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ABSTRACT

OSCR, a framework for the implementation of a ctigai
radio, is designed to facilitate the integrationaofognitive
engine with one or more existing Software Commuiocs
Architecture (SCA) based radios. It consists of tw
components: a multiplexer, which acts as the cognit
engine’s point of control for each individual radidthin the
system, and an SCA resource within each radio, twhic
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translates between the radio’s native control ARd ¢he
OSCR API. OSCR is designed to integrate multiptias, OSCR Radio Multiplexer earn " i

v SCA Radio
which may all have differing capabilities, undersiagle (e
cognitive engine. To demonstrate the usefulnes®®ER,
used it to construct a cognitive radio composea dfasic
SCA-compliant software radio and a cognitive engine or
designed to maximize channel capacity by monitoring
channel statistics and varying radio parametere
Implementation details and results of experimerith wis ~ Fig- 1. An OSCR system consisting of multiple S@Alios.

system are provided.

SCA Radio j

To demonstrate the usefulness of OSCR, we have
1. INTRODUCTION created a simple SCA-compliant software radio ugimg
OSSIE [1] SCA implementation. This radio was then
combined with a cognitive control engine, desigmusihg
oOAR [2], whose goal was to maximize the capacfty o
noisy channel given a constantly changing noise

The research community’s interest in cognitive oatlas

spawned numerous proprietary and incompatibl
environments for the evaluation of algorithms anotqcols. > i : )
There is a need for a universal architecture afigwihe ~€nvironment. The cognitive engine was able to myotie

reuse of cognitive radio algorithms across a widdegy of ~Modulation type, signal constellation size, and ingd
radio platforms. In this work, we present such anParameters of the transmitting radio in order thiexe this
architecture, which we call OSCR — The Open Sourc&0@- , _ _ _

Cognitive Radio. OSCR is designed to facilitate the |N€ remainder of this paper is organized as fallow
integration of a cognitive control engine with opemore ~ S€ction 2 describes each component of the OSCR

SCA-compliant software radios. Since the SCA doet n framework and how it is utilized within an OSCR-bds
dictate a standard API for the control of softweadios, a  cognitive radio. Section 3 describes the utilizatid OSCR

cognitive engine must currently be modified for for the channel capacity maximizing cognitive radithe

compatibility with each different radio that is tbe PaPperis concluded in Section 4.
supported. OSCR integrates an SCA resource witagh e
radio which presents a standardized control APle-QSCR

API — to the outside world. Thus, the OSCR framédwor

allows any cognitive control engine using the OSGRI OSCR allows a user to design a cognitive engine omging
and any SCA radio which has been loaded with th€RS the software of their choice and the OSCR radidrob@API

Radio Interface to be combined into a cognitivéigadhis ~ (Implemented as a C++ library), and then havertrad any
framework will allow researchers to easily exchangeSCA-cOmpliant radio which has been OSCR enable@ Th
cognitive control engines for evaluation and tegtion  [ramework consists of two software components -OBER
different software radio platforms. Radio Interface (ORI) and the OSCR Radio Multiplexe
(ORM). The architecture of an OSCR-based cognitagkio

2. THE OSCR FRAMEWORK

“This work was completed while E. Stuntebeck, T. O'Shed,J. Hecker were with the Laboratory for Telecompatitins Sciences, US Department of Defense, whidthefiinhis research. The opinions
expressed in this document represent those of the auémorshould not be considered an official opinion or es&inent by the Department of Defense or US Fedensi@ment.

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



Data

OSCR
Radio
Interface

Control

Fig. 2. Internal architecture of an OSCR compaiL‘dé:A-
compliant software radio.

system is illustrated in Fig. 1. In this sectior gescribe the
two components of the framework in detail.

2.1 OSCR Radio Interface

The OSCR Radio Interface is the interface between
generic SCA-compliant radio and the OSCR framewdirk.
serves two functions. First, it acts as a translagtween the
OSCR API and the radio’s native control API. Thelskon

<conponent nane="Modul at or"
i nterface="0SCR Mdul at or Control ">
<opti onset name="nodul ati on_schene"
function="set _nodul ati on_schene"
type="int">
<option name="QAM' val ue="1">
<optionset name="constell ation_size"
function="set_constellation_size"
type="int">
<option name="QAMA4"
<option name="QAML6" val ue="16"/>
<option name="QAMB4" val ue="64"/>
<option name="QAM256" val ue="256"/>
</ opti onset >
</ opti on>
</ opti onset >
</ conponent >

val ue="4"/>

Fig. 3. XML description of settable properties e tmodulator
of an SCA-based radio. A description of each radi®dPI in
this format resides within the ORI and is passetivéen the
ORI and the ORM.

transmit power, modulation scheme, coding rate, €he
ORI accepts as input control commands in the OSER A
format, translates these into the radio’s nativetrmd API,
and then carries out the requested actions in #ieven
gontrol API.

The control API between the ORI and ORM consi$éts o
only two methodsset Par anet er andget Stati sti c.
Using only these two calls, the ORM can control ayio

ORI provided with OSCR must be custom modified tofeature or fetch any radio operational statistig.(6SNR)

match the control API of each SCA radio that wil bsed
within an OSCR system. Second, it acts as
communication gateway between the radio and the FOS

framework via SCA-compliant CORBA. In order to be
is

compatible with SCA-compliant radios, the ORI
implemented as an SCA resource.

An illustration of the internal architecture of &CA-
compliant radio to be utilized in an OSCR system i
provided in Fig. 2, which represents the architeciof the
radio we designed for the experiments describeBeiction
3. The resource coexists with the other SCA resmjrc
which together comprise the SCA radio. The two fioms

of the ORI are now described in detail.

2.1.1 Interface Translator

Since the SCA does not dictate a common API for the

software control of an SCA-compliant radio, it iscessary
to provide a component in the OSCR framework whic
maps the radio’s control API to the common OSCRirabn
APIl. The ORI, which resides within the SCA domaih o
each OSCR radio, is responsible for receiving raaiotrol
information from the ORM and relaying control megssaito
the appropriate radio resource (see Fig. 2). Irerotd do
this, the ORI must be modified for compatibility thvithe
potentially different control API of each radio ¢miled by
the ORM. For example, two different radios, althiougpth
SCA-compliant,

may have different APIs for varying

through the ORI. Since an OSCR cognitive radiocaigable

th@f integrating multiple radios under a single cdigei
cengine, it is possible to have radios with differen

capabilities controlled by the same cognitive eagin

The cognitive engine must be aware of the capesili
supported by each radio. This is accomplished tittathe
use of a description of the radio’s capabilitiesam XML

Jormat which the ORI on each radio stores. A portd a

radio description that describes the modulator aomept of
a radio is provided in Fig. 3. The information, walhniis
transmitted to the ORM upon request, describes
parameters of the radio which can be set by theitiog
engine, as well as all operational statistics whigim be
fetched. Upon receipt of this description of théioa the
ORM translates it into a hierarchical structureobfects for
use by the cognitive engine in controlling the cadi

As an example of the flexibility given by the usé
XML to describe each SCA radio, consider the portid a

all

Hadio description given in Fig. 3. The XML in thigure

describes parameters which may be varied for thaurator
of a particular radio. Thepti onset tag describes one

parameter which may be varied — in this case, the
modulation scheme, and within the modulation scheime
constellation size. Theoption tags within the

opti onset describe the discrete values which this
parameter supports — here, a modulation schemeAdl Q
and QAM constellations of size 4, 16, 64, and Zbbis
XML carries information for use by both the ORM and
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cognitive engine, as well as the ORI. Notice thhé t
optionset tag requires &uncti on argument — this is
the function in the radio’s native API which is dde set the
given parameter. Theal ue argument associated with each
discreteopt i on is the value which must be passed to the
function within the radio’s native API in order $elect that
particular option. Thenane field carries a description of
each option and is intended to be utilized by thgndive
engine. Thus two different radios may both sup M-

64 modulation and although they have different ARIs
select this option in the modulator, the cogniterggine is
able to select “QAM64” for both without needing wmrry
about the specifics of controlling each radio.

2.1.2 Communication Gateway

In addition to its function as a translator frone tfadio’s
native control API to the OSCR control API, the ORI
responsible for communication of both control altadwith
the ORM. Communication between an ORI and the ORM i
accomplished using CORBA. Since the SCA dictateaide

of CORBA for communication internal to an SCA-corapt
radio, it was a natural choice for extending thdios
communication externally to the ORM. Both control
information and data to be sent by or received ftloenradio
are transmitted between the ORI and the ORM usin
CORBA. A substantial benefit of using CORBA for
communication is that it allows OSCR systems tchiggly
distributed. Each radio in an OSCR system may mirao
different hardware platform and can easily be cotetto

the ORM through a network. Our demonstration of the

OSCR system described in Section 3 utilized onaut-in
based machine to act as a transmitting softwarie,rade to
act as a receiving radio, and one to act as the GRWM
cognitive engine.

2.2 OSCR Radio Multiplexer

<sdr >
<nane>0SCR Control | ed SDR</ nanme>
<descri pti on>SDR #1</ descri pti on>

<cor ba>
<naneSer vi ceLoc>cor bal oc: : | ocal host/ NaneSer vi ce
</ naneSer vi ceLoc>
<donai n>Domai nNarmel</ domai n>
</ cor ba>

<sca>
<donai nManager >Domai nManager </ dormai nManager >
<appl i cati on>0SCR</ appl i cati on>
<devi ce>GPP1</ devi ce>

</ sca>

<oscr>
<i nterface>Radi ol nterfacel</interface>
</ oscr>
</ sdr>

Fig. 4. XML description of an SCA radio to be catied by
the ORM.

The ORM facilitates the cognitive engine’s contodl
multiple software radios by providing a common coht
API. It also provides an interface for the appiizatlevel
transmission of data through the cognitive radibege two
functions are now described in detail.

2.2.1 Cognitive Engine Interface

A cognitive engine designed around the OSCR framewo

Silpeaks directly to the ORM when generating control

messages for radios. Communication between theitoagn
engine and the ORM is accomplished through C++tfanc
calls, and thus the OSCR framework should be link&H
the cognitive engine at compile-time.
The ORM must provide the cognitive engine with
information about the capabilities of each radidemits
control. In order to do this, it connects with &I within
each radio and requests a copy of the radio’'s XML
description (see Fig. 3). This description is tipansed and
turned into a hierarchical structure of objects alihihe
cognitive engine can use to control each radio.

The cognitive engine is permitted to access a

The OSCR Radio Multiplexer serves as the extemMaligtinctsdr object within the ORM for each software radio

interface of the OSCR framework. It allows a single
cognitive engine to control an unlimited numbesoftware
radios. The set of software radios which the ORMticis

is configured through an XML file. Fig. 4 illustest the
configuration of one radio within this file. In ad to
communicate with a remote SCA radio, the ORM masteh
information on the CORBA naming service the raditzes
and the CORBA domain name within which the radio
resides. Additionally, it must know the CORBA naofahe

SCA DomainManager, the SCA application name for the, o option —

radio, and the CORBA name of the device on whiah th
radio operates. Finally, the ORM must be aware haf t
specific CORBA name given to the ORI within the icad
This information allows the ORM to contact the mdier
CORBA and communicate with the ORI.

under the multiplexer’s control. Within this objecontrol
functions are divided into the radio’s two functimnits —
the modulator and the coder. Each of these furationits
contains parameters which may be varied by the itogn
engine. These parameters are represented
ResourceVari abl e objects. Each of these objects
contains a set of discrete values which the pammuoain be
set to, represented as @pti on object. For example, in
Fig. 3. we saw that the “modulation scheme” paramead
“QAM”. When choosing certain optioms &
given parameter, it may be necessary to choosdiautli
options. For example, choosing QAM for a “modulatio
scheme” parameter may require setting the constella
size. In this case, thépt i on for QAM would contain a

by
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Fig. 5. Control object hierarchy of an OSCR sofevaadio.

sub Resour ceVari abl e object which must also be set
by the cognitive engine.

2.2.2 Application-level Data Interface

In addition to its function of providing the extainOSCR
control API to the cognitive engine, the ORM alsoves as
a means of transmitting and receiving applicatevel data
through the OSCR cognitive radio. To do this, thRMD
creates a network socket on a user specified portber.
Any standard socket-based application wishing amsamit
or receive data through the cognitive radio maynthe
connect. The ORM then monitors the currently sekbct
software radio for incoming data and forwards amthe
socket for receipt by interested applicationsldbanonitors
the socket for incoming data from connected apptiog,
which it then sends to the currently selected saféwadio
using the OSCR API.

OSCR is designed such that application-level tates
are limited at any given time to one of the muéipadios
under the control of the ORM. The radio throughchkhilata
flows are routed can be selected by the cognithgine at
any time. This allows the cognitive engine to mélia set of
radios with differing properties and capabilitieadato
always route data through the best radio givergoal and
current conditions.

3. SAMPLE OSCR APPLICATION

To demonstrate the usefulness of the OSCR framewark
developed an application utilizing the OSCR API,ickh

for the transmitter and one for the receiver. Thgnitive
engine is allowed to communicate with both ORM®tigh

a wired communication channel, whereby it switclies
modulation scheme of the transmitter and informe th
receiver of the switch as necessary. Although s$eisip is
not ideal for a real-world application (where imadacontrol
signaling would likely be optimal), it nonetheless
demonstrates the functionality of the OSCR API. sThi
section describes the implementation of the cogmiti
engine, the SCA-compliant software radio, and tasults
obtained in the goal of channel capacity maximaatn the
presence of varying noise.

3.1 Cognitive Engine | mplementation

The cognitive engine was implemented using the SQUR
cognitive architecture based on the OPS5 produstjstem.
Two scenarios were designed to demonstrate thetilgys
of the OSCR API. The first determines a solutiosdzhon
the assumption that the radios are being operatedni
AWGN channel. In this case, the settings that madm
channel capacity can be directly calculated fromsao
statistics at the receiving radio using the Sharsartley
law [3]. The second scenario examines communicatican
non-AWGN channel by formulating maximization of
channel capacity as a unimodal hill-climb [4]. hist case,
the cognitive engine must communicate with the ixéog
radio in order to obtain error statistics. The Ad*tlesigned
in such a way that the cognitive engine need osadrand
write  communication parameters and statistics theg
relevant to determining a solution. Implementing &Pl in
this manner allows the cognitive engine to be vidws a
dynamic component in the radio system that can be
exchanged as necessary with cognitive engines
implementing alternative control algorithms (e.ggenetic
algorithm) [5]. The OSCR API allows both methods o
cognitive control to follow the same protocol fotérfacing
with SDR components.

At initialization of the cognitive engine, eachdia is
polled for the components to which it has accessthis
simulation, each radio is equipped with a modulatod a
coder. Each component is then queried for a listifig
options and sub-options which may be set for tlaatiqular
component. Every parameter that is polled is stamethe
knowledge base of the radio agent. Each modulatatains
a listing of modulation types, QAM and PSK in this
example. Each modulation type contains consteliagiaes
of which that modulator is capable as options. Ecmtier
contains a set of error-correcting convolutionatien The
codes are identified by their rate and free distanc

Once the radio agent's knowledge base is popultdted

demonstrates communication between an SCA SOﬂwar@ognitive engine determines the best settings whikch to

radio and a cognitive engine. In this example, peliad the

achieve its goal of channel capacity maximizatidme

cognitive engine to the problem of channel Capadtycognitive engine polls either the sending or reiogiv

maximization in the presence of noise. We utiline ©RM

multiplexer for the statistic needed in the caltiola
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3.1.1 AWGN Channel Capacity Maximization

In the AWGN channel scenario, signal to noise ritio
returned and used to calculate the theoretical mmaxi
capacity by:

C =Wlog(1+ %)

where W is the bandwidth of the available chanmel 8/N

is the signal to noise ratio. For the given SNRe th
achievable channel capacity C' is then calculatedetery
combination of possible settings. Assuming a bliecigth n,
channel-bit error probability, ;p capable of correcting t
errors at a coding rate r, is approximately eqoial t

i3

j=t+1

C':H
T,

S

(7)pl(a- pc)“"]

3.1.2 Non-AWGN Channel Capacity Maximization

In the case of a non-AWGN channel, direct calcafatdf
the parameters which calculate channel capacitg ionger
possible. To do this, we utilize a hill-climbinggatithm in
our cognitive engine. In this scenario, the solutipace of
the communication settings has been formulated ¢o b
convex in the case of channel capacity maximizati&n
similar execution cycle occurs: initialization, tic
acquisition, parameter output. In this scenarie, réceiving
radio is polled for the bit error rate. The chancegbacity of
the current settings is calculated by:

c=X
T

S

(L-B)

The differences between the two formulations of the
problem completely lie within the cognitive engine
implementation. All API function calls are implented in

where & is the symbol time and k is the number of bits pethe same manner as they were in the last examjite tive

symbol and is equal to lg@gM). The variable p is
approximated as 2/ k, where B is the probability of
symbol error for a given modulation type expresasd

1 3E,

NJQ (M -1)N,

() =2 |25 sn()

PAM(M) = 2(1—

only difference being the desired statistic. Theaadage of
the second problem formulation is an increase ia th
functional intelligence of the system, underscoritige
seamless connectivity between an arbitrary cognitingine
and the SDR components.

3.2 SCA Software Radio | mplementation

Our SW Radio implementation takes in a binary détaam
adds forward error correction and provides sampfeli-
QAM modulated intermediate frequency (IF) outpuh a
complete system this IF would then be up-convettec

where E/N, is the ratio of average symbol energy to noisehigher sample rate, passed through a DAC, amplited

power density spectrum. This value can be expressed
terms of known system quantities:

E, _ log,(M)rswT
N, NC

The setting that achieves the greatest theoretioakcted

fed to an antenna. For our purpose of demonsiydtie
usefulness of the OSCR framework, however, we have
implemented only forward error correction and matioh
and we simulate AWGN channel effects directly oa th
sample stream. Our SW Radio is implemented in @ wa
both to comply with SCA specifications and to buiiffl of
the implementation of this as interpreted by theSES
project. This results in a very modular desigwiich each

throughput without exceeding the maximum channefFomponent of the radio may be developed indepehdent

capacity is selected. The cognitive engine thempustthe
coding and modulation parameters to the radio tjinaihe
OSCR API.

and linked together using SCA Ports, which make afse
CORBA Interfaces.

Each individual radio component which is involvied
the actual data-path contains three significant SEAts.
These ports handle the data-in stream, the datatoesam,
and a control interface. These components are tieen
together by the Radio Interface component to forsingle
Software Radio entity.
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Cognitive Maximization of Channel Capacity
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Fig. 6. lllustration of the cognitive engine’s d&oins to
change modulation types at various SNRs basedao#l of
maximizing channel capacity.

The component which adds forward error correcton
the stream provides several different convolutiooatles
with different rates to allow for adjustment forgher
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Fig. 7. The lower portion illustrates SNR valuesidg a test.
The upper portion shows the cognitive engine’s ehos
constellation size at that SNR.
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OO Tt

allowed us to spend almost all of out time deveigpthe
cognitive engine simply implementing logic, and not
management overhead. This architecture was al&otab
easily adapt to either of our cognitive engine oties
providing a lot of flexibility for these and futu@bjectives.
The figure below shows a trace of the differentacities
provided by different coding and modulation combirs
for different SNR levels.

We were also able to observe the behavior of thR S
based cognitive engine operating over time andtlsakit
provided timely updates as the noise level wasedariThis

capacity or more robust communication as needede Wecan be seen in the results in Fig. 7.

provide a one-sixth rate code with constraint larigh, two
one-half rate codes with constraint lengths of @ @pand a
rate-one null coder. The coding scheme may betaddas
any time during operation by first pausing the dstr@am

4. CONCLUSION

We have designed and implemented OSCR, an openesour

and then updating the coding mode on coder andognitive radio framework. OSCR provides an SCAebas

corresponding decoder components. This is dormaidiir a
CORBA interface specific to each component whicpast
of an SCA port.

software radio with a control AP| and allows usereasily
integrate a cognitive engine, designed using tlievace of
their choice, with one or more SCA-based radiosctvhi

Our demodulation block works by first scaling theinclude the OSCR interface. We successfully dematext

constellation size by a max power value, symboésthen
modulated by | and Q carrier signals so that weasarage
out | and Q values for the symbol and fit themhe hearest
points on the constellation. During this process,collect
the symbol error ratio which is used to calculdte SNR
statistic.

OSSIE provides all of the mechanism for loading an

connecting these components to form a single softwadio
or “OSSIE waveform”. We simply define a list of 8@ort
connections, define the port translation
Interface, and load the waveform. It can then ey the
SDR Multiplexer and any of the available cognito@ntrol
engines or otherwise.

3.3 Experimental Results

We were able to successfully run both of our caogmit

engine approaches through this design. The arthitec

in the iRad

the usefulness of the framework by developing tvi@AS
radios and using them to communicate over a ndisywel
while under the control of a cognitive engine.sltour hope
that this framework will be useful to and expandpdn by
the cognitive radio research community.
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