of-material as the size of the FPGA could be optimized
embedding only the treatment used at each time. A multi-
waveform terminal could take advantages of such
technology which allows to download transparently one
business code in parallel of the current execution of another
one.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

To extend down to hardware the SCA approach of
portability, interoperability and reconfigurability of
components based waveform applications, a unified
specification/design flow and execution environment have
to be provided to developers by SDR platforms.

System and user services provided and required between
HW and SW components ports should be defined
independently of target programming languages thanks to
IDL or Xilinx Specific Language (DSL approach).

In a more conceptual view, the possibility to load
dynamically and partially a firmware in an FPGA can be
considered as a first step to design this firmware in a more
global software approach. For example, design of firmware
can be integrated in a Model Driven Architecture (MDA)/
Model Driven Engineering (MDE) or even in an approach
based on a component framework.

5. CONCLUSION

Dynamic partial reconfiguration provides really flexible
approach to deploy SDR terminal. Remaining actions have
to be performed to stabilize the SW environment and to
achieve a consistent design environment including HW-SW
tools and drivers). Second main issue is related to the
connectivity to achieve a transparent deployment i.e. extend
the SW abstraction approach down to the HW.

6. REFERENCES

[1] JPEO JTRS, Modem Hardware abstraction Layer (MHAL

API, version 2.11.1, May 2007.

[2] JPEO JTRS SCA v2.2

[3] VIRTEX-4 user guide

[4] VIRTEX-4 Configuration guide

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Author
	Search by Session

