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ABSTRACT 
 
OSCR, a framework for the implementation of a cognitive 
radio, is designed to facilitate the integration of a cognitive 
engine with one or more existing Software Communications 
Architecture (SCA) based radios. It consists of two 
components: a multiplexer, which acts as the cognitive 
engine’s point of control for each individual radio within the 
system, and an SCA resource within each radio, which 
translates between the radio’s native control API and the 
OSCR API. OSCR is designed to integrate multiple radios, 
which may all have differing capabilities, under a single 
cognitive engine. To demonstrate the usefulness of OSCR, 
used it to construct a cognitive radio composed of a basic 
SCA-compliant software radio and a cognitive engine 
designed to maximize channel capacity by monitoring 
channel statistics and varying radio parameters. 
Implementation details and results of experiments with this 
system are provided.     
 

1. INTRODUCTION 
 
The research community’s interest in cognitive radio has 
spawned numerous proprietary and incompatible 
environments for the evaluation of algorithms and protocols. 
There is a need for a universal architecture allowing the 
reuse of cognitive radio algorithms across a wide variety of 
radio platforms. In this work, we present such an 
architecture, which we call OSCR – The Open Source 
Cognitive Radio. OSCR is designed to facilitate the 
integration of a cognitive control engine with one or more 
SCA-compliant software radios. Since the SCA does not 
dictate a standard API for the control of software radios, a 
cognitive engine must currently be modified for 
compatibility with each different radio that is to be 
supported. OSCR integrates an SCA resource within each 
radio which presents a standardized control API – the OSCR 
API – to the outside world. Thus, the OSCR framework 
allows any cognitive control engine using the OSCR API 
and any SCA radio which has been loaded with the OSCR 
Radio Interface to be combined into a cognitive radio. This 
framework will allow researchers to easily exchange 
cognitive control engines for evaluation and testing on 
different software radio platforms.  

  

 To demonstrate the usefulness of OSCR, we have 
created a simple SCA-compliant software radio using the 
OSSIE [1] SCA implementation. This radio was then 
combined with a cognitive control engine, designed using 
SOAR [2], whose goal was to maximize the capacity of a 
noisy channel given a constantly changing noise 
environment. The cognitive engine was able to modify the 
modulation type, signal constellation size, and coding 
parameters of the transmitting radio in order to achieve this 
goal. 
 The remainder of this paper is organized as follows. 
Section 2 describes each component of the OSCR 
framework and how it is utilized within an OSCR-based 
cognitive radio. Section 3 describes the utilization of OSCR 
for the channel capacity maximizing cognitive radio. The 
paper is concluded in Section 4.  
 

2. THE OSCR FRAMEWORK 
 
OSCR allows a user to design a cognitive engine once, using 
the software of their choice and the OSCR radio control API 
(implemented as a C++ library), and then have it control any 
SCA-compliant radio which has been OSCR enabled. The 
framework consists of two software components – the OSCR 
Radio Interface (ORI) and the OSCR Radio Multiplexer 
(ORM). The architecture of an OSCR-based cognitive radio 

Fig. 1. An OSCR system consisting of multiple SCA radios. 
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system is illustrated in Fig. 1. In this section, we describe the 
two components of the framework in detail. 
 
2.1 OSCR Radio Interface 
 
The OSCR Radio Interface is the interface between a 
generic SCA-compliant radio and the OSCR framework. It 
serves two functions. First, it acts as a translator between the 
OSCR API and the radio’s native control API. The skeleton 
ORI provided with OSCR must be custom modified to 
match the control API of each SCA radio that will be used 
within an OSCR system. Second, it acts as the 
communication gateway between the radio and the OSCR 
framework via SCA-compliant CORBA. In order to be 
compatible with SCA-compliant radios, the ORI is 
implemented as an SCA resource.  
 An illustration of the internal architecture of an SCA-
compliant radio to be utilized in an OSCR system is 
provided in Fig. 2, which represents the architecture of the 
radio we designed for the experiments described in Section 
3. The resource coexists with the other SCA resources, 
which together comprise the SCA radio. The two functions 
of the ORI are now described in detail.  
   
2.1.1 Interface Translator 
 
Since the SCA does not dictate a common API for the 
software control of an SCA-compliant radio, it is necessary 
to provide a component in the OSCR framework which 
maps the radio’s control API to the common OSCR control 
API. The ORI, which resides within the SCA domain of 
each OSCR radio, is responsible for receiving radio control 
information from the ORM and relaying control messages to 
the appropriate radio resource (see Fig. 2). In order to do 
this, the ORI must be modified for compatibility with the 
potentially different control API of each radio controlled by 
the ORM. For example, two different radios, although both 
SCA-compliant, may have different APIs for varying 

transmit power, modulation scheme, coding rate, etc. The 
ORI accepts as input control commands in the OSCR API 
format, translates these into the radio’s native control API, 
and then carries out the requested actions in the native 
control API.  
 The control API between the ORI and ORM consists of 
only two methods: setParameter and getStatistic. 
Using only these two calls, the ORM can control any radio 
feature or fetch any radio operational statistic (e.g. SNR) 
through the ORI. Since an OSCR cognitive radio is capable 
of integrating multiple radios under a single cognitive 
engine, it is possible to have radios with different 
capabilities controlled by the same cognitive engine.  
 The cognitive engine must be aware of the capabilities 
supported by each radio. This is accomplished through the 
use of a description of the radio’s capabilities in an XML 
format which the ORI on each radio stores. A portion of a 
radio description that describes the modulator component of 
a radio is provided in Fig. 3. The information, which is 
transmitted to the ORM upon request, describes all 
parameters of the radio which can be set by the cognitive 
engine, as well as all operational statistics which can be 
fetched. Upon receipt of this description of the radio, the 
ORM translates it into a hierarchical structure of objects for 
use by the cognitive engine in controlling the radio. 
 As an example of the flexibility given by the use of 
XML to describe each SCA radio, consider the portion of a 
radio description given in Fig. 3. The XML in this figure 
describes parameters which may be varied for the modulator 
of a particular radio. The optionset tag describes one 
parameter which may be varied – in this case, the 
modulation scheme, and within the modulation scheme, the 
constellation size. The option tags within the 
optionset describe the discrete values which this 
parameter supports – here, a modulation scheme of QAM 
and QAM constellations of size 4, 16, 64, and 256. This 
XML carries information for use by both the ORM and 

Fig. 2. Internal architecture of an OSCR compatible SCA-
compliant software radio. 

<component name="Modulator"     
           interface="OSCR.ModulatorControl"> 
  <optionset name="modulation_scheme"  
             function="set_modulation_scheme"  
             type="int"> 
    <option name="QAM" value="1"> 
      <optionset name="constellation_size"  
                 function="set_constellation_size"  
                 type="int"> 
        <option name="QAM4"   value="4"/> 
        <option name="QAM16"  value="16"/> 
        <option name="QAM64"  value="64"/> 
        <option name="QAM256" value="256"/> 
      </optionset> 
    </option> 
  </optionset> 
</component>   

Fig. 3. XML description of settable properties in the modulator 
of an SCA-based radio. A description of each radio’s API in 
this format resides within the ORI and is passed between the 
ORI and the ORM.  
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cognitive engine, as well as the ORI. Notice that the 
optionset tag requires a function argument – this is 
the function in the radio’s native API which is used to set the 
given parameter. The value argument associated with each 
discrete option is the value which must be passed to the 
function within the radio’s native API in order to select that 
particular option. The name field carries a description of 
each option and is intended to be utilized by the cognitive 
engine. Thus two different radios may both support QAM-
64 modulation and although they have different APIs to 
select this option in the modulator, the cognitive engine is 
able to select “QAM64” for both without needing to worry 
about the specifics of controlling each radio.  
  
2.1.2 Communication Gateway 
 
In addition to its function as a translator from the radio’s 
native control API to the OSCR control API, the ORI is 
responsible for communication of both control and data with 
the ORM. Communication between an ORI and the ORM is 
accomplished using CORBA. Since the SCA dictates the use 
of CORBA for communication internal to an SCA-compliant 
radio, it was a natural choice for extending the radio’s 
communication externally to the ORM. Both control 
information and data to be sent by or received from the radio 
are transmitted between the ORI and the ORM using 
CORBA. A substantial benefit of using CORBA for 
communication is that it allows OSCR systems to be highly 
distributed. Each radio in an OSCR system may run on a 
different hardware platform and can easily be connected to 
the ORM through a network. Our demonstration of the 
OSCR system described in Section 3 utilized one Linux-
based machine to act as a transmitting software radio, one to 
act as a receiving radio, and one to act as the ORM and 
cognitive engine.  
  
2.2 OSCR Radio Multiplexer 
 
The OSCR Radio Multiplexer serves as the external 
interface of the OSCR framework. It allows a single 
cognitive engine to control an unlimited number of software 
radios. The set of software radios which the ORM controls 
is configured through an XML file. Fig. 4 illustrates the 
configuration of one radio within this file. In order to 
communicate with a remote SCA radio, the ORM must have 
information on the CORBA naming service the radio utilizes 
and the CORBA domain name within which the radio 
resides. Additionally, it must know the CORBA name of the 
SCA DomainManager, the SCA application name for the 
radio, and the CORBA name of the device on which the 
radio operates. Finally, the ORM must be aware of the 
specific CORBA name given to the ORI within the radio. 
This information allows the ORM to contact the radio over 
CORBA and communicate with the ORI.   

 The ORM facilitates the cognitive engine’s control of 
multiple software radios by providing a common control 
API. It also provides an interface for the application-level 
transmission of data through the cognitive radio. These two 
functions are now described in detail. 
 
2.2.1 Cognitive Engine Interface 
 
A cognitive engine designed around the OSCR framework 
speaks directly to the ORM when generating control 
messages for radios. Communication between the cognitive 
engine and the ORM is accomplished through C++ function 
calls, and thus the OSCR framework should be linked with 
the cognitive engine at compile-time.  
 The ORM must provide the cognitive engine with 
information about the capabilities of each radio under its 
control. In order to do this, it connects with the ORI within 
each radio and requests a copy of the radio’s XML 
description (see Fig. 3). This description is then parsed and 
turned into a hierarchical structure of objects which the 
cognitive engine can use to control each radio.  
 The cognitive engine is permitted to access a 
distinct sdr object within the ORM for each software radio 
under the multiplexer’s control. Within this object, control 
functions are divided into the radio’s two functional units – 
the modulator and the coder. Each of these functional units 
contains parameters which may be varied by the cognitive 
engine. These parameters are represented by 
ResourceVariable objects. Each of these objects 
contains a set of discrete values which the parameter can be 
set to, represented as an Option object. For example, in 
Fig. 3. we saw that the “modulation scheme” parameter had 
one option – “QAM”. When choosing certain options for a 
given parameter, it may be necessary to choose additional 
options. For example, choosing QAM for a “modulation 
scheme” parameter may require setting the constellation 
size. In this case, the Option for QAM would contain a 

<sdr> 
  <name>OSCR Controlled SDR</name> 
  <description>SDR #1</description> 
 
  <corba> 
    <nameServiceLoc>corbaloc::localhost/NameService 
                                 </nameServiceLoc> 
    <domain>DomainName1</domain> 
  </corba> 
 
  <sca> 
    <domainManager>DomainManager</domainManager> 
    <application>OSCR</application> 
    <device>GPP1</device> 
  </sca> 
 
  <oscr> 
    <interface>RadioInterface1</interface> 
  </oscr> 
</sdr> 

Fig. 4. XML description of an SCA radio to be controlled by 
the ORM. 
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sub ResourceVariable object which must also be set 
by the cognitive engine. 
 
2.2.2 Application-level Data Interface 
 
In addition to its function of providing the external OSCR 
control API to the cognitive engine, the ORM also serves as 
a means of transmitting and receiving application-level data 
through the OSCR cognitive radio. To do this, the ORM 
creates a network socket on a user specified port number. 
Any standard socket-based application wishing to transmit 
or receive data through the cognitive radio may then 
connect. The ORM then monitors the currently selected 
software radio for incoming data and forwards any to the 
socket for receipt by interested applications. It also monitors 
the socket for incoming data from connected applications, 
which it then sends to the currently selected software radio 
using the OSCR API.  
 OSCR is designed such that application-level data flows 
are limited at any given time to one of the multiple radios 
under the control of the ORM. The radio through which data 
flows are routed can be selected by the cognitive engine at 
any time. This allows the cognitive engine to utilize a set of 
radios with differing properties and capabilities and to 
always route data through the best radio given its goal and 
current conditions.  
 

3. SAMPLE OSCR APPLICATION 
 

To demonstrate the usefulness of the OSCR framework, we 
developed an application utilizing the OSCR API, which 
demonstrates communication between an SCA software 
radio and a cognitive engine. In this example, we applied the 
cognitive engine to the problem of channel capacity 
maximization in the presence of noise. We utilize one ORM 

for the transmitter and one for the receiver. The cognitive 
engine is allowed to communicate with both ORMs through 
a wired communication channel, whereby it switches the 
modulation scheme of the transmitter and informs the 
receiver of the switch as necessary. Although this setup is 
not ideal for a real-world application (where in-band control 
signaling would likely be optimal), it nonetheless 
demonstrates the functionality of the OSCR API. This 
section describes the implementation of the cognitive 
engine, the SCA-compliant software radio, and the results 
obtained in the goal of channel capacity maximization in the 
presence of varying noise.   
 
3.1 Cognitive Engine Implementation 
 
The cognitive engine was implemented using the SOAR [1] 
cognitive architecture based on the OPS5 production system. 
Two scenarios were designed to demonstrate the versatility 
of the OSCR API. The first determines a solution based on 
the assumption that the radios are being operated in an 
AWGN channel. In this case, the settings that maximize 
channel capacity can be directly calculated from noise 
statistics at the receiving radio using the Shannon-Hartley 
law [3]. The second scenario examines communication in a 
non-AWGN channel by formulating maximization of 
channel capacity as a unimodal hill-climb [4]. In this case, 
the cognitive engine must communicate with the receiving 
radio in order to obtain error statistics.  The API is designed 
in such a way that the cognitive engine need only read and 
write communication parameters and statistics that are 
relevant to determining a solution. Implementing the API in 
this manner allows the cognitive engine to be viewed as a 
dynamic component in the radio system that can be 
exchanged as necessary with cognitive engines 
implementing alternative control algorithms (e.g. a genetic 
algorithm) [5].  The OSCR API allows both methods of 
cognitive control to follow the same protocol for interfacing 
with SDR components. 
 At initialization of the cognitive engine, each radio is 
polled for the components to which it has access. In this 
simulation, each radio is equipped with a modulator and a 
coder. Each component is then queried for a listing of 
options and sub-options which may be set for that particular 
component. Every parameter that is polled is stored in the 
knowledge base of the radio agent. Each modulator contains 
a listing of modulation types, QAM and PSK in this 
example. Each modulation type contains constellation sizes 
of which that modulator is capable as options. Each coder 
contains a set of error-correcting convolutional codes. The 
codes are identified by their rate and free distance.  
 Once the radio agent's knowledge base is populated, the 
cognitive engine determines the best settings with which to 
achieve its goal of channel capacity maximization. The 
cognitive engine polls either the sending or receiving 
multiplexer for the statistic needed in the calculation.  

Fig. 5. Control object hierarchy of an OSCR software radio. 
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3.1.1 AWGN Channel Capacity Maximization 
 
 In the AWGN channel scenario, signal to noise ratio is 
returned and used to calculate the theoretical maximum 
capacity by: 
 

( )C W S
N= +log 1  

 
where W is the bandwidth of the available channel and S/N 
is the signal to noise ratio. For the given SNR, the 
achievable channel capacity C' is then calculated for every 
combination of possible settings. Assuming a block length n, 
channel-bit error probability, pc, capable of correcting t 
errors at a coding rate r, is approximately equal to: 
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where TS is the symbol time and k is the number of bits per 
symbol and is equal to log2(M). The variable pc is 
approximated as PE / k, where PE is the probability of 
symbol error for a given modulation type expressed as: 
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where ES/N0 is the ratio of average symbol energy to noise 
power density spectrum. This value can be expressed in 
terms of known system quantities: 
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The setting that achieves the greatest theoretical corrected 
throughput without exceeding the maximum channel 
capacity is selected. The cognitive engine then outputs the 
coding and modulation parameters to the radio through the 
OSCR API.  
 
 
 
 
 
 
 

3.1.2 Non-AWGN Channel Capacity Maximization 
 
In the case of a non-AWGN channel, direct calculation of 
the parameters which calculate channel capacity is no longer 
possible. To do this, we utilize a hill-climbing algorithm in 
our cognitive engine. In this scenario, the solution space of 
the communication settings has been formulated to be 
convex in the case of channel capacity maximization. A 
similar execution cycle occurs: initialization, statistic 
acquisition, parameter output. In this scenario, the receiving 
radio is polled for the bit error rate. The channel capacity of 
the current settings is calculated by: 
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The differences between the two formulations of the 
problem completely lie within the cognitive engine 
implementation. All API function calls are implemented in 
the same manner as they were in the last example, with the 
only difference being the desired statistic. The advantage of 
the second problem formulation is an increase in the 
functional intelligence of the system, underscoring the 
seamless connectivity between an arbitrary cognitive engine 
and the SDR components.  
 
3.2 SCA Software Radio Implementation 
 
Our SW Radio implementation takes in a binary data stream 
adds forward error correction and provides samples of M-
QAM modulated intermediate frequency (IF) output.  In a 
complete system this IF would then be up-converted to a 
higher sample rate, passed through a DAC, amplified, and 
fed to an antenna.  For our purpose of demonstrating the 
usefulness of the OSCR framework, however, we have 
implemented only forward error correction and modulation 
and we simulate AWGN channel effects directly on the IF 
sample stream.  Our SW Radio is implemented in a way 
both to comply with SCA specifications and to build off of 
the implementation of this as interpreted by the OSSIE 
project.   This results in a very modular design in which each 
component of the radio may be developed independently 
and linked together using SCA Ports, which make use of 
CORBA Interfaces.   
 Each individual radio component which is involved in 
the actual data-path contains three significant SCA Ports.  
These ports handle the data-in stream, the data-out stream, 
and a control interface.  These components are then tied 
together by the Radio Interface component to form a single 
Software Radio entity.   

Proceeding of the SDR 06 Technical Conference and Product Exposition. Copyright © 2006 SDR Forum. All Rights Reserved



 The component which adds forward error correction to 
the stream provides several different convolutional codes 
with different rates to allow for adjustment for higher 
capacity or more robust communication as needed.  We 
provide a one-sixth rate code with constraint length 15, two 
one-half rate codes with constraint lengths of 7 and 9, and a 
rate-one null coder.  The coding scheme may be updated at 
any time during operation by first pausing the data stream 
and then updating the coding mode on coder and 
corresponding decoder components.  This is done through a 
CORBA interface specific to each component which is part 
of an SCA port.   
 Our demodulation block works by first scaling the 
constellation size by a max power value, symbols are then 
modulated by I and Q carrier signals so that we can average 
out I and Q values for the symbol and fit them to the nearest 
points on the constellation.  During this process, we collect 
the symbol error ratio which is used to calculate the SNR 
statistic.    
 OSSIE provides all of the mechanism for loading and 
connecting these components to form a single software radio 
or “OSSIE waveform”.  We simply define a list of SCA port 
connections, define the port translation in the Radio 
Interface, and load the waveform.  It can then be used by the 
SDR Multiplexer and any of the available cognitive control 
engines or otherwise. 
 
3.3 Experimental Results 
 
We were able to successfully run both of our cognitive 
engine approaches through this design. The architecture 

allowed us to spend almost all of out time developing the 
cognitive engine simply implementing logic, and not 
management overhead.  This architecture was also able to 
easily adapt to either of our cognitive engine objectives 
providing a lot of flexibility for these and future objectives.  
The figure below shows a trace of the different capacities 
provided by different coding and modulation combinations 
for different SNR levels. 
 We were also able to observe the behavior of the SNR 
based cognitive engine operating over time and see that it 
provided timely updates as the noise level was varied.  This 
can be seen in the results in Fig. 7. 
 

4. CONCLUSION 
 

We have designed and implemented OSCR, an open source 
cognitive radio framework. OSCR provides an SCA-based 
software radio with a control API and allows users to easily 
integrate a cognitive engine, designed using the software of 
their choice, with one or more SCA-based radios which 
include the OSCR interface. We successfully demonstrated 
the usefulness of the framework by developing two SCA 
radios and using them to communicate over a noisy channel 
while under the control of a cognitive engine. It is our hope 
that this framework will be useful to and expanded upon by 
the cognitive radio research community.  
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Fig. 6. Illustration of the cognitive engine’s decisions to 
change modulation types at various SNRs based on its goal of 
maximizing channel capacity.  

Fig. 7. The lower portion illustrates SNR values during a test. 
The upper portion shows the cognitive engine’s chosen 
constellation size at that SNR.   
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