HYPRES, Inc. Elmsford, NY

Corporate offices and R&D labs since 1983

Superconductor MicroElectronics

HYPRES Technology

HYPRES SME technology is so accurate that it defines the Volt, so sensitive that it measures brain currents, so fast that it directly converts RF signals.

Based on a naturally occurring periodic quantum effect — Rapid Single Flux Quantum (RSFQ)

Brings the Power of Digital Processing to the RF Domain and changes the Paradigm of Wireless Communications

SME = Superconductor Micro-Electronics

Unique Features of Superconductor Technology

- Ultra-High digital logic speed
- Ultra-Low power dissipation
- **Quantum accuracy**
- Fundamental linearity using magnetic flux quantization
- Extremely high sensitivity
- Extremely low noise
- Ideal interconnects
- Simple, inexpensive IC fabrication

Single Flux Quantum (SFQ) logic is the world's fastest (Devices ~10X faster than semiconductor, LSI ~ 50X faster than semiconductor)

10,000X lower than semiconductor technology (Power dissipation for LSIC ~ 1 mW, Switching energy ~ 10⁻¹⁸ J)

Defines the Volt (5ppb accuracy at 10V)

Very High-SFDR ADC and DAC

(Conversion between analog and digital domains through flux quantum ($\Phi_0 = h/2e$) is independent of circuit parameters)

SQUID (ADC front-end) is <u>the</u> most sensitive energy detector ~60dB better than conventional semiconductor front end (Example ~ -155dBm for 1 MHz BW, with slope of 20 dBm/decade)

Receiver System Noise Temperature T_s ~ T_A (Thermal noise is essentially "0")

Speed-of-light transmission in LSI circuits, no RC delay Low-impedance superconductor interconnects have negligible loss, dispersion and crosstalk

Much less expensive complex chips and facilities/equipment to produce chips than semiconductors (~10 steps, no expensive operations, Thin Film)

Result: Digital-RF Technology

High-fidelity, wideband, high-sensitivity digital representation and subsequent processing ("RF DSP": channelization/correlation, spectrum control, broadband beamforming,...) of RF waveforms

Market Applications

Wireless Communication

- Mobile and Fixed Cellular
- Satellite
- Terrestrial
- Switches and Routers

(Military, Commercial, & Civil)

Additional Markets

- > Defense EW, SIGINT, RADAR, ...
- > Ultra-High Speed Computing
- Instrumentation
- Medical

Commercial Wireless Base Stations

HYPRES Product Benefits for Wireless Networks

Summary

Massively Reduced Network Capital Expenditures

- Much Fewer Base Stations
- Lower Capitalization per Base Station
- Postponement ("one size fits all"
 "air interface immune")
- Substantially Reduced Operating Expense
- Enhanced Revenues and Margins
- Significantly Enhanced Performance
- Unparalleled Reliability & Flexibility
- A "Natural" for Distributed Radio (over fiber, etc.)
- Boost Spectral Efficiency (HSDPA, etc.)
- Future-Proof Products -- beyond 3G (>30Mb/s inherent)
- Extended Mobile Battery Life/Throughput

HYPRES Digital-RF enables the next generation Base Station

Digital-RF Transceiver

Complete Digital-RF Transceiver

Enables the All-Digital Software Radio

□ Total functionality of a base station in a single product

excluding power amplifiers, antenna/tower, and standard ancillary equipment

Traditional Base Station Electronics

HYPRES Base Station Electronics

VS.

- Expensive
- Difficult to upgrade and add channels
- Inefficient multiple transceivers
- Inefficient multiple PA and lossy combiners
- Very inefficient for high speed data
- Bandwidth limited

Least Hardware, Highest Reliability, Lowest Cost

Expanded Range of High Maximum Data Rate

Massively Time-multiplexed Processing

Multi-User Detection (MUD) for UMTS & CDMA

CDMA systems are severely interference limited

SNR = S/(N+I), N<<I

- Removing interference through multi-user detector can increase system capacity by 2-10X
 - This also enables higher data rates, low mobile power, and easier system administration
- Successive Interference Canceller (SIC) is a multi-user detector scheme for removal of interferers in sequential steps of interference estimation and subtraction
- Sequential subtraction provides better interference cancellation at the expense of greater processing

Tera-Operations DSP Required

RSFQ Successive Interference Canceller

Prototype SIC chip

Superconducting Back-End Processors

Superior speed of SME can produce independent multi-Tera-Ops back-end digital signal processor products for conventional transceivers

- Successive Interference Canceller (SIC) to sequentially cancel interferers, starting with the largest one --Large (up to ~ 10X) increase in capacity
- Massively time-multiplexed correlation-based Walsh-Hadamard (WH) Demodulator -- Large cost savings
 - Separate WH Demodulators are now used for each multipath of each reverse link being processed by a base station (parallel processing)
 - Serialization of tasks using SME processors provide hardware savings by more than an order of magnitude (serial processing)

HYPRES SME Correlation-Based Receivers Provide Optimum Performance in the Digital-RF Domain

- Uses matched waveform to perform digital filtering (correlation) in both the time and frequency domain achieving maximum receive efficiency
- Hardware is not specific to any analog/digital modulation (FM, PM, MPSK, etc.) or multiple access scheme (FDMA, TDMA, CDMA, MIMO, OFDM, etc.)
- Real-time Correlator combines functions of downconversion, demodulation, and decoding Direct RF Digital Demodulation in one unit
- Processes out (suppresses) un-correlated noise & interference over repetitive samples; i.e., increases the system SNR & SIR

HYPRES

Power Amplifier Linearization [Multi-Carrier Power Amplifiers]

- Near real-time true digital Adaptive Linearization <u>at RF</u>
- Far better than
 - Digital baseband predistorters (Enhanced Efficiency)
 - Feed-forward amplifiers (Lower Distortion)
- Frequency (& Data Rate) independent from <u>25% to 50% Clock Rate</u>
- Efficiency enhancement up to the inherent limit of the HPA
 - Allows use of lower cost HPA

One HPA Covers Ultra-Wide Bandwidths Consuming Far Less Power

HYPRES

Power Amplifier Linearization [Multi-Carrier Power Amplifiers] (continued)

Digital Analog \mathbf{S}_{RF} SPD **Digital-to-Analog** Analog I_{in} Digital **HPA** Converter (DAC) **BPF Up Converter** Qin **Digital-RF** Clock **Pre-distorter** >20 GHz Digital S_{FB} LO Analog-to-Digital Analog **Converter (ADC) BPF**

Full bandwidth for all air interfaces (waveforms)

- For example, 60 MHz for UMTS (limited only by PA bandwidth)

- Adjust power in each band for traffic matching in near real time vs inflexible passive combining of multiple PAs

Dramatic reduction in overall power consumption*

"Iceberg effect" = smaller & lower cost:
 A/C, power supply, UPS / UPS batteries, cabinet, cooling, and

Allows use of lower cost HPA

Huge reduction in PA and ancillary equipment COST

One HPA Covers Ultra-Wide Bandwidths Consuming Far Less Power

HYPRES

* Increase of efficiency from 25 to 50% or 75% reduces power dissipation by 66.6% to 90%

Adaptive Antennas

Digital-RF Beamforming & Nulling

Digital-RF Beamforming

Beam directions defined by setting appropriate true time delays, corresponding to a wavefront

- Set coarse digital delay between antennas by cross-correlation with discrete steps of 25 ps
- Tune digitally controlled analog (continuous) delays for each antenna by interpolation to <1ps</p>
- Beam directions are the same for receive and transmit due true time delay phasing

Enables multiple beams and adaptive nulling

- Significantly augments AJ, LPI, LPD & LPE
- Further suppression of interference

Note: 1ps is < 1 degree at 2GHz

Coarse Delay Adjustments for Arraying

Fine True Time Delay Adjustment

Adaptive Digital-RF Beamforming

Directive Gain and Nulling Increase C/I

Adaptive Processing Gain = G + N

Adaptive Array Processing

Reduced phase error provides deeper nulls, better C/I :

Phase error using active nulling:

■ 5 degrees of phase error allows deepest null of -27 dB

10 degrees of phase error allows deepest null of -21 dB

20 degrees of phase error allows deepest null of -15 dB

Reduced amplitude error provides deeper nulls, better C/I:

Amplitude error using active nulling:

■ 0.25 dB of amplitude error allows deepest null of -25 dB

0.5 dB of amplitude error allows deepest null of -19 dB

■ 1.0 dB of amplitude error allows deepest null of -13 dB

Digital-RF technology produces ultra-broadband 60 dB nulls: < 0.1 degree in phase < 0.01 dB in amplitude

Increasing C/I -- Reverse & Forward Links

HYPRES Digital RF technology

- Produces 60 dB nulls
- Full Gain
- On Receive and Transmit

Adaptive Processing Gain = G + N

It is better to increase N (nulling) than increase G (antenna gain)

Increasing G requires larger antennas

- Need to effectively double the size for (only) a 3 dB increase
- More expensive, higher tower loads, environmental restrictions

Increasing N requires finer and more stable amplitude and phase

- Offers the potential for smaller antennas
- Less expensive, lower tower loads, and less environmental issues

HYPRES Digital-RF -- Adaptive Antennas(++)

Makes virtually any antenna set into adaptive arrays

□ Significantly improves the C/I by (very) many dBs

-Base Stations & Mobiles -Much better than other alternatives (frequency hopping, AMR, etc.), but can be combined with these other alternatives for added improvements -Spatial Diversity –minimizes fading and effects of multipath propagation, and reduces the effective delay spread of the channel, allowing higher bit rates to be supported.

Balances the forward and reverse links

+ Adaptive Sub-Sectorization -- ultimate in performance

- Ultra-dynamic control to match traffic density conditions in near real time

Enables HUGE increases in Range/Capacity/Flexibility for GSM, CDMA, GPRS, EDGE, UMTS, and beyond

MIMO -- Another Example

Multiple Input/Multiple Output (MIMO) requires very accurate time synchronization, and ability to discriminate/extract signals on the <u>same frequency with the same code</u>.

Digital-RF Correlator:

- Uses matched waveform to perform digital filtering (correlation) in both the time and frequency domain achieving maximum receive efficiency

- Rapid Φ locking to RF carrier permits tracking of signals varying in time, phase and frequency
- Suppresses un-correlated noise/interference over repetitive RF-rate samples
- HYPRES Multi-GHz clocks are ultra-stable [jitter measured in femtoseconds (10⁻¹⁵s)]

Correlates UMTS user signals in same band and same code separated by only 6 inches

MIMO -- Another Example

(continued)

Correlates UMTS user signals in same band and same code separated by only 6 inches

Adds new dimension -- Range Sectorization A dramatic increase in capacity

Digital-RF offers an unprecedented and exceptionally cost-effective solution that has the potential to increase capacity on forward and reverse links by 10 X

One Digital-RF Base Station [versus 10 to 14 Conventional]

Digital-RF

Can dynamically adjust to traffic density, including "inverse breathing"

HYPRES

- Higher density for close-in "range cells" during the day
- Higher density for far-out "range cells" during the night

Inverse Breathing

Unparalleled Performance – Dynamically* Allocated Resources [* measured in nanoseconds]

HYPRES

Some Additional Potential Benefits

- Reduce backhaul cost by using much higher capacity in-band channel and cross link to central sites
- For distributed radio and/or Remote RF head SME ultra-high speed I &Q channelization (prior to processing) is a natural for fiber or microwave connection

• E911- Ultra high sensitivity, range and range determination capability may provide an option to geo-locate using multiple towers w/o use of location devices in mobiles

HYPRES Digital-RF Infrastructure Fundamental Proof of Performance Established

Analog-to-Digital Converter (ADC)

Digital-to-Analog Converter (DAC)

Correlator

Multiplier

Shift Register

Random Access Memory (RAM)

Low-jitter On-chip Clock

Digital I&Q Converters

Multi-chip Module Packages (MCM)

Optical I/O and Packaging

User Interfaces

Low-temperature Superconductor (Nb) ICs

bit 20 GSa/s Flash ADCs with 32-word memory

Benchmark Performance Metric for Digital Logic

120 GHz Operation of a Toggle Flip-Flop (3-µm)

Operational Region at Different Input Frequencies (set of output voltages vs. current supply)

220 GHz Operation of a Toggle Flip-flop (1.75-µm)

HYPRES' 1.75-μm, 5 kA/cm², CMP Nb Josephson fabrication process

240 GHz Operation of a Toggle Flip-flop (1.5-µm)

Input

Operational Region at Different Input Frequencies (set of voltage differences vs. current)

SUNY' 1.5-µm, 6 kA/cm², CMP Nb Josephson fabrication process

395 GHz Operation of a Toggle Flip-flop (0.8-µm)

SUNY' 0.8-µm, 20 kA/cm², CMP Nb Josephson fabrication process

750 Gb/s RSFQ Digital Frequency Divider

DFD operation for $f_{out} = \frac{1}{2} f_{IN}$

0.25-µm Nb Fabrication Process

NIS CERTIFIED

$$\mathbf{V} = \Phi_0 \cdot \mathbf{f}_1 \mathbf{\Psi}$$
 [bits / second] - or - $\mathbf{f}_1 = \mathbf{V} \cdot (1/\Phi_0) = \mathbf{V} \cdot \mathbf{K}_1$

Fundamental Physical Constant

where, $K_I = 483.597898(19) \times 10^6 \text{ Hz/}\mu\text{V}$ [accuracy 0.39 ppb]

SUNY' 0.25-µm, 140 kA/cm², CMP Nb Josephson fabrication process

A 1 GHz Band-Pass ADC Test Chip

3 micron process,20 GHz clock

Two digital filters:

- > 1st order 8-bit filter
- 2nd order 15-bit filter

High-Speed Functionality has been successfully proven: 1 GHz signal has been directly digitized and digitally downconverted to baseband

A 5 GHz Band-Pass ADC Test Chip

- 3 micron process,20 GHz clock
- **Two digital filters:**
 - > 1st order 8-bit filter
 - > 2nd order 15-bit filter

High-Speed Functionality has been successfully proven: 5 GHz signal has been directly digitized and digitally downconverted to baseband

Two-Channel Digital-RF Receiver MCM

Cryocoolers & Cryopackaging

Cryocooler Choices/Advantages

- □ Key enablers of high performance, demonstrated in:
 - Wireless cellular communications (HTS filters)
 - Mine detection
 - Highest sensitivity radar receivers
 - IR imaging systems
- □ Proven to meet any and all requirements as designed:
 - Reliability (demonstrated MTBF of 90+ years)
 - Ruggedness (proven in space environment)
 - Combat environment (proven in IR imaging systems)
 - Efficiency (MEMS package)
- Multiple vendors (ready to perform) and approaches leading to competitive choices and selection:
 - Commercial vendors (Leybold, Air Liquide, Sumitomo)
 - Military contractors (Ball Aerospace, Lockheed Martin)
 - Small Business (TAI, Sunpower, Creare)

Performance/Reliability far exceeding conventional electronics

Cryocoolers in Use

Cryocooled superconducting filters fielded today in military systems

- Conforms to all military specifications
- Cryocooled superconducting filters fielded today in commercial cellular base stations
 - > 99.999% Uptime, MTBF of 90+ years
- Cryocoolers deployed in space
 - Passed space qualification
- Cryocoolers used in vacuum systems in semiconductor foundry
 - Conforms to highest reliability requirements

Demonstrated Reliability

Demonstrated MTBFs of 90+ years!!

Estimated uptime of 99.999%

Multiple Approaches to Heat Load Reduction

- HTS leads provide excellent electrical conductance and reduced thermal conductance
- Output multiplexing reduces number of output leads
- Bias current recycling reduces number of DC Bias lines
- Radiation load can be reduced by use of intermediate temperature shields

Size, Weight, And Power (SWAP) vs. **Heat Load** SWAP 50 100 150 0 Heat Load (mW)

Progression Path

Minimize size, weight and power of the cryocooler

Digital-RF Transceiver

6" x 8" x 10" = 480 in³ [for 10 channels]

Generic Digital-RF Transceiver

[JTRS]

% of Current Price -- CDMA

53

% of Current Price -- GSM

% of Current Price – UMTS (WCDMA) [and TD-SCDMA]

HYPRES Product Benefits for Wireless Networks

Summary

Massively Reduced Network Capital Expenditures

- Much Fewer Base Stations
- Lower Capitalization per Base Station
- Postponement ("one size fits all"
 "air interface immune")
- Substantially Reduced Operating Expense
- Enhanced Revenues and Margins
- Significantly Enhanced Performance
- Unparalleled Reliability & Flexibility
- A "Natural" for Distributed Radio (over fiber, etc.)
- Boost Spectral Efficiency (HSDPA, etc.)
- Future-Proof Products -- beyond 3G (>30Mb/s inherent)
- Extended Mobile Battery Life/Throughput

HYPRES Digital-RF enables the next generation Base Station

HYPRES SME Technology

Brings the Power of Digital Processing to the RF Domain and changes the Paradigm of Wireless Communications

HYPRES SME Technology

Additional Information

Wideband Digital-RF Channelizing Receiver

Digital Processing at RF Frequencies [RF DSP]

Demonstrated Digital Autocorrelator

- 4 GHz bandwidth /16 GHz clock
- 16 correlator channels
- 9-bit output values
- 1600 devices
- 5 mm x 5 mm chip size
- DSP blocks include
 - Multipliers
 - Accumulators
 - > Adders
- [Result of a Phase I STTR]

Autocorrelator Performance

Digital Autocorrelator

- Test sequence when a train of 2X16+2=34 '1's (signal "DATA") is loaded into the circular shift register.
- The correct operation of all 16 XOR gates for all possible combinations of inputs ("00", "10", "01", "11") and correct operation of circular shift register under full load.

Programmable 112-bit Shift Register

ADC Performance Enhancement

Ultra-low ADC Noise

- At 5 K, thermal noise is 60x less than at room temperature
- ADC only produces a "quantization error" (I_N)
- With dither, I_N has a noise-like spectrum

• Noise Temperature
$$(T_N)$$

 $T_N = \frac{(I_N)^2 R}{k_B f_s} = \frac{\pi}{12k_B L_2} \left(\frac{\Phi_0}{km}\right)^2 \frac{\Delta f}{f_{clk}} \propto \frac{\Delta f}{f_{clk}}$

- \succ L₂ = Front-end inductance
- > m = # of synchronizer channels
- > f_{clk} = Clock frequency
- > Δf = signal bandwidth

ADC does not degrade the system noise temperature

Ultra-high ADC Sensitivity

❑ Sensitivity (∆I) is the least significant bit (LSB)

$$\Delta I = \frac{\Phi_0}{2Mm\sqrt{N}} \propto \frac{\Delta f}{\sqrt{f_{clk}}}$$
$$(\Delta I)^2 R \propto \frac{(\Delta f)^2}{f_{clk}}$$

- ► M = Mutual inductance
- m = Number of synchronizer channels
- $> f_{clk} = Clock frequency$
- $\succ \Delta f$ = signal bandwidth

>
$$N = \text{Oversampling ratio} = f_{clk}/(2f_s)$$

Deep FFT Measurements Show >100 dB SFDR

Technology Growth

HYPRES SME Technology

HYPRES Technology

HYPRES SME technology is so accurate that it defines the Volt, so sensitive that it measures brain currents, so fast that it directly converts RF signals.

Based on a naturally occurring periodic quantum effect — Rapid Single Flux Quantum (RSFQ)

Brings the Power of Digital Processing to the RF Domain and changes the Paradigm of Wireless Communications

SME = Superconductor Micro-Electronics

Quantum Accuracy

Commercial Primary Voltage Standard for Metrology

1cm x 2 cm 10 Volt Chip with 5ppb accuracy (23,000 Josephson junctions)

Cryocooled Voltage Standard System

This application cannot be done using any other technology...

Ultra-High Sensitivity

Examples of Commercial SQUID-based Magnetometers (SQUID - Superconducting QUantum Interference Device)

Magneto-Encephalogram (brain currents detection)

CTF MEG System

Fetal Magneto-Cardiogram (fetal heart currents detection)

Hypres/BTi FMCG System

These applications cannot be done using any other technology...

Superconductivity

74

HYPRES

Josephson Junction Devices

Active component (switch) in superconductor electronics

Superconductive Transmission Lines

Microstrip Lines can ballistically transfer picosecond waveforms

- Semiconductor VLSI speed is limited by interconnect delays (RCtype charging)
- Superconductors have unique capability to transfer picosecond waveforms without distortions with speed approaching speed of light
- Crosstalk between neighboring transmission lines is very small
- Josephson junction impedance can be matched to that of microstrip lines

Josephson Junction Behavior

Picosecond waveforms and time responses

HYPRFS

RSFQ Gate Physical Layout on IC

RSFQ Basic Convention

RSFQ - Rapid Single Flux Quantum

Logic "1" - presence of a data SFQ pulse between two clock SFQ pulses

Logic "0" - absence of a data SFQ pulse between two clock SFQ pulses

Both Data and Clock are SFQ voltage pulses V(t) with quantized areas

$$Vdt = \Phi_0 = h/2e = 2.07 \text{ mV} \cdot \text{ps}$$

of information

YPRES

SFQ

RSFQ Logic - Basic Components

How to generate, transfer, store, and switch SFQ pulses

Non-storage inductance ~ 6 pH vs. Storage inductance ~ 12 pH

Rapid Single Flux Quantum (RSFQ) Logic

Both Data and Clock are SFQ voltage pulses V(t) with quantized areas

Why RSFQ Logic ?

	Latching logic	RSFQ logic
Data Presentation	Voltage	Magnetic flux
Natural quantization	Νο	Yes ($\Phi_0 = h/2e$)
Power consumption	~ 3 pW/gate	~ 0.3 pW/gate
Power supply	AC	DC
Self-timing possible	No	Yes
Maximum IC Speed	~ 3 GHz	~ 300 GHz

RSFQ Logic Gate: RS Flip-Flop

Josephson Junctions with different Ic

RSFQ Gates - Natural Flip-Flops

Basic Set of RSFQ Elementary Cells

T flip-flops, RS flip-flops, and their modifications with DRO/NDRO

ADC Front-End Design

Phase (Time Delay) Modulation-Demodulation Architecture

Accurate measurement of time delays modulated by input signal

Modulation:

- Clock generates two identical SFQ pulse trains (*D* goes via Quantizer, *T* goes via a delay)
- Input signal induces additional current in the Quantizer
- This additional current changes time of releasing SFQs of train D from the quantizer
- **Demodulation:**
 - T and D SFQ pulse trains meet at the synchronizer (race arbiter)
 - change in arrival time of train D vs. train T is measured in synchronizer

HYPRES

Performance Metric: Power-Delay Product

HYPRES Commercial Nb Foundry

HYPRES, Inc. - Company Information

- Founded in 1983, HYPRES is a complete superconductor electronics company, offering design development, fabrication, testing, and packaging in a commercial production environment
 - Privately-held Small Business in Elmsford, NY, located 30 miles north of New York City
 - Team of 40 (mostly advanced degreed)
 - > 16,000 sq. ft. facility includes commercial Nb foundry
- HYPRES is the premier commercial supplier of Primary Voltage Standard circuits and systems worldwide
- HYPRES commercial Nb Foundry has 8-10 mask releases per year and offers individual chip sites at only \$80/mm²

