
This material is based upon works supported by Science
Foundation Ireland under Grant No. 03/CE3/I405

SYMBOL TIMING SYNCHRONIZATION IN SOFTWARE RADIO RECEIVERS

Declan Flood, Linda Doyle, Keith Nolan and Donal O’Mahony

(Centre for Telecommunications Value Chain Driven Research (CTVR), Trinity College Dublin,
Rep. of Ireland; flooddk@tcd.ie, keithnolan@mee.tcd.ie, ledoyle@tcd.ie, omahony@cs.tcd.ie)

ABSTRACT

The Centre for Telecommunications Value Chain Driven
Research (CTVR) approach to software radio is to focus
on the use of a general-purpose processor (GPP). The use
of a GPP to perform signal processing for
communications applications presents the developer with
challenges but it also presents some opportunities. We
argue new classes of algorithms are required which will
exploit the advantages and negate the disadvantages of
using a GPP. Indeed other researchers have already
started this programme of ‘algorithmic advances’. This
paper discusses the issues involved and reviews some
existing developments. We present our own progress in
developing a noise adaptive symbol synchroniser and we
discuss some initial thoughts on how these techniques
may be applied to radio functions generally.

1. INTRODUCTION

In a software radio receiver the analog-to-digital converter
(ADC) is placed as close to the aerial as possible, Figure 1
[1]. In a pure software radio it would connect directly to
the aerial. However despite recent improvements, the
restrictive sampling rate of the ADC make this impossible
and so a generic radio frequency front-end is placed
between the aerial and converters. The front-end bandpass
filters the signal of interest from the received signal and
downconverts it to an intermediate frequency the ADC is
capable of sampling. Finally, a signal-processing unit
performs the remaining radio functions on the digitized
signal.

Figure 1: A software radio receiver

 Previous work in software radio has concentrated on
using reconfigurable hardware such as a FPGA or DSP
chip as the processing unit. However there are alternative
hardware possibilities and the Centre for
Telecommunications Value Chain Driven Research
(CTVR) approach focuses on the use of high-level
languages running on a General Purpose Processor (GPP)
such as a Pentium IV. The use a GPP has enormous
potential since it maximises the adaptability and
reconfigurability of the system [2].
 It is important to note that recent developments have
further complicated the divide between ASIC, FPGA,
DSP and GPP. Hybrid products from companies such as
Chameleon Systems Inc. and MorphICs Technology have
blurred the distinction between the various platforms.
 Software radio has both commercial and military
applications. Commercially, software radio promises a
range of improvements such as increased spectrum
efficiency through spectrum rental, faster development
times for telecommunications equipment, Over The Air
Reconfiguration (OTAR) for roaming users and
sophisticated DSP techniques such as adaptive antennas.
Software radio offers the military all these benefits plus
the holy grail of interoperability between military
branches without susceptibility to jamming [3].
 Traditional communications algorithms have been
developed with a view to implementation with analog
hardware or on an ASIC, FPGA or possibly DSP chip.
Algorithms have been tuned for optimum performance on
these platforms. The characteristics of the resources
available in a GPP innately differ to those of analog
hardware, ASICs, DSP chips or FPGAs. This paper
argues that because of these innate differences a new
approach to algorithm development is required.
Algorithms must be developed which play to the strengths
of GPPs.
 Section two discusses the salient characteristics of the
GPP when used in signal processing applications and
demonstrates the need for algorithm development. Section
three reviews work undertaken by other researchers and
section four presents our own developments. Finally
section five discusses how these ideas may be applied to
radio functions generally.

RF
Front-end

AD
Converter

Signal
Processing

Unit

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

2. GENERAL PURPOSE PROCESSOR FEATURES

The use of GPPs represents a paradigm shift for signal
processing. The salient features of a GPP relevant to
signal processing are:

2.1. Large Cache

Most GPPs have a large cache. This means algorithms
that exhibit a high locality of reference (both spatially and
temporally) for memory accesses will have a lower
average execution time. It is important to note that
although a cache reduces the average execution time it can
increase the variability of the execution time. This can
have a significant effect for algorithms running in real
time [5].

2.2. Large Data Memory

GPPs generally have large amounts of RAM. This RAM
can be exploited to implement a lookup table for
calculating awkward mathematical functions. Less
obviously, in a GPP segments of the received waveform
can be easily stored in memory. This is in contrast to a
purely hardware implementation where samples must be
dealt with as they arrive from the ADC. Even in a DSP or
FPGA implementation there are only small amounts of
RAM available limiting the amount of the signal that may
be stored in memory. In GPP implementations there is
little penalty for algorithms that make multiple passes
over the received signal or which do not process the
received samples in the same order they were received.

2.3. Lower Cost of Copying Data

Relative to a FPGA / ASIC there is little penalty for
making multiple copies of a piece of data. Consider the
statement A = B = C. The contents of register C must be
copied to registers B and A. In a FPGA / ASIC each
register will be represented by an array of flipflops. Each
of the flipflops of register C must be connected to the
corresponding register of both B and A. Physically, this
means there are a large number of connections going to
the register C. It is possible that the interconnect resources
of the FPGA will not be capable of dealing with this and
that the design will fail the Place & Route stage.

2.4. Ability to Dynamically Choose Algorithm at
Runtime

 One positive feature of a GPP is the ability to install a
number of algorithms and to dynamically select which
algorithm is actually used at runtime. It is also possible to

modify or even halt execution midway through
processing.

2.5. Sequential operation

GPPs execute programs in a purely sequential fashion.
Therefore algorithms designed for FPGA / ASICs that
have been used in the past because of their paralellizable
nature are of no benefit in GPP implementations.

 These points illustrate that the resources available
when implementing radio functions on a GPP innately
differ to those of other platforms. The advent of software
radio on a GPP platform requires the development of new
classes of communication algorithms. These will exploit
the strengths and diminish the weaknesses of GPP
platforms.

3. ALGORITHMIC ADVANCES

This section discusses existing work in this field but
before doing so it is worth considering how a ‘good’
signal-processing algorithm running on a GPP should
behave.
 Algorithms should present a minimal burden on
scarce computing resources.
 They should respond to changes in the environment
such as signal-to-noise ratio (SNR) and processor
architecture. In high SNR environments algorithms should
throttle back the amount of CPU time they are using.
Other applications running such as web browsers etc may
use the saved cycles. Alternatively the saved cycles may
be used to reduce the power consumption by lowering the
clock frequency. An algorithm should adapt itself to fully
exploit the features of the current PC workstation it is
running on. PC workstations vary in processor
architecture and cache size and layout.
 Finally, where algorithms cannot complete processing
due to real time constraints they should at least degrade
gracefully. For example when demodulating a bit of data
the algorithm could perform at least some processing and
make an estimate at the state of the bit.
 In summary, a good algorithm should have a fast
execution time, be capable of adapting to its environment
and if it fails it should fail gracefully.
 This process to develop algorithms that behave as
desired but with the constraints of the GPP as described in
the previous section has already started. Some of the key
developments are discussed here.
 Bose describes the implementation of an alternative
matched filter algorithm that uses early termination to
improve average execution time. Traditional
implementations of a matched filter must process all the
input samples before terminating. The alternative matched

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

filter algorithm described by Bose processes the input
samples in such a manner that in most cases the algorithm
can terminate early. In some cases the algorithm can have
an extremely long execution time but the average is
reduced [5].
 Welborn discusses a technique relevant to software
radio transmitters called Direct Waveform Synthesis
(DWS). Conventional digital modulators consist of a bits-
to-symbol mapper, a pulse shaping filter and an
intermediate frequency mixer. DWS allows these stages to
be performed in one very short step. DWS exploits the
memory available on a GPP to create a very large look-up
table [6] [7].
 Frigo details a highly efficient implementation of the
Fast Fourier Transform (FFT) called the Fastest Fourier
Transform in the West (FFTW). The Fourier transform is
essential for many modern communications schemes such
as Orthogonal Frequency Division Multiplexing (OFDM).
Traditional FFT algorithms are designed to minimize the
number of multiply operations required; however on a
GPP it is also important to exploit the presence of the
cache. The FFTW runs tests at power up to determine the
size of the cache and divides the Fourier transform into a
series of smaller problems – each of which fits in the
cache. The FFTW is an example of an algorithm adapting
to its environment [8].
 Traditionally, channel separation is performed in the
order: mixing, filtering and decimation. The output
sample rate is much smaller than the input sample rate.
Welborn argues for a novel channel separation scheme
where channel separation is performed in the order:
filtering, decimation and mixing. The mixing stage has
been moved to after the decimation stage and will be
performed at the lower and less computationally
demanding output sample rate [9].

4. HYBRID SYMBOL SYNCHRONIZATION
ALGORITHM

Our work on algorithmic advances aims to develop a
symbol timing synchronization algorithm tailored for a
GPP. Symbol timing synchronization is the process of
determining the start and end of each received symbol.
Symbol synchronization in sampled data receivers is a
two-stage process requiring a timing error estimator and
an interpolator to correct the received data. Timing
synchronization must be performed accurately to ensure
the detector stage works correctly [10].
 Rice presents symbol synchronization techniques
suitable for any sampled data receiver [11][12]. These
techniques, such as the maximum-likelihood or early-late
gate methods used in conjunction with a polyphase filter
bank to perform interpolation, are suitable for DSP chips.
However, none of these existing solutions exploit the

GPP’s ability to dynamically select at runtime which
algorithm is used.
 Our novel algorithm is a hybrid utilizing two standard
synchronization algorithms. The first, ‘light’, algorithm is
very fast but the quality of its output is low and can lead
to a high Bit Error Rate (BER). The second, ‘heavy’,
algorithm has a relatively long execution time but a very
low BER.
 The ‘light’ algorithm consists of an early-late gate
symbol synchronizer in conjunction with a polyphase
filterbank that has a relatively small number of taps. The
‘heavy’ algorithm consists of a maximum-likelihood
timing estimator in conjunction with a polyphase
filterbank that has large number of taps.
 Our hybrid algorithm performs synchronization on a
received block of data using the ‘light’ algorithm and
develops a confidence in its output. If this confidence is
high then the algorithm is finished. If the confidence is
low, then synchronization is performed again using the
second ‘heavy’ algorithm as shown in Figure 2.

Figure 2: Hybrid Algorithm

 Most blocks of data will only require the first ‘light’
algorithm. Some will require the use of both the ‘light’
and ‘heavy’ algorithm leading to a long computational
time for these blocks. The overall effect is a shortened
average execution time at little cost in quality of the
output. The algorithm is noise adaptive; at high SNR the
hybrid algorithm will rarely require the ‘heavy’ algorithm
and will have shorter execution time than at lower SNR.
 A key problem is to find a fast way of determining
the confidence in the output of the ‘light’ algorithm. The
principle of using a ‘light’ and ‘heavy’ algorithm in a
hybrid mix is discussed in [13].

Use ‘light’
algorithm

finishedfinished

determine
confidence

Low

High

Use ‘heavy’
algorithm

Short execution time
Common Case

Long execution time
Exceptional Case

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

5. GENERAL APPLICATION OF THE HYBRID
SOLUTION

This hybrid mix solution is likely to yield performance
improvements when applied to other functions in a
transceiver too. As part of our research into algorithmic
advances we plan to develop a set of general principles
that can be used when applying the hybrid mix solution to
a particular function in a transceiver. Some initial
thoughts are presented here.
 Although the ‘determine confidence’ algorithm is
essential to the hybrid solution it does not contribute to
the final result. It is a form of wastage in the hybrid
solution. Therefore it must have a short execution time.
More specifically it must have a short execution time
relative to the difference in execution time between the
‘heavy’ and ‘light’ algorithm.
 Also, for the hybrid solution to be effective the
specific algorithms chosen for the ‘heavy’ and ‘light’
algorithms must be such that there is a reasonable chance
either could be used on an incoming packet. For example
in particularly noisy environments it may be observed that
the hybrid algorithm is almost always being forced to
resort to use of the ‘heavy’ algorithm. This means that all
the computational time spent on using the ‘light’ and
‘determine confidence’ algorithms is wasted time. So the
size of each of the three algorithms and the probability of
success are interrelated. Also, an implementation using
the hybrid solution is only effective within a certain SNR
range.

6. CONCLUSIONS

The use of the GPP for signal processing in a
communications platform is a major technical challenge.
However, its use allows the creation of radios reaching
levels of adaptability and reconfigurability unattainable
though the use of other platforms.

 This paper has discussed some of the salient features
of the GPP relevant to software radio. The characteristics
of the resources available for GPP implementations
innately differ to those of existing implementations. We
argue the advent of the software radio on a GPP solicits
the development of new digital signal processing
algorithms. These will exploit the strengths and diminish
the weaknesses of GPP platforms. It is not enough to
implement software versions of existing hardware or DSP
chip algorithms – fresh thinking is required. This
development process has started but further work required
extending this to other physical layer functions in a
transceiver.

7. REFERENCES

 [1] W. Tuttlebee, “Software-defined radio: facets of a

developing technology”, IEEE Personal Communications,
April 1999.

[2] P. Mackenzie, L. Doyle, D. O'Mahony, & K. Nolan,
“Software Radio on General-Purpose Processors” , IEI/IEE
Symposium on Telecommunications Systems Research,
Dublin, November 2001.

[3] J. Melby, “JTRS and the evolution toward software-defined
radio”, MILCOM 2002.

[4] R.J. Lackey and D.W. Upmal. “Speakeasy: The Military
Software Radio”. IEEE Communications Magazine, May
1995.

[5] V. Bose. “Design and implementation of software radio
using a general purpose processor”. PhD Thesis June 1999,
Massachusetts Institute of Technology.

[6] M. Welborn, John Ankcorn. “Waveform Synthesis for
transmission of complex waveforms”. RAWCON’1999.

[7] M. Welborn. “Direct Waveform Synthesis for software
radios”. WCNC’1999.

[8] M. Frigo and S. Johnson. “FFTW: An Adaptive Software
Architecture for the FFT”. 1998 ICASSP conference.

[9] M. Welborn. “Narrowband Channel Extraction for
Wideband Receivers”. ICASSP’1999.

[10] U. Mengali and Aldo D’Andrea, “Synchronization
Techniques for Digital Receivers”. Plenum Pub Corp,
1997.

[11] M. Rice. “Polyphase Filterbanks for Symbol Timing
Synchronization in Sampled Data Receivers”. MILCOM
2002.

[12] M. Rice. “Loop Control Architectures for Symbol Timing
Synchronization in Sampled Data Receivers”. MILCOM
2002.

[13] M. Welborn. “Flexible Signal Processing Algorithms for
Wireless Communicaitons”. PhD Thesis. Massachusetts
Institute of Technology 2000.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

