

P-HAL: A MIDDELWARE FOR SDR APPLICATIONS

Antoni Gelonch, Xavier Revés, Vuk Marojevik, Ramon Ferrús (Dept. of Signal Theory

and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain;
{antoni,xavier.reves,marojevic,ferrus}@tsc.upc.edu);

ABSTRACT

Software Defined Radio (SDR) is an emerging technology
with the objective of implementing the processing tasks
required in a radio transceiver in software rather than in
dedicated hardware. As a result, programmable devices such
as Instruction Set Processors (ISPs) and reconfigurable
logic devices, e.g. Field Programmable Gate Arrays
(FPGAs), may be mixed for building a Reconfigurable
Heterogeneous Hardware Platform. The peculiarities of
communication systems and the fact that they must be
implemented under SDR environments, where the main
objective is to deal with the reconfiguration process,
introduce a specific problematic in the development and
management of such applications. In that context the
presented work addresses the development of a suitable
Middleware, defined as P-HAL (Platform & Hardware
Abstraction Layer) that tries to advance in the process of
defining a common framework to develop and deploy
software radio applications by eliminating platform
(hardware and support software) dependencies.

1. INTRODUCTION

Even though the evolution followed by the Software Radio
[1] concept from its beginning it can not be considered a
mature technology. There is still some interesting research
areas to be explored and, what is more important, it is still
opening new facets and views on its possible evolution
mixing technologies from different areas. In addition, the
increase in flexibility requirements is claimed for all the
agents involved in its development due to the fact that the
concept, initially focused on physical radio layer, has been
span from the radio terminals (base stations or mobile
equipment) to network management, including resource
management for optimum service provisioning.
 As its initial basis is the implementation in software of
the processing tasks required in a radio receiver, its
development relays in concepts related with the computer
technology. We should consider, therefore, the need to
reasonably split the radio transceiver in different tasks or
processes and identify the most suitable processor where to
execute them. Among the currently available we can

identify General-Purpose Processors (GPP), Digital Signal
Processors (DSP), FPGA, processor’s arrays, among others.
In addition, no one processor is capable, working
standalone, of providing the required computational power
of a SDR terminal and even more it becomes unfeasible for
a Base Station. Therefore, this introduces the heterogeneous
computing platforms into the SDR arena where an array of
different processor should be capable to provide the
required computational demand. Moreover, this scenario
becomes reinforced by the high quantity of different
processors and the fact that each hardware manufacture will
select the most appropriate set of them according to its
hardware topology, its development tools and, of course, its
business model.
 We should not forget that the radio applications impose
some important constraints to the execution process where
the available hardware must deal with harder real-time
tasks. These constraints create important difficulties to the
separation from underlying hardware (interrupts, memory
addresses, processors instructions, etc), creating a strong
dependency of the software from hardware. In addition such
dependency limits the capacity of the radio equipment to
accommodate different configurations as requested by the
access networks.
 Under such scenario it is interesting to consider one of
the most important benefits of the SDR concepts, which is
the capacity to assure the software portability and
reusability as the basis of the reconfiguration concept.
Therefore, some of the strongest effort must be done in the
development of a common framework (HAL, middleware,
execution environment, development tools) [2] capable of
hiding the hardware characteristics to the radio application
and removing the dependencies between software and
hardware. Moreover, it is necessary that such framework
can provide the necessary management functionalities to
assure the demanded flexibility and assume the constraints
that the radio applications execution imposes. In addition, it
is mandatory to assure that this common framework do not
introduces extra unacceptable computational overhead to
the processing platform. Although the computational
capacity of a processor is increasing every year, the
computational requirements grow more quickly pushed by

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

the new communication standards requirements and the
forecasted applications.
 The next sections make an overview of the context
where this work is centered, going later to describe some
relevant aspects of a suitable middleware for SDR
applications focusing on the concepts developed under the
P-HAL (Platform and Hardware Abstraction Layer)
framework .

2. COMPUTATIONAL PLATFORM

As mentioned above, the processing requirements of a SDR
application require the utilization of multiple processors.
Every processor class results more efficient for a given
subset of the tasks required for the communications
algorithm. Then, the assumption of having an
heterogeneous set of hardware processing platforms and
above it a software layer separating both, the application
and the platforms, is reasonable.
 This array of heterogeneous processors can be seen as a
set of processors distributed in a network with
communication interfaces established among them, what
clearly establishes a heterogeneous computing working
framework. Inside such heterogeneous computing context
there are several ideas that can be explored. The first
focuses in the data exchange process among different
processors and evaluates the possibility to develop a packets
based network. It makes sense if optimum utilization of the
communication resources among processors is an objective.
Also, attending to the reconfiguration process, the routing is
an advantage if the process of mapping of the application on
hardware results in indirect transfers among processors.
Under such approach some kind of IP-like network
(identification of every one of the processors belonging to
the network) is mandatory.

 The second idea focuses in the suitable topologies for
accommodating the radio application under the SDR
concept. Notice that some topologies, which consider
distributed computing and communication resources, could
better address the reconfiguration process and provide
higher flexibility to achieve improvements in, for example,
power consumption, reconfiguration speed, dynamic
management, etc. In addition, the mapping process can
experience additional difficulties due to the hardware
topology in especial in the base station case where a higher
set of running processes (several users) is assumed and a
more dynamic reconfiguration framework must be
considered.
 Finally, a third idea is oriented towards the side of the
analog world. It is obvious that any radio application
requires analog interfaces. Then, aside the digital processors
it is necessary to consider the presence of the analog
processors side as part of the computing platform. In case

that the available hardware platforms do not include analog
components that can be treated as processors, some
mechanisms to provide access and management of the
analog part are mandatory. If only radio applications are
focused, such action can be highly simplified, as it will be
seen later on.

3. SOFTWARE RADIO APPLICATIONS

The peculiarities of communication systems and the fact
that they must be implemented in SDR environments, where
the reconfiguration process is fairly problematic, can be
summarized as:
• Most RATs access the transmission medium by means

of a time-slot based division.
• Periodic execution of the same set of functions while

receiving continuous or burst data streams.
• Real-time processing requirements on limited resources,

where speedup is not the prime objective.
• Partial and total dynamic reconfiguration of the different

layers in the protocol stack.
• An increasing heterogeneity of processing platforms.
• Highly variable computing loads and different real-time

restrictions as a function of the radio standard.
• A higher efficiency in spectrum occupation generally

requires more computing power.
• Higher bandwidth demands due to new user services.

 Maybe the most important feature around radio
applications is the strong temporal relationship of the
algorithms involved in a communication system. Indeed,
most parameters are defined in terms of frequencies or
periods while the information flows at a given number of
symbols per second. In the previous list, the first bullet
point states that the computing resource management
explores some time granularity. Computing resources
periodically execute the same processing chain, where the
execution within a period or processing time slot must finish
on time. That is, instead of speeding-up the execution, the
objective is to properly deal with real-time issues. Note that
the last implies two different timing approaches that not
always coincide in the same execution sequence or criterion.
Appropriate timing mechanism should be provided by the
SDR middleware in order to fit the real-time objectives.
 By other hand, a radio application is often represented
as a set of black boxes that process data in a streamline. Any
one of these boxes can perform its tasks independently of
the other boxes except for the need of interfaces to
exchange information from the ones to the others. Simply
stating, a radio application can be decomposed in a set of
independent execution threads that use standard interfaces
to allow their interconnection. Through universal interfaces,
it becomes possible to plug and unplug application
components as well as reorganize the application, that is,

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

alter the data stream path and processing steps. Because that
the provision of suitable interface mechanism must be one
of the relevant services provided by the SDR middleware.
 To summarize, a radio application is defined as a set of
independent objects [3] that exchange data through well-
defined interfaces and process them following a given
temporal framework. Note that the independence of objects
empowers the possibility to develop them by separate, thus
facilitating the distributed or team-based application
development.

4. MIDDLEWARE SERVICES AND FUNCTIONS

From the previous section it can be concluded that the
temporal management of the applications together with the
possibility of moving data are the cornerstones of any
platform willing to provide a means to execute a SDR
application. In general this is not new but the scope of the
implications of the previous sentence has to be focused to
issue a useful implementation (see next section).

However, some additional services to the application
are foreseen. In particular, monitoring the application or
allowing it to show internal status values is crucial. Through
such parameters decisions in upper control layers can be
performed. Then, a method to publish such internal
parameters has to be added. In the reverse sense, any control
entity may wish to modify any of the parameters that a
given object can change dynamically, at run-time. For this
reason the publishing method must include both, read-only
and read-write parameters. Finally, it is possible that the
application requires to setup some basic parameters at the
beginning of its execution. In this case it should be able to
request and obtain them.
 Five fundamental services have been reported: time
control, data exchange, parameter monitoring, external
parameter modification and parameter request, which can be
enclosed in three different service types: time, data and
parameters. About functions, they include all the tasks that
do not directly interact with the application objects but that
are necessary for the correct application execution. The first
function is obvious and must be the capacity to launch the
different execution threads (what was called objects) on the
several heterogeneous processing platforms. After this it is
necessary to have the capacity to pause and stop such
threads. A second function is related to the timing control
and consists would consist in a mechanism to ensure that all
the temporal references of all the platforms and processors
an them are synchronized. This may seem obvious but when
multiple platforms are joined together it is likely that every
one has its own timer and clock source, which are not
necessarily running synchronized.

 The common denominator as well in services as
functions is the simplicity one just to save as much

computational resources as possible for the algorithms in a
radio application.

5. P-HAL MIDDLEWARE

The developed Middleware, defined as P-HAL (Platform &
Hardware Abstraction Layer) tries to advance in the process
of defining a common framework to develop and deploy
software radio applications by eliminating platform
(hardware and support software) dependencies. The
functionalities identified and developed under a Hardware
Platform mixing DSPs and FPGAs [4], includes real-time
seamless exchange of information from one P-HAL
compliant platform to another (BRIDGE), isochronisms of
data and processes running on different platforms (SYNC),
coordinated process control and scheduling on any platform
(KERNEL), real-time system monitoring and data and
statistics retrieval (STATS), real-time adaptation of
processes set-up parameters (STATS), event logging and
error control (KERNEL) and computing and platform
resources management [5].

Figure 1. Different levels of abstraction

As stated in Figure 1, in some cases the abstraction is
deeper than in other cases but shows that it is possible to
implement the features of P-HAL in devices/platforms as
different as Linux-based hosts on embedded processors,
DSPs and FPGAs. Clearly, the abstraction complexity is, to
some extent, the measure of the cost of the middleware
(overhead) that can be defined as the use of resources
required to translate the virtual services offered to the
application to the optimized hardware-dependent functions.
This overhead is always a dependent on the platform.
However, for some particular study cases it has been
observed that overhead can be well below 1% of available
resources. In particular, the functionalities related with the
coordination and synchronization requires and important
part of the development efforts. Some of them are described
in next subsections.

Platform 2.
e.g. with API for
communications

HW HW HW

Abstraction Abstraction
Abstraction

Different Abstraction Depths

Application
P-HAL Layer Stack

P-HAL Abstraction Level

Platform 3.
e.g. with OS

Platform 1.
e.g. pure hardware

Platform 2.
e.g. with API for
communications

HW HW HW

Abstraction Abstraction
Abstraction

Different Abstraction Depths

Application
P-HAL Layer Stack

P-HAL Abstraction Level

Platform 3.
e.g. with OS

Platform 1.
e.g. pure hardware

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

5.1. Attaining temporal control

As stated, the execution of the radio application in real-time
is necessary. Starting from the idea that objects building the
application are implemented independently and not
necessarily focused to a given application, it is clear that
timing control has to be completely external to the
application objects. Moreover, as mentioned above, the
hardware layer is considered to be build up on the basis of
multiple platforms from different manufacturers that can
interact through standardized communications interfaces.
Then, there are no hardware mechanisms to synchronize
them in a precise way (e.g. common clock).
 With the previous two features in mind and taking into
account the other features of radio applications, the timing
control in P-HAL has been designed to be obtained through
a slotted division of the time. This division has both
advantages and also some penalties, but the former
compensate the latter. The first advantage is that allows a
simple and clean control of the execution time of the
application objects, having the possibility to periodically
control that every task is finished within a given deadline.
The second advantage is related with the first one in the
sense that every object has a limited work to do in a given
time slot, which is proportional to the amount of data to be
processed. This amount is also proportional to the time slot
length. Then, if into every time slot any object processes the
data generated by the other objects in the previous time
slots, a data pipeline is achieved and there is no need to
schedule the execution of the objects, thus simplifying the
operating system scheduling algorithms. Additionally, since
the time slot length can be relatively long compared to the
operation frequencies of hardware, the data pipeline among
different platforms reduces the complexity of the
management of the transfers when trying to guarantee real-
time.
 The previous features are illustrated in the Figure 2.
Three objects exchange data, which flows from A to B and
then from B to C. After A has generated new data the
middleware sends them to B, taking into account the slot
end deadline. In the next slot, object B takes the newly
available data, process them and, finally, sends them to C.
In the third time slot, object C will start processing data.
After the initial slots, every new one there is data to process,
achieving a continuous data flow. The penalty of this
approach is that some latency is introduced from the data
input to output, which can be computed straightforward
taking into account the slot length and the number of stages
in the application. It is simple to see that to avoid large
latencies short time slots are required and then, as faster is
the hardware shorter can be the time slot. Another issue to
take into account is the effect of this pipeline in the presence
of data loops in the applications. Consider the case where

the output of C would enter again into A as an additional
feedback input. It can be seen that the data pipeline becomes
a delay on the signal samples. Two possible solutions to this
problem are envisaged. First, grouping objects involving
loops in a single object. Second, including with the
application an indication of the maximum slot length
supported.

Figure 2. Slotted time and data pipeline

 The figure also shows the effect of running the three
objects on a single processor, which executes them
sequentially. On the contrary, they would run
simultaneously on different processors or in case of being
separate objects on the same FPGA area. Note that the
amount of time that any object takes to complete its
processing is governed by the amount of data in a time slot
at its input. This imposes some structure to the
programming of objects since the amount of operations they
are performing has to be always related to the amount of
data available in the current time slot and having as limit the
maximum number of operations that can be done in the
decided length for the time-slot in that system. Then, the
structure of program must be data-oriented and not time-
oriented. With this approach the real-time is guaranteed if
the sum of all the objects required processing power and
bandwidth is not higher than the available ones.

5.2. Synchronization of multiple platforms

Since the execution time framework is based on a large time
interval, the slot, it is only necessary to achieve a
synchronization precision that is small compared to the time
slot length. On any given platform with its own
implementation of the P-HAL services, the way as the time
is controlled is not relevant if enough resolution is provided
there.. When two platforms like this are joined both internal
timers have to periodically synchronize to compensate the
tolerance of the oscillator frequency. For instance, if a time
slot of 1ms is considered and a difference in slot references
of up to 0.5% is accepted, a synchronization procedure has

A B CIn Out

A
Slot #1 Slot #2 Slot #3 Slot #4

time

B
time

C
time

A

X

A

X

A

X

A

B

C

X

B

X X

C

X

B

X X

A B CIn Out

A
Slot #1 Slot #2 Slot #3 Slot #4

time

B
time

C
time

A

X

A

X

A

X

A

B

C

X

B

X X

C

X

B

X X

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

to be carried out every 50ms or less if the relative stability is
of 100ppm. Taking into account the procedure described
following, this value may give an idea of the order of
magnitude of the speed of the hardware.

The synchronization procedure between two platforms
uses the available communications interfaces. Within the
overall platform controlled by P-HAL there is a hierarchical
structure of timers. Every P-HAL incorporates a time server
(MASTER) and a time client (SLAVE). After the top level
P-HAL control mechanisms have assigned one role to every
entity of every platform, the time from the primary
reference is propagated to other platforms. All those that
have direct connection with the primary reference request
the time to it and receive an answer with the current time.
Similarly, those platforms not having direct connection may
request the time to any other platform already connected
with the reference, as it is shown in the .

Figure 3. Synchronization hierarchy and propagation

 The possible propagation of the time across multiple
master servers is not recommendable since it introduces
additional uncertainty to the references that the distributed
application can see (every part of the application receives
the reference from the local hardware through the P-HAL
functions). However, since the P-HAL maintenance
procedures will use some slot time and the data transfers
always happen after some processing, it is unlikely that a
platform receives data tagged with a future time slot.
Anyway, if this where the case the data wait to be processed
in the corresponding slot, according to the pipeline. By the
other hand, if data arrive from the previous slot, it is
considered as delayed data. This can finally result in a real-
time fault if the object that had to process the data has
already completed its work in the current time slot. But, as
mentioned above, this is highly unlikely given the
synchronization precision that can be achieved.
 One of the most important decisions to take in the P-
HAL context is to determine which platform is going to be
the primary system reference. But according to the need to
generate and receive signal from the real world (analog), it
is reasonable to take the reference from the platform that
incorporates the A/D and D/A devices. If, moreover, it
includes the local oscillators for mixers and RF subsystem
in a realizable Software Radio (the frequencies generated

from a single source), all the system time references can be
coherent.
 The synchronization procedure starts with a request
from the slave to the master of its local time. Upon
receiving the request the master answers returning such
parameter. In total, including header a payload, the P-HAL
packet is 24 bytes long in both cases. The total time to
complete this handshake determines the precision of the
synchronization which can be almost zero in case that both
transfers take the same time. In the case of two SOTA PCs
with a Linux OS, the network handshake when running in
high priority real-time mode is less than 100us, leading to a
synchronization error much lower than 50us (worst case
error, half the handshake time). However, in a embedded
system with platforms including DSPs and FPGAs, when
interacting through a VME bus, the error after
synchronization can be as little as shown in the Figure 4
(1ms time slot). Since the transfers lasts few nanoseconds,
the handshake length is of very few microseconds, and then,
the error is very small. The chronogram in Figure 4 has
been taken from impulses generated by the timers belonging
to relatively obsolete DSP and FPGA devices (Texas
Instruments TMS3206701 and Xilinx XC4013) running on
a VME bus.

Figure 4. Time reference error before and after handshake

5.3. Data routing

Together with the time control, the capacity to move data
from one object to another in a seamless manner is basic.
Within P-HAL every object has a logical identifier within a
given processor (the one running it), a processor identifier
and, finally, a platform identifier. The composition of the
three identifiers is the logical address of the object.
However, to actually move data in and out the object, every
logical interconnection has to be assigned to a physical
route. Then, every P-HAL processor includes a routing table
that indicates, for every object logical connection, the
physical interface to use and the identifier of the target
device (e.g. an address in a bus interface) where another P-
HAL entity will continue the movement of data.
 The specification of the routing table is done during the
application mapping procedure, where the location of every

SLAVE SYNC PHAL

Hardware Timer

MASTER SYNC

PHAL

Hardware Timer

MASTER SYNC

Platform 2

SLAVE SYNC PHAL

Hardware Timer

MASTER SYNC

SLAVE SYNC

PRIMARY
(Global System
Reference)

PRIMARY/
SECONDARY

SECONDARY

Platform 1 Platform 3
Distributed Application

SLAVE SYNC PHAL

Hardware Timer

MASTER SYNC

PHAL

Hardware Timer

MASTER SYNC

Platform 2

SLAVE SYNC PHAL

Hardware Timer

MASTER SYNC

SLAVE SYNC

PRIMARY
(Global System
Reference)

PRIMARY/
SECONDARY

SECONDARY

Platform 1 Platform 3
Distributed Application

DSP time

time

FPGA
handshake

Handshake Bus Activity

Synchronism error after 1 sec.
(2.5% of time slot error)

Synchronism applied
(0.4% of time slot error)

DSP time

time

FPGA
handshake

Handshake Bus Activity

Synchronism error after 1 sec.
(2.5% of time slot error)

Synchronism applied
(0.4% of time slot error)

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

object is determined and the best route selected. Any change
in the application requires an update in the routing tables. It
is clear that using a packet-oriented approach in the
previous scenario has many advantages. To the possibility
to tag every packet with a time stamp it is added the
simplicity in managing simultaneously on a given physical
interface the different logical data flows.

5.4. Interfacing the real world

The applications remain almost completely enclosed within
the virtual context offered by the middleware. They
exchange and process data on the basis of some externally
set parameters and supply other externally accessible
values. But it is necessary to specify in the application
context the input and output of the processed data, either in
the channel side or in the user side. Then, it might be
necessary to reach the hardware from the application. Of
course not the actual hardware but a given one that does not
change as a function of the underlying platform. This
abstracted hardware is accessible through the hardware
abstraction layer part of P-HAL. In this case the HAL is
defined as a set of application objects that may be available
with the P-HAL implementation of a given platform. If the
set of platforms include at least one with the possibility of
implementing such objects, the application will be
successfully mapped on them, otherwise it will not. Then, in
the process of definition of the application, HAL objects are
instantiated in the same way as radio function objects are
(e.g. FIR, NCO, etc.). Six HAL objects are identified so far:

1. TEMPO: Objects without input data require time
information. This object provides the “t” axis to objects
requiring it.

2. B_LINK: to enter and leave data to/from the user
space application. If the radio application includes all the
communications stack layers, the upper one, the user
application, requires a means to send and receive data.

3. RX_CH: object whose input selects a given
channel (central frequency, bandwidth and sampling rate).
Its outputs are the samples of the input signal.

4. RX_PWR: object whose input selects the
amplification that must suffer (in dB) the signal that is
currently being received through RX_CH.

5. TX_CH: transmission side equivalent to RX_CH.
6. TX_PWR: transmission side equivalent to

RX_PWR.
 All these elements require a specific implementation
since they control the available hardware, which in part is
analog. It is possible that some parts of the object are
implemented by using digital technology and others by
using the analog one. However, the presence of such objects
is only a temporal feature of P-HAL to achieve
implementations in current technology. The idea here is to
span the description of the application to all the set of

functions, not worrying about its actual implementation,
analog or digital. The final decision of the objects that are
mapped on digital processors and those that are mapped on
analog ones is left to a mapping algorithm that takes into
account the available resources. The implications of a
mapping algorithm are out of the scope of this paper but its
presence is very relevant to achieve a good utilization of the
platforms resources and take advantage of the flexibility
offered by the middleware.

6. CONCLUSIONS

In this paper we have presented a middleware suitable to
run on heterogeneous processing devices to offer the
required services to software radio applications running in
real-time. The well-known features of such applications
allow creating a thin abstraction layer from the platform,
whichever it is, to spend as few resources as possible in the
path from the virtual application to the real hardware.
 The temporal control for real-time execution of
distributed applications on several platforms is one of the
most interesting problems to solve. In this case the division
of time in slots together with data pipelining has been
considered an adequate solution because of its simple
management, the reduced implementation cost and the
limited drawbacks. This feature together with the
application organization in independent objects exchanging
data that is conveyed in packets, make of P-HAL a very
flexible middleware for the deployment of software radios
on SOTA digital processing devices.

7. REFERENCES

[1] J. Mitola III, “The Software Radio Architecture”, IEEE

Communications Magazine, Vol. 33, No. 5, pp. 26-37, May
1995.

[2] A. Munro, “Mobile Middleware for the Reconfigurable
Software Radio”, IEEE Communications Magazine, Vol. 38,
No. 8, pp. 152-161, August 2000.

[3] A. Gray, C. Lee, P. Arabshahi, J. Srinivasan, “Object-
Oriented Reconfigurable Processing for Wireless Networks”,
IEEE International Conference on Communications, 2002.

[4] X. Revés, V. Marojevic, R. Ferrús, A. Gelonch, “FPGA’s
Middleware for Software Radio Applications”, 2005
International Conference on Field Programmable Logic and
Applications (FPL’05). Tampere, Finland. August 24-26,
2005.

[5] Xavier Revés, Antoni Gelonch, Vuk Marojevic, Ramón
Ferrús. “Software Radio: unifiying the reconfiguration
process over heterogeneous platforms”. EURASIP Journal on
Applied Signal Processing. September 2005.

ACKNOWLEDGMENT: This work has been supported
by CYCIT (Spanish National Science Council) under grant
TIC2003-08609, which is partially financed from European
Community through the FEDER program.

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved

	Search by Author
	Search by Session/Paper

