

*This work was completed while E. Stuntebeck, T. O'Shea, and J. Hecker were with the Laboratory for Telecommunications Sciences, US Department of Defense, which funded this research. The opinions
expressed in this document represent those of the authors, and should not be considered an official opinion or endorsement by the Department of Defense or US Federal Government.

ARCHITECTURE FOR AN OPEN-SOURCE COGNITIVE RADIO*

Erich Stuntebeck (Georgia Tech, Atlanta, GA; eps@gatech.edu);

Timothy O’Shea (NC State University, Raleigh, NC; tjoshea@ncsu.edu);
Joseph Hecker (Clemson University, Clemson, SC; heckerj@clemson.edu);

T. Charles Clancy (Laboratory for Telecommunications Sciences, College Park, MD; clancy@ltsnet.net)

ABSTRACT

OSCR, a framework for the implementation of a cognitive
radio, is designed to facilitate the integration of a cognitive
engine with one or more existing Software Communications
Architecture (SCA) based radios. It consists of two
components: a multiplexer, which acts as the cognitive
engine’s point of control for each individual radio within the
system, and an SCA resource within each radio, which
translates between the radio’s native control API and the
OSCR API. OSCR is designed to integrate multiple radios,
which may all have differing capabilities, under a single
cognitive engine. To demonstrate the usefulness of OSCR,
used it to construct a cognitive radio composed of a basic
SCA-compliant software radio and a cognitive engine
designed to maximize channel capacity by monitoring
channel statistics and varying radio parameters.
Implementation details and results of experiments with this
system are provided.

1. INTRODUCTION

The research community’s interest in cognitive radio has
spawned numerous proprietary and incompatible
environments for the evaluation of algorithms and protocols.
There is a need for a universal architecture allowing the
reuse of cognitive radio algorithms across a wide variety of
radio platforms. In this work, we present such an
architecture, which we call OSCR – The Open Source
Cognitive Radio. OSCR is designed to facilitate the
integration of a cognitive control engine with one or more
SCA-compliant software radios. Since the SCA does not
dictate a standard API for the control of software radios, a
cognitive engine must currently be modified for
compatibility with each different radio that is to be
supported. OSCR integrates an SCA resource within each
radio which presents a standardized control API – the OSCR
API – to the outside world. Thus, the OSCR framework
allows any cognitive control engine using the OSCR API
and any SCA radio which has been loaded with the OSCR
Radio Interface to be combined into a cognitive radio. This
framework will allow researchers to easily exchange
cognitive control engines for evaluation and testing on
different software radio platforms.

 To demonstrate the usefulness of OSCR, we have
created a simple SCA-compliant software radio using the
OSSIE [1] SCA implementation. This radio was then
combined with a cognitive control engine, designed using
SOAR [2], whose goal was to maximize the capacity of a
noisy channel given a constantly changing noise
environment. The cognitive engine was able to modify the
modulation type, signal constellation size, and coding
parameters of the transmitting radio in order to achieve this
goal.
 The remainder of this paper is organized as follows.
Section 2 describes each component of the OSCR
framework and how it is utilized within an OSCR-based
cognitive radio. Section 3 describes the utilization of OSCR
for the channel capacity maximizing cognitive radio. The
paper is concluded in Section 4.

2. THE OSCR FRAMEWORK

OSCR allows a user to design a cognitive engine once, using
the software of their choice and the OSCR radio control API
(implemented as a C++ library), and then have it control any
SCA-compliant radio which has been OSCR enabled. The
framework consists of two software components – the OSCR
Radio Interface (ORI) and the OSCR Radio Multiplexer
(ORM). The architecture of an OSCR-based cognitive radio

Fig. 1. An OSCR system consisting of multiple SCA radios.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

system is illustrated in Fig. 1. In this section, we describe the
two components of the framework in detail.

2.1 OSCR Radio Interface

The OSCR Radio Interface is the interface between a
generic SCA-compliant radio and the OSCR framework. It
serves two functions. First, it acts as a translator between the
OSCR API and the radio’s native control API. The skeleton
ORI provided with OSCR must be custom modified to
match the control API of each SCA radio that will be used
within an OSCR system. Second, it acts as the
communication gateway between the radio and the OSCR
framework via SCA-compliant CORBA. In order to be
compatible with SCA-compliant radios, the ORI is
implemented as an SCA resource.
 An illustration of the internal architecture of an SCA-
compliant radio to be utilized in an OSCR system is
provided in Fig. 2, which represents the architecture of the
radio we designed for the experiments described in Section
3. The resource coexists with the other SCA resources,
which together comprise the SCA radio. The two functions
of the ORI are now described in detail.

2.1.1 Interface Translator

Since the SCA does not dictate a common API for the
software control of an SCA-compliant radio, it is necessary
to provide a component in the OSCR framework which
maps the radio’s control API to the common OSCR control
API. The ORI, which resides within the SCA domain of
each OSCR radio, is responsible for receiving radio control
information from the ORM and relaying control messages to
the appropriate radio resource (see Fig. 2). In order to do
this, the ORI must be modified for compatibility with the
potentially different control API of each radio controlled by
the ORM. For example, two different radios, although both
SCA-compliant, may have different APIs for varying

transmit power, modulation scheme, coding rate, etc. The
ORI accepts as input control commands in the OSCR API
format, translates these into the radio’s native control API,
and then carries out the requested actions in the native
control API.
 The control API between the ORI and ORM consists of
only two methods: setParameter and getStatistic.
Using only these two calls, the ORM can control any radio
feature or fetch any radio operational statistic (e.g. SNR)
through the ORI. Since an OSCR cognitive radio is capable
of integrating multiple radios under a single cognitive
engine, it is possible to have radios with different
capabilities controlled by the same cognitive engine.
 The cognitive engine must be aware of the capabilities
supported by each radio. This is accomplished through the
use of a description of the radio’s capabilities in an XML
format which the ORI on each radio stores. A portion of a
radio description that describes the modulator component of
a radio is provided in Fig. 3. The information, which is
transmitted to the ORM upon request, describes all
parameters of the radio which can be set by the cognitive
engine, as well as all operational statistics which can be
fetched. Upon receipt of this description of the radio, the
ORM translates it into a hierarchical structure of objects for
use by the cognitive engine in controlling the radio.
 As an example of the flexibility given by the use of
XML to describe each SCA radio, consider the portion of a
radio description given in Fig. 3. The XML in this figure
describes parameters which may be varied for the modulator
of a particular radio. The optionset tag describes one
parameter which may be varied – in this case, the
modulation scheme, and within the modulation scheme, the
constellation size. The option tags within the
optionset describe the discrete values which this
parameter supports – here, a modulation scheme of QAM
and QAM constellations of size 4, 16, 64, and 256. This
XML carries information for use by both the ORM and

Fig. 2. Internal architecture of an OSCR compatible SCA-
compliant software radio.

<component name="Modulator"
 interface="OSCR.ModulatorControl">
 <optionset name="modulation_scheme"
 function="set_modulation_scheme"
 type="int">
 <option name="QAM" value="1">
 <optionset name="constellation_size"
 function="set_constellation_size"
 type="int">
 <option name="QAM4" value="4"/>
 <option name="QAM16" value="16"/>
 <option name="QAM64" value="64"/>
 <option name="QAM256" value="256"/>
 </optionset>
 </option>
 </optionset>
</component>

Fig. 3. XML description of settable properties in the modulator
of an SCA-based radio. A description of each radio’s API in
this format resides within the ORI and is passed between the
ORI and the ORM.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

cognitive engine, as well as the ORI. Notice that the
optionset tag requires a function argument – this is
the function in the radio’s native API which is used to set the
given parameter. The value argument associated with each
discrete option is the value which must be passed to the
function within the radio’s native API in order to select that
particular option. The name field carries a description of
each option and is intended to be utilized by the cognitive
engine. Thus two different radios may both support QAM-
64 modulation and although they have different APIs to
select this option in the modulator, the cognitive engine is
able to select “QAM64” for both without needing to worry
about the specifics of controlling each radio.

2.1.2 Communication Gateway

In addition to its function as a translator from the radio’s
native control API to the OSCR control API, the ORI is
responsible for communication of both control and data with
the ORM. Communication between an ORI and the ORM is
accomplished using CORBA. Since the SCA dictates the use
of CORBA for communication internal to an SCA-compliant
radio, it was a natural choice for extending the radio’s
communication externally to the ORM. Both control
information and data to be sent by or received from the radio
are transmitted between the ORI and the ORM using
CORBA. A substantial benefit of using CORBA for
communication is that it allows OSCR systems to be highly
distributed. Each radio in an OSCR system may run on a
different hardware platform and can easily be connected to
the ORM through a network. Our demonstration of the
OSCR system described in Section 3 utilized one Linux-
based machine to act as a transmitting software radio, one to
act as a receiving radio, and one to act as the ORM and
cognitive engine.

2.2 OSCR Radio Multiplexer

The OSCR Radio Multiplexer serves as the external
interface of the OSCR framework. It allows a single
cognitive engine to control an unlimited number of software
radios. The set of software radios which the ORM controls
is configured through an XML file. Fig. 4 illustrates the
configuration of one radio within this file. In order to
communicate with a remote SCA radio, the ORM must have
information on the CORBA naming service the radio utilizes
and the CORBA domain name within which the radio
resides. Additionally, it must know the CORBA name of the
SCA DomainManager, the SCA application name for the
radio, and the CORBA name of the device on which the
radio operates. Finally, the ORM must be aware of the
specific CORBA name given to the ORI within the radio.
This information allows the ORM to contact the radio over
CORBA and communicate with the ORI.

 The ORM facilitates the cognitive engine’s control of
multiple software radios by providing a common control
API. It also provides an interface for the application-level
transmission of data through the cognitive radio. These two
functions are now described in detail.

2.2.1 Cognitive Engine Interface

A cognitive engine designed around the OSCR framework
speaks directly to the ORM when generating control
messages for radios. Communication between the cognitive
engine and the ORM is accomplished through C++ function
calls, and thus the OSCR framework should be linked with
the cognitive engine at compile-time.
 The ORM must provide the cognitive engine with
information about the capabilities of each radio under its
control. In order to do this, it connects with the ORI within
each radio and requests a copy of the radio’s XML
description (see Fig. 3). This description is then parsed and
turned into a hierarchical structure of objects which the
cognitive engine can use to control each radio.
 The cognitive engine is permitted to access a
distinct sdr object within the ORM for each software radio
under the multiplexer’s control. Within this object, control
functions are divided into the radio’s two functional units –
the modulator and the coder. Each of these functional units
contains parameters which may be varied by the cognitive
engine. These parameters are represented by
ResourceVariable objects. Each of these objects
contains a set of discrete values which the parameter can be
set to, represented as an Option object. For example, in
Fig. 3. we saw that the “modulation scheme” parameter had
one option – “QAM”. When choosing certain options for a
given parameter, it may be necessary to choose additional
options. For example, choosing QAM for a “modulation
scheme” parameter may require setting the constellation
size. In this case, the Option for QAM would contain a

<sdr>
 <name>OSCR Controlled SDR</name>
 <description>SDR #1</description>

 <corba>
 <nameServiceLoc>corbaloc::localhost/NameService
 </nameServiceLoc>
 <domain>DomainName1</domain>
 </corba>

 <sca>
 <domainManager>DomainManager</domainManager>
 <application>OSCR</application>
 <device>GPP1</device>
 </sca>

 <oscr>
 <interface>RadioInterface1</interface>
 </oscr>
</sdr>

Fig. 4. XML description of an SCA radio to be controlled by
the ORM.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

sub ResourceVariable object which must also be set
by the cognitive engine.

2.2.2 Application-level Data Interface

In addition to its function of providing the external OSCR
control API to the cognitive engine, the ORM also serves as
a means of transmitting and receiving application-level data
through the OSCR cognitive radio. To do this, the ORM
creates a network socket on a user specified port number.
Any standard socket-based application wishing to transmit
or receive data through the cognitive radio may then
connect. The ORM then monitors the currently selected
software radio for incoming data and forwards any to the
socket for receipt by interested applications. It also monitors
the socket for incoming data from connected applications,
which it then sends to the currently selected software radio
using the OSCR API.
 OSCR is designed such that application-level data flows
are limited at any given time to one of the multiple radios
under the control of the ORM. The radio through which data
flows are routed can be selected by the cognitive engine at
any time. This allows the cognitive engine to utilize a set of
radios with differing properties and capabilities and to
always route data through the best radio given its goal and
current conditions.

3. SAMPLE OSCR APPLICATION

To demonstrate the usefulness of the OSCR framework, we
developed an application utilizing the OSCR API, which
demonstrates communication between an SCA software
radio and a cognitive engine. In this example, we applied the
cognitive engine to the problem of channel capacity
maximization in the presence of noise. We utilize one ORM

for the transmitter and one for the receiver. The cognitive
engine is allowed to communicate with both ORMs through
a wired communication channel, whereby it switches the
modulation scheme of the transmitter and informs the
receiver of the switch as necessary. Although this setup is
not ideal for a real-world application (where in-band control
signaling would likely be optimal), it nonetheless
demonstrates the functionality of the OSCR API. This
section describes the implementation of the cognitive
engine, the SCA-compliant software radio, and the results
obtained in the goal of channel capacity maximization in the
presence of varying noise.

3.1 Cognitive Engine Implementation

The cognitive engine was implemented using the SOAR [1]
cognitive architecture based on the OPS5 production system.
Two scenarios were designed to demonstrate the versatility
of the OSCR API. The first determines a solution based on
the assumption that the radios are being operated in an
AWGN channel. In this case, the settings that maximize
channel capacity can be directly calculated from noise
statistics at the receiving radio using the Shannon-Hartley
law [3]. The second scenario examines communication in a
non-AWGN channel by formulating maximization of
channel capacity as a unimodal hill-climb [4]. In this case,
the cognitive engine must communicate with the receiving
radio in order to obtain error statistics. The API is designed
in such a way that the cognitive engine need only read and
write communication parameters and statistics that are
relevant to determining a solution. Implementing the API in
this manner allows the cognitive engine to be viewed as a
dynamic component in the radio system that can be
exchanged as necessary with cognitive engines
implementing alternative control algorithms (e.g. a genetic
algorithm) [5]. The OSCR API allows both methods of
cognitive control to follow the same protocol for interfacing
with SDR components.
 At initialization of the cognitive engine, each radio is
polled for the components to which it has access. In this
simulation, each radio is equipped with a modulator and a
coder. Each component is then queried for a listing of
options and sub-options which may be set for that particular
component. Every parameter that is polled is stored in the
knowledge base of the radio agent. Each modulator contains
a listing of modulation types, QAM and PSK in this
example. Each modulation type contains constellation sizes
of which that modulator is capable as options. Each coder
contains a set of error-correcting convolutional codes. The
codes are identified by their rate and free distance.
 Once the radio agent's knowledge base is populated, the
cognitive engine determines the best settings with which to
achieve its goal of channel capacity maximization. The
cognitive engine polls either the sending or receiving
multiplexer for the statistic needed in the calculation.

Fig. 5. Control object hierarchy of an OSCR software radio.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

3.1.1 AWGN Channel Capacity Maximization

 In the AWGN channel scenario, signal to noise ratio is
returned and used to calculate the theoretical maximum
capacity by:

()C W S
N= +log 1

where W is the bandwidth of the available channel and S/N
is the signal to noise ratio. For the given SNR, the
achievable channel capacity C' is then calculated for every
combination of possible settings. Assuming a block length n,
channel-bit error probability, pc, capable of correcting t
errors at a coding rate r, is approximately equal to:

()C
kr

T
j p p

s
n j

n
c
j

c
n j

j t

n

' ()= − −








−

= +
∑1 11

1

where TS is the symbol time and k is the number of bits per
symbol and is equal to log2(M). The variable pc is
approximated as PE / k, where PE is the probability of
symbol error for a given modulation type expressed as:

() ()P M
M

Q
E

M NE
QAM s= −







 −













2 1
1 3

1 0

() ()P M Q
E

NE
PSK s

o
M=









2

2
sin π

where ES/N0 is the ratio of average symbol energy to noise
power density spectrum. This value can be expressed in
terms of known system quantities:

()E

N

M rSWT

NC
s s

0

2=
log

The setting that achieves the greatest theoretical corrected
throughput without exceeding the maximum channel
capacity is selected. The cognitive engine then outputs the
coding and modulation parameters to the radio through the
OSCR API.

3.1.2 Non-AWGN Channel Capacity Maximization

In the case of a non-AWGN channel, direct calculation of
the parameters which calculate channel capacity is no longer
possible. To do this, we utilize a hill-climbing algorithm in
our cognitive engine. In this scenario, the solution space of
the communication settings has been formulated to be
convex in the case of channel capacity maximization. A
similar execution cycle occurs: initialization, statistic
acquisition, parameter output. In this scenario, the receiving
radio is polled for the bit error rate. The channel capacity of
the current settings is calculated by:

()C
kr

T
B

s

'= −1

The differences between the two formulations of the
problem completely lie within the cognitive engine
implementation. All API function calls are implemented in
the same manner as they were in the last example, with the
only difference being the desired statistic. The advantage of
the second problem formulation is an increase in the
functional intelligence of the system, underscoring the
seamless connectivity between an arbitrary cognitive engine
and the SDR components.

3.2 SCA Software Radio Implementation

Our SW Radio implementation takes in a binary data stream
adds forward error correction and provides samples of M-
QAM modulated intermediate frequency (IF) output. In a
complete system this IF would then be up-converted to a
higher sample rate, passed through a DAC, amplified, and
fed to an antenna. For our purpose of demonstrating the
usefulness of the OSCR framework, however, we have
implemented only forward error correction and modulation
and we simulate AWGN channel effects directly on the IF
sample stream. Our SW Radio is implemented in a way
both to comply with SCA specifications and to build off of
the implementation of this as interpreted by the OSSIE
project. This results in a very modular design in which each
component of the radio may be developed independently
and linked together using SCA Ports, which make use of
CORBA Interfaces.
 Each individual radio component which is involved in
the actual data-path contains three significant SCA Ports.
These ports handle the data-in stream, the data-out stream,
and a control interface. These components are then tied
together by the Radio Interface component to form a single
Software Radio entity.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

 The component which adds forward error correction to
the stream provides several different convolutional codes
with different rates to allow for adjustment for higher
capacity or more robust communication as needed. We
provide a one-sixth rate code with constraint length 15, two
one-half rate codes with constraint lengths of 7 and 9, and a
rate-one null coder. The coding scheme may be updated at
any time during operation by first pausing the data stream
and then updating the coding mode on coder and
corresponding decoder components. This is done through a
CORBA interface specific to each component which is part
of an SCA port.
 Our demodulation block works by first scaling the
constellation size by a max power value, symbols are then
modulated by I and Q carrier signals so that we can average
out I and Q values for the symbol and fit them to the nearest
points on the constellation. During this process, we collect
the symbol error ratio which is used to calculate the SNR
statistic.
 OSSIE provides all of the mechanism for loading and
connecting these components to form a single software radio
or “OSSIE waveform”. We simply define a list of SCA port
connections, define the port translation in the Radio
Interface, and load the waveform. It can then be used by the
SDR Multiplexer and any of the available cognitive control
engines or otherwise.

3.3 Experimental Results

We were able to successfully run both of our cognitive
engine approaches through this design. The architecture

allowed us to spend almost all of out time developing the
cognitive engine simply implementing logic, and not
management overhead. This architecture was also able to
easily adapt to either of our cognitive engine objectives
providing a lot of flexibility for these and future objectives.
The figure below shows a trace of the different capacities
provided by different coding and modulation combinations
for different SNR levels.
 We were also able to observe the behavior of the SNR
based cognitive engine operating over time and see that it
provided timely updates as the noise level was varied. This
can be seen in the results in Fig. 7.

4. CONCLUSION

We have designed and implemented OSCR, an open source
cognitive radio framework. OSCR provides an SCA-based
software radio with a control API and allows users to easily
integrate a cognitive engine, designed using the software of
their choice, with one or more SCA-based radios which
include the OSCR interface. We successfully demonstrated
the usefulness of the framework by developing two SCA
radios and using them to communicate over a noisy channel
while under the control of a cognitive engine. It is our hope
that this framework will be useful to and expanded upon by
the cognitive radio research community.

5. REFERENCES

[1] Open-Source SCA Implementation::Embedded, URL:

http://ossie.mprg.org.
[2] SOAR, URL: http://sitemaker.umich.edu/soar/.
[3] T. Cover, J. Thomas. Elements of Information Theory. John

Wiley and Sons, 1991.
[4] S. Russell, P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2002.
[5] T. Rondeau, B. Le, C. Rieser, C. Bostian. “Cognitive Radios

with Genetic Algorithms: Intelligent Control of Software
Defined Radios,” SDR’04.

Fig. 6. Illustration of the cognitive engine’s decisions to
change modulation types at various SNRs based on its goal of
maximizing channel capacity.

Fig. 7. The lower portion illustrates SNR values during a test.
The upper portion shows the cognitive engine’s chosen
constellation size at that SNR.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session

