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The 802.16 WiMAX specifications contain a rich set of 
options addressing increasing bandwidth requirements for 
“last mile” digital communications applications. This 
wireless building block, however, is a fast-moving target 
that cannot be adequately implemented using fixed 
architectures such as FPGAs and ASSPs. This paper will 
demonstrate how 802.16 can be cost-effectively 
implemented using software-configurable processors which 
merge hardware and software development in a single 
design methodology based on C and using extension 
instructions to hardware-accelerate high-speed signal 
processing tasks, such as FFT and Viterbi decoding.  By 
abstracting hardware as software, software-configurable 
processors achieve the same throughput as FPGA and high-
end DSP-based architectures while extending overall 
programmability and flexibility to enable developers to 
support evolving standards in a timely fashion. 
 
 

1. INTRODUCTION 
 
The need to increase wireless data transfer rates while 
reducing deployment costs continues to keep the software-
defined radio (SDR) market in the state of flux.  Continuing 
innovation of new techniques to identify digital data 
amongst large amounts of noise results in increased data 
transfer bandwidth at greater distances but at the cost of 
increasing overall computational complexity.  Not only do 
new algorithms give rise to new standards, they stress the 
capacity of traditional processors and hybrid-based 
architectures. 
 The emerging WiMAX standard, also known as 
IEEE 802.16, has garnered widespread support because of 
the efficiency and additional revenue it promises to bring to 
wireless applications.  Figure 1 shows the basic receiver and 
transmitter block diagram for an 802.16 implementation.  
Many of these operations are computationally intense.  For 
example, on the transmitter the physical layer (PHY) 
encodes the raw data stream and prepares it for  
upconversion to an analog radio signal.  On the receiver 
side, the PHY extracts and then decodes the data stream 
from an analog radio signal.  Both of these blocks require 
operations such as: 
• Fast Fourier Transforms (FFT) 
• Forward Error Correction (FEC) 

• Block coding operations such as Reed-Solomon codecs 
• Bit-level coding such as convolution encoding 
• Viterbi decoding 
• Quadrature Amplitude Modulation (QAM) 
• Interleaving 
• Scrambling 
 
 The media access control (MAC) layer is more 
control oriented and provides the interface between the PHY 
and network layers by scheduling transport of packets from 
the network layer according to quality of service (QoS) 
requirements on the transmit side and reassembling data for 
handing back to the network on the receiver side.  The MAC 
layer is also responsible for automatically requesting the 
retransmission of any bad packets and maintaining 
communications between base and subscriber stations.  
Typically, a TCP/IP stack serves as the networking stack.  
Of course, all of these layers must be interconnected to form 
a complete system. 
 
 

2. HARDWARE ACCELERATION WITHOUT A 
FIXED IMPLEMENTATION 

 
The continuing evolution of WiMAX makes basing a design 
upon a fixed implementation such as an ASIC a risky 
proposition.  Certainly an ASIC can provide the required 
performance, but it lacks the capacity to easily adapt to 
changing requirements.  To adapt in a timely and cost-
effective manner, a programmable development 
environment is required. 
Traditional processors such as those based on RISC or DSP 
architectures provide the programmable foundation 
necessary to keep implementations current but they lack the 
necessary processing capacity to process WiMAX in real-
time.  RISC processors are limited by a narrow data 
bandwidth (only 4 bytes per clock for a 32-bit processor).  
While DSPs support more efficient dataflow, like RISC 
processors, they are tied to a general purpose and fixed 
instruction set.  DSPs and RISC processors can perform 
only limited processing per cycle, and as a result processing 
complex algorithms can take thousands to tens of thousands 
of cycles. 
 Software-configurable processors combine the 
flexibility of a programmable processor with the high 
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performance of hardware acceleration by integrating 
programmable logic into the processor pipeline.  In this 
way, developers can implement extension instructions, 
which accelerate compute-intensive processing in hardware 
but are accessible through software, enabling a single 
extension instruction to perform the equivalent of hundreds 
to thousands of cycles on a traditional processor.  Extension 
instructions are defined in program code using C/C++ and 
are compiled into a bit stream by an optimizing compiler to 
configure programmable logic resources tailored to meet 
application-specific requirements. Through extension 
instructions, performance can be increased from 10X to 
100X. 
 The software-configurable processors from Stretch, 
for example, use an instruction set extension fabric (ISEF) 
that serves as a programmable fabric interlocked to the 
instruction pipeline (see Figure 2).  Backed by a substantial 
set of computationally rich resources—4096 arithmetic units 
and 8912 multiplier units—computations can be accelerated 
for any bit width.  Additionally, 128-bit wide registers and 
24 powerful DMA channels enable the ISEF to process 
multiple data concurrently through a deep pipeline, enabling 
developers to exploit inherent parallelism in algorithms to 
significantly accelerate processing performance. Since the 
ISEF is reconfigurable, multiple instructions can reuse the 
same resources. 
 

 
 

Figure 2 Software-Configurable Processor Architecture 
 

3. ACCELERATING 802.16 
 
The 802.16 WiMAX PHY makes use of a 256-point FFT 
and Orthogonal Frequency Division Multiplexing (OFDM).  
Depending upon the application, OFDM channel width can 
vary, as can the particular modulation scheme.  For 
applications in noisy environments, FEC is mandatory and 
the 802.16 standard offers a variety of choices here as well. 
 Given the computationally intense nature of these 
calculations and the high signal frequencies involved, 
conventional RISC and DSP processors simply do not have 

enough processing capacity to support both the high demand 
of WiMAX baseband processing and control task 
management at the same time. 

In fixed implementations, such as ASICs, hardware 
sources are locked, meaning that if multiple modulation 
schemes, for example, are to be supported, then multiple 
hardware implementations are required.  Not only does this 
drive up device cost, the additional development resources 
necessary to create multiple hardware implementations 
make such an approach impractical. 
 With a software-configurable architecture, the 
same hardware resources can be reconfigured to accelerate 
completely different functionality.  Because of the dynamic, 
reconfigurable nature of software-configurable processors, 
supporting multiple variations and schemes is a matter of 
reconfiguring the programmable processing resources.  Thus 
it is possible for a single software-configurable processor to 
operate across multiple channel widths such as 3.5 MHz, 7 
MHz, and 10 MHz, as well as across modulation schemes 
such as BPSK, QPSK, 16 QAM, or 64 QAM simply by 
reconfiguring the integrated programmable logic resources. 

The run-time reconfigurability of software-
configurable architectures provides an extended level of 
flexibility to developers.  As the need for different 
instructions changes, so can the configuration.  From a 
development perspective, since extension instructions are 
created by the compiler based on C code, adapting and 
introducing new innovations to existing algorithms is a 
straightforward process that eliminates the time-consuming 
stages of hand-coding in assembly/HDL and profiling 
performance.  Note that dynamic reconfiguration overhead 
can be reduced to zero for software-configurable 
architectures.  Unlike FPGAs, which introduce unacceptable 
delay to the point of interrupting dataflow processing when 
reconfiguring, software-configurable processors can “ping-
pong” between configurations so that new extension 
instructions are available immediately. 

This flexibility enables developers to scale 
applications based on software-configurable architectures 
easily.  In this way, developers can create a base design that 
serves as the foundation across a wide range of applications 
and product variations, reducing design complexity and 
overall development investment while speeding time-to-
market. 

One of the most important efficiencies gained 
using software-configurable architectures is the ability of 
developers to design both hardware and software in a single 
integrated development environment.  Instead of requiring 
two development teams, one for hardware and one for 
software, developers write code in C/C++ and map 
computationally intensive hotspots for implementation in 
the ISEF through the use of extension instructions.  Not 
only does the compiler generate the appropriate extension 
instructions, it schedules them to achieve optimal pipeline 
parallelism to maximize single-cycle throughput.  Put 
another way, hardware is abstracted as software, greatly 
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simplifying the development process and avoiding time-
consuming manual optimization. 
 Being able to perform operations in hardware and 
in parallel introduces substantial processing efficiencies.  
For example, consider the following implementation of an 
FFT using Radix-2 on a Stretch software-configurable 
processor.  A single extension instruction is able to perform 
sixteen 16 x 16 multiplies, eight 32-bit adds, and sixteen 16-
bit adds with rounding and rescaling.   
 One critical bottleneck of RISC and DSP 
architectures employing hardware acceleration through 
coprocessors implemented as ASICs or discrete FPGAs is 
dataflow.  While the coprocessor is able to process large 
amounts of data, the RISC or DSP is limited in how quickly 
it can pass data to the coprocessor.  Software-configurable 
architectures overcome this limitation through the use of 
wide registers.  For example, the Stretch S5000 family of 
software-configurable processors have 32 128-bit Wide 
Registers (WR) that facilitate efficient transfer of data and 
eliminate dataflow bottlenecks. 
 In the case of FFT processing, an extension 
instruction is able to pass three sets of 4 complex values to 
the ISEF through wide registers for concurrent processing.  
In terms of real-world performance, this translates to the 
ability to perform a 256-point FFT in 4 µs.  Developers can 
achieve, by implementing a Radix-4 FFT, an additional 28% 
performance improvement. 
 
 

4. EFFICIENT CONVOLUTION 
 
Forward error correction (FEC) compensates for the 
presence of channel noise by transmitting data with enough 
redundancy so that errors can be corrected on the receive 
side.  Because the data rate and distance over which data 
can be transmitted are directly tied to the transmission error 
rate, significant research investment continues to be made in 
FEC technology. As a consequence, communication 
systems must be able to support new innovations in FEC 
technology if they are to take advantage of these to increase 
system throughput and reliability while reducing cost. 
 FEC schemes typically employ bit-level encoding 
techniques such as convolution where each encoded bit is 
generated by convoluting the current input bit with previous 
input bits. WiMAX uses convolution encoding with a 
constraint length (i.e., the number of bits used in the 
convolution) of K=7 and a rate (i.e., the number of input bits 
per output bit) of ½ (see Figure 3).  A ½-rate encoder can be 
followed by a puncture to produce other rates such as 2/3, 
3/4, and 5/6. 
 RISC architectures are notoriously inefficient at 
bit-level operations.  Programmable logic, on the other 
hand, is particularly well suited to convolutions; for 
example, an extension instruction can be implemented to 
take 64 bits of input data and generate 128 outputs (see 
Code Listing 1). 

 Another feature of software-configurable 
architectures, which accelerates bit-level processing, is the 
capacity to store state information.  In this way, a large 
number of intermediate results can be efficiently transferred 
between different extension instructions without incurring 
excessive latency from load/store operations to preserve 
these results as required by coprocessor implementations.  
In this example, six input bits of history can be preserved 
for use by the next convolution operation. 
 Convolution can be traced from one stage to the 
next for a ½-rate convolutional encoder, as illustrated by a 
Trellis diagram (see Figure 4).  As each new input is fed 
into the encoder, state changes are propagated through K-1 
shift registers while producing 2 output bits.  As each new 
bit comes in, each shift register transitions from one state to 
another for a total of 26 possible states per input bit.  A 
Trellis diagram shows these transitions from one input to 
the next.  For example, let Sn = {S0, S1, …, SK-2} 
represent the state bits at the nth stage. Assume the states of 
the K-1 shift registers are set to 0, i.e, S = {0, …, 0} in the 
initial stage (0th stage). If the new bit is 0, the state S will 
continue to be at S={0, 0, …, 0} at the 1st stage. If the new 
bit is 1, the state S will be S = {1, 0, …, 0}.  The horizontal 
axis can be considered symbol time 0, 1, …, etc, since each 
input bit will be transmitted as a symbol in the 
communication channel. 
 The Trellis diagram is helpful in finding the most 
likely sequence of codes when decoding a convoluted 
bitstream.  Viterbi coders are a particularly efficient way to 
decode a bitstream because they record the most likely path 
for each state at each Trellis stage, thereby limiting the 
number of sequences needing to be examined.  This 
efficiency does not come without cost, as Viterbi decoding 
is quite computationally intensive through the use of add-
compare-selection (ACS) for each state at each stage while 
simultaneously tracking the history of the selected path.   

Viterbi decoding has three primary steps: branch 
metric computation, ACS, and traceback.  The branch 
metric (BM) measures the distance between the received 
signal Rn = {Xn, Yn} and the appropriate output branch 
level L={L1, L2}.  Therefore possible output labels for a ½-
rate encoder are {0,0}, {0,1}, {1,0}, and {1,1}.  The branch 
metric is computed as follows: 
 

BMn(L1, L2)  = Xn * (-1)L1 + Yn * (-1)L2 
 
yielding 4 possible branch metric values: 
 

BMn(0, 0) =   Xn + Yn 
BMn(0, 1) =   Xn – Yn 
BMn(1, 0) = - Xn + Yn 
BMn(1, 1) = - Xn – Yn 

 
 Each state at each Trellis stage also has another 
metric associated with it called the path metric (PM) that 
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needs to be updated each trellis stage and is computed as 
follows: 
PMj+1[i]        = max(PMj[2i] + BM[i], PMj[2i+1] -  BM[i]) 
PMj+1[i+32] = max(PMj[2i] – BM[i], PMj[2i+1] + BM[i]); 
for i =0 to 31 
where i is the index to the state and j the index to the Trellis 
stage.   
 The branch metric computation for 64 bits can be 
performed by a single extension instruction (EI_ACS64 in 
Code Listing 2).  This extension instruction also adds the 
branch metric with the path metric of the previous stage, 
compares the path metrics of the two incoming pads, 
updates the maximum path metric, and finally selects the 
appropriate path.  The extension instruction also performs 
all ACS operations for all the states at one Trellis stage 
concurrently (i.e., 32 butterfly operations in parallel).  Path 
metrics are stored as internal states and as processing 
progresses through each Trellis stage, the function updates 
output registers with one bit for each state indicating the 
selected path (for a total of four bits for each state for an 
accumulated 4*64 = 256 bits for all states).  128-bit store 
instructions (WRAS128IU) move these bits to memory in 
just two cycles. 
 The final stage required to decode received 
symbols into data bits traces backwards through the Trellis 
along the most likely path. Typically, the length of 
traceback is 4 or 5 times the constraint length of the 
convolutional encoder. Depending upon the application, 
traceback may not begin until the entire data frame is 
received. 
 Traceback begins from a known last state, typically 
state 0.  A final state of 0 is easily forced by sending an 
extra K-1 bit to transition all states to 0. The particular bit 
stored for each state determines which branch to traverse to 
move from stage j to stage j-1. By traversing the Trellis in 
reverse, the original input bit stream can be decoded. 
 An optimized Viterbi decoder can be implemented 
using a single extension instruction that performs traceback 
for four Trellis stages (VITERBI_TB in Code Listing 2).  
The function stores internal states to support the next round 
of traceback while outputting four bits of the decoded 
bitstream.  Every second time VITERBI_TB is called, an 8-
bit segment of the bitstream is stored back to memory. 
 This example illustrates the effectiveness of 
implementing complex and evolving algorithms with a 
software-configurable architecture. Note that similar 
performance acceleration can be achieved when 
implementing turbo codes and Read Solomon decoders. By 
accelerating the compute-intensive functions, it is possible 
to cost-effectively implement WiMAX, including PHY and 
MAC processing as well as TCP/IP stack software, all on a 
single 300 MHz device (see Table 1). 

Current software defined radio applications rely 
heavily upon hardware to cost effectively implement many 
compute intensive functions in real-time. With the 
introduction of software-configurable processors, 

developers now have the ability to achieve exacting 
performance specifications through optimized hardware 
acceleration on a purely software programmable platform. 
 
Code Listing 1 
This program, written in C, makes use of user-defined 
extensive instruction EI_CONVEN for convolution 
encoding.  WRAGET01 and WRAPUTI are stream 
load/store instructions. 
 
for (i = 0; i < N/128; i++) {  // N is the total number of 
output bits in convolutional coding  
  WRAGET0I(&wd, 8);    // load 64 bits of input data into 
wide register wd 
  EI_CONVEN(&wd);      // extension instruction for 
convolutional coding  
  WRAPUTI(wd, 16);      // store output bits (128 bits) to 
memory  

} 
 
Code Listing 2 
This C program uses extension instructions EI_ACS64 and 
VITERBI_TB to implement an optimized Viterbi decoder.  
WRAL16IU and WRAL128IU are 2-byte and 16-byte load 
instructions and WRAS16IU and WRAS128IU are 2-byte 
and 16-byte store instructions. 
 
 for (i = 0; i < n/8; i++)  {  // n is the number of input bits at 
convolutional encoder  
   for (j = 0; j < 4; j++) {   // for 4 Trellis stages 
      WRAL16IU(&win, &indata_ptr, 2); // load (X, Y) input 
      EI_ACS64(win,&lower_state,&upper_state); // perform 
ACS for all the states at 1 Trellis stage 
 
 } 
   WRAS128IU(lower_state, &ls_ptr, 32);   // store the input 
bits (for the lower 32 states) to memory 
   WRAS128IU(upper_state, &us_ptr, 32):  // store the input 
bits (for the upper 32 states) to memory 
 } 
 
  /* perform traceback */ 
  for (i=0; i<n/8; i++) { 
 WRAL128IU(&wa, &ls_ptr, -32);  // load the lower state 
bits 
 WRBL128IU(&wb, &us_ptr, -32); // load the upper state 
bits 
 VITERBI_TB(&wa, wb, mask);      // perform trace back 
for 4 stages  
 WRAL128IU(&wa, &ls_ptr, -32);  
 WRBL128IU(&wb, &us_ptr, -32);  
 VITERBI_TB(&wa, wb, mask);    // perform trace back for 
another 4 stages 
 WRAS8IU(wa, &decode_output, -1); // store decoded 8 
bits to memory 
} 
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Figure 3  Convolutional Encoding with Constraint Length of 7 and ½ Rate

Figure 4 Trellis Diagram for ½ Rate and Constraint Length of 7
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Optimizing the Convolutional Encoder

Seven 1-bit ANDs and XORs per output bit

Need puncturing to support 2/3, 3/4 and 5/6 rates
“Puncturing” means removing some bits from the bitstream
Pattern of removed bits depends on the rate

The ISEF efficiently implements bitwise operations
AND, XOR, lookup table, mux (if-else), etc.
Uses only the resources needed, no more

Extension Instructions are easily defined in C or C++
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Viterbi Trellis Diagram
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“Butterfly”
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Optimizing the Viterbi Decoder
Add-compare-select Part: For each of 64 states, must

1. Use soft decision inputs to compute branch metrics
2. Add/subtract branch metrics to state metrics (watch out for rollover)
3. Compare pairs of state metrics
4. Choose the larger metric and save a corresponding state bit

A single Extension Instruction can do all of this for all 64 states

Traceback Part: For each output bit, must determine the preceding 
state and save the corresponding bit

A single Extension Instruction can do this for 4 states at a time
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Extension Instructions for Convolutional Encoder
#include <stretch.h>
#define K   (7)
#define M   (48)
#define M12 (48)
#define M23 (32)
#define M34 (48)
#define M56 (40)
static se_uint<K> code0, code1;
static se_uint<K-1> hist;

SE_FUNC void CONVEN_INIT(unsigned char c0, unsigned char c1)
{

code0 = c0; code1 = c1;
hist = 0;

}

SE_FUNC void CONVEN(SE_INST CONVEN12,
SE_INST CONVEN23,
SE_INST CONVEN34,
SE_INST CONVEN56,
WRA *d0)

{
int i;
/* up to M new input bits + K-1 history bits */
se_uint<M+K-1> dIn = ( (se_uint<M>)(*d0), hist );
/* 2 convolutions per input bit */
se_uint<1>     X[M], Y[M];
/* For each input bit, do two convolutions (length <= K)
* to produce two output bits. */
for (i = M-1; i >= 0; i--) {

X[i] = (code0(0) & dIn(i+0)) ^
(code0(1) & dIn(i+1)) ^
(code0(2) & dIn(i+2)) ^
(code0(3) & dIn(i+3)) ^
(code0(4) & dIn(i+4)) ^
(code0(5) & dIn(i+5)) ^
(code0(6) & dIn(i+6));

Y[i] = (code1(0) & dIn(i+0)) ^
(code1(1) & dIn(i+1)) ^
(code1(2) & dIn(i+2)) ^
(code1(3) & dIn(i+3)) ^
(code1(4) & dIn(i+4)) ^
(code1(5) & dIn(i+5)) ^
(code1(6) & dIn(i+6));

}
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/* 1/2 rate: no puncturing */
if (CONVEN12) {

hist = (se_uint<K-1>)((*d0)(M12-1,M12+1-K));
*d0 = 0;
for (i = M12/1 - 1; i >= 0; i--) {

*d0 = (*d0, Y[i], X[i]);
}

}

/* 2/3 rate: puncture using (Y1, Y0, X0) (drop X1) */
else if (CONVEN23) {

hist = (se_uint<K-1>)((*d0)(M23-1,M23+1-K));
*d0 = 0;
for (i = M23/2 - 1; i >= 0; i--) {

*d0 = (*d0, Y[2*i+1], Y[2*i], X[2*i]);
}

}

/* 3/4 rate: puncture using (X2, Y1, Y0, X0) (drop Y2 & X1) */
else if (CONVEN34) {

hist = (se_uint<K-1>)((*d0)(M34-1,M34+1-K));
*d0 = 0;
for (i = M34/3 - 1; i >= 0; i--) {

*d0 = (*d0, X[3*i+2], Y[3*i+1], Y[3*i], X[3*i]);
}

}

/* 5/6 rate: puncture using (X4, Y3, X2, Y1, Y0, X0)
* (drop Y4, X3, Y2 & X1) */
else { /* CONVEN56 */

hist = (se_uint<K-1>)((*d0)(M56-1,M56+1-K));
*d0 = 0;
for (i = M56/5 - 1; i >= 0; i--) {

*d0 = (*d0, X[5*i+4], Y[5*i+3], X[5*i+2],
Y[5*i+1], Y[5*i],   X[5*i]  );

}
}

}
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Extension Instructions for Viterbi ACS

#include <stretch.h>
#include "poly_para.h"
static const se_uint<1> parity[32] = {

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1

};
#define NS (1<<(K-1))               /* the number of states */
#define NBF (NS/2)                  /* the number of butterflies */
#define SOFTBITS (6)                /* the width of input soft bits */
#define PMBITS (11)                 /* path metric width in bits */
#define SIGNBIT (1 << (PMBITS - 1))
/* Internal state:
*    PM:    Keep path metric for each state at each Trellis stage
*    STATE: For each state, keep the 4 least significant bits in the
*    state of conv encoding states. This covers 4 Trellis stages. 
*/
static se_uint<PMBITS> PM[NS]; 
static se_uint<4> STATE[NS]; 
SE_FUNC void _viterbi64_metric(SE_INST ACS64_INIT, 

SE_INST ACS64, 
WRA input, WRA *lowStates, WRB *highStates)

{
int i, j, k, aIn, aOut, bIn, bOut;
se_sint<SOFTBITS> x, y; 
se_sint<SOFTBITS+2> xy[2][2];
se_sint<SOFTBITS+2> BM[NBF];
se_uint<PMBITS> pmsubbm[NS], pmaddbm[NS];
se_uint<4> newState[NS];
x = input(SOFTBITS-1,0); (1)
y = input(SOFTBITS+7,8);
/* compute the 4 branch metrics of one butterfly */ 
xy[0][0] =  x + y; 
xy[0][1] =  x - y; 
xy[1][0] = -x + y; (2)
xy[1][1] = -x - y; 
/* Assign all the Branch Metrics
* The assignment depends on the polynomial generator 
*/ 
for (i = 0; i < NBF; i++) {

j = integer(parity[integer((poly7[0]>>1) & i)]);
k = integer(parity[integer((poly7[1]>>1) & i)]); (3)
BM[i] = xy[j][k];

}
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/* Compute the path metrics associated with both outgoing branches
* from state 2*i and 2*i+1.  ACS64_INIT initializes all metrics to 0,
* except state 0 which is set to a big number
*/
pmaddbm[2*0]   = ACS64_INIT ? 100 : (PM[2*0]   + BM[0]); (4)
pmsubbm[2*0]   = ACS64_INIT ?   0 : (PM[2*0]   - BM[0]);
pmaddbm[2*0+1] = ACS64_INIT ?   0 : (PM[2*0+1] + BM[0]);
pmsubbm[2*0+1] = ACS64_INIT ?   0 : (PM[2*0+1] - BM[0]);
for (i = 1; i < NBF; i++) {

pmaddbm[2*i]   = ACS64_INIT ? 0 : (PM[2*i]   + BM[i]); (5)
pmsubbm[2*i]   = ACS64_INIT ? 0 : (PM[2*i]   - BM[i]);
pmaddbm[2*i+1] = ACS64_INIT ? 0 : (PM[2*i+1] + BM[i]);
pmsubbm[2*i+1] = ACS64_INIT ? 0 : (PM[2*i+1] - BM[i]);

}

/* Compare & select butterflies
* "Out-of-place" form: (2*i, 2*i+1) -> (i, i+32)
* E.g.: (0,1)->(0,32)  (2,3)->(1,33) ... (62,63)->(31,63)
* Because "out-of-place", need temp variables "newState"
* until all "state"s are used
*/ 
for (i = 0; i < NBF; i++) {

se_uint<1> mux[2]; 
aIn = 2*i;             aOut = i; (6)
bIn = 2*i + 1;         bOut = i + NBF;
mux[0] = ((pmaddbm[aIn] - pmsubbm[bIn]) & SIGNBIT) ? 1 : 0; (7)
mux[1] = ((pmsubbm[aIn] - pmaddbm[bIn]) & SIGNBIT) ? 1 : 0; 
PM[aOut]   = mux[0] ? pmsubbm[bIn] : pmaddbm[aIn]; (8)
PM[bOut]   = mux[1] ? pmaddbm[bIn] : pmsubbm[aIn];
newState[aOut] = mux[0] ? (se_uint<4>)ident(0x08 | (STATE[bIn]>>1))

: (se_uint<4>)(0x07 & (STATE[aIn]>>1)); (9)
newState[bOut] = mux[1] ? (se_uint<4>)ident(0x08 | (STATE[bIn]>>1))

: (se_uint<4>)(0x07 & (STATE[aIn]>>1));
}

/* update the states since all old states have been read */
for (i = 0; i < NBF; i++) {

STATE[i] = newState[i]; (10)
STATE[i+NBF] = newState[i+NBF];

}
/* Output all the states with 4 bits per state */ 
*lowStates = *highStates = 0;
for (i = 0; i < NBF; i++) {

*lowStates |= ((se_uint<128>)(STATE[i]    & 0xf) << (4 * i)); (11)
*highStates |= ((se_uint<128>)(STATE[i+32] & 0xf) << (4 * i));

}
}

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



5© 2005 Stretch Inc. All Rights 
Reserved. 

Extension Instructions for Viterbi Traceback

#include <stretch.h>
static se_uint<6> PRE_STATE; 
/* For 64 state, use both *sa and sb for input bits 
* (state0 = sa(3,0) ... state63 = sb(127,124)) 
*/ 
SE_FUNC void viterbi_tb_func(

SE_INST VITERBI_TB_INIT,
SE_INST VITERBI_TB,
WRA *sa, WRB sb)

{
int i;
se_uint<4> s[64]; 
se_uint<4> cur_s; 
se_uint<6> ind, pre_s; 
se_uint<8> sout;

for (i = 0; i < 32; i++) {
s[i]    = (se_uint<4>) (*sa)(i*4 + 3, i*4); (12)
s[i+32] = (se_uint<4>)    sb(i*4 + 3, i*4); 

}
ind = VITERBI_TB_INIT ? 0 : PRE_STATE;
cur_s = s[integer(ind)];
if (VITERBI_TB_INIT)

PRE_STATE = 0;
pre_s = (se_uint<6>)((se_uint<2>)PRE_STATE(1, 0), cur_s); (13)

/* Note that the 4 MSbits of the traversed state are the input bits. 
* Concatenating 2 traversed states of 4 stages apart produces 1 byte
* of output.  These correspond to the bits originally input to the
* convolutional encoder.
*/ 
sout = ((se_uint<4>)PRE_STATE(5, 2), (se_uint<4>)pre_s(5, 2)); (14)
*sa = ((se_sint<120>)0, sout);
PRE_STATE = pre_s; (15)

}
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Viterbi Decoder Using Extension Instructions

#include "ei_isef.h"
#include "poly_para.h" 
#define NSTAGES (N/2) 
#define BYTES_PER_STAGE (32/4) 
u8 align_alloc(16, ".dram.data") pathHistory[NSTAGES * BYTES_PER_STAGE];
void opt_viterbi_decoder_64_12 (s8 *Input, u8 *Output, int nBits)
{

int i, j;
int nOutBits, nOutBytes;
WRA in1, in2;
WRA out1a, out2a;
WRB out1b, out2b;
WRA a0, a1, a2, a3, a4, a5, a6, a7;
WRB b0, b1, b2, b3, b4, b5, b6, b7;
u8 *pOut; 
s16 *ldx = (s16 *)Input;
WRA *sta = (WRA *)&pathHistory[0];
WRA *stb = (WRA *)&pathHistory[16];
/* Assumes nBits is a multiple of 16 */
/* Assumes tailbits (zeros) were added at the sending end */
nOutBits = nBits >> 1;
nOutBytes = nOutBits/8; (1)
/* setup the initial state inside ISEF */
ACS64_INIT(in1, &out1a, &out1b); (2)
/* Prolog */
for (j = 0; j < 4; j++) { (3)

WRAL16IU(&in1, &ldx, 2);
ACS64(in1, &out1a, &out1b);

}
/* Main body */
for (i = 0; i < nOutBytes - 1; i++) { (4)

for (j = 0; j < 4; j++) {
WRAL16IU(&in2, &ldx, 2);
ACS64(in2, &out2a, &out2b);

}
WRAS128IU(out1a, &sta, 32);
WRBS128IU(out1b, &stb, 32);
for (j = 0; j < 4; j++) {

WRAL16IU(&in1, &ldx, 2);
ACS64(in1, &out1a, &out1b);

}
WRAS128IU(out2a, &sta, 32);
WRBS128IU(out2b, &stb, 32);

}
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/* Epilog */
for (j = 0; j < 4; j++) { (5)

WRAL16IU(&in2, &ldx, 2);
ACS64(in2, &out2a, &out2b);

}
WRAS128IU(out1a, &sta, 32);
WRBS128IU(out1b, &stb, 32);
WRAS128IU(out2a, &sta, 32);
WRBS128IU(out2b, &stb, 32);

/* Perform Traceback */
sta -= 2; (6)
stb -= 2; 
pOut = &Output[nOutBytes - 1]; (7)

WRAL128IU(&a0, &sta, -32); (8)
WRBL128IU(&b0, &stb, -32);
VITERBI_TB_INIT(&a0, b0); 
WRAS8IU(a0, &pOut, -1); (9)

for (i = 1; i < nOutBytes; i++) { (10)
WRAL128IU(&a2, &sta, -32);
WRBL128IU(&b2, &stb, -32);
VITERBI_TB(&a2, b2);

WRAL128IU(&a3, &sta, -32);
WRBL128IU(&b3, &stb, -32);
VITERBI_TB(&a3, b3);

WRAS8IU(a3, &pOut, -1);
}

}
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Demonstration System

Proceeding of the SDR 05 Technical Conference and Product Exposition. Copyright © 2005 SDR Forum. All Rights Reserved



2© 2005 Stretch Inc. All Rights Reserved. 

7 MHz, 256-OFDM, single antenna
TDD (50% UL, 50% DL) Mcycles/sec % CPU

Phy receive (16QAM, ¾ rate) 76 25
Phy transmit (64QAM, ¾ rate) 16 6
Total 92 31

Example Performance
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