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ABSTRACT 
 
Software defined radios add a degree of flexibility and 
versatility that is not possible with hardware based 
communication.  However, software based on ad hoc data 
structures or database schemas is limited to the features 
explicitly supported by the software.  Ontology-Based 
Radio (OBR) uses ontologies to add inferencing and 
reasoning capabilities which make radios self-aware, i.e., 
understand their own capabilities and the capabilities of 
other nodes.  One important application is for radios to 
query each other and to interoperate in ways that are not 
explicitly provided by the software. We show how 
ontologies and rules, in combination with Java reflection, 
can be used to implement self-awareness and 
interoperability. We illustrate how such radios would 
interoperate by giving an example in which radios negotiate 
the length and structure of equalizer training sequences.  
 

1. INTRODUCTION 

Ontology-Based Radio (OBR) is a mechanism for software 
defined communication nodes to interoperate, i.e., 
understand other nodes and modify the processing of 
packets during a communication session both at the source 
and the destination.  This mechanism uses an ontology to 
specify not only the structure of communication packets but 
also the processing of those packets according to the 
communication protocol.  Nodes have the ability to query 
both their own capabilities and the capabilities of other 
nodes.  The use of ontologies adds flexibility, inferencing 
and reasoning features that are not available with ad hoc 
data structures or database schemas. 

In this paper we demonstrate the concept of OBR using 
a prototype in which two-way communication between two 
nodes is implemented using a bi-directional acoustic link.  
The query mechanism is based on the Web Ontology 
Language (OWL) [1]. However, OBR presents a number of 
challenges not faced by other ontology-based applications.  
(1) Real-time processing demands higher performance for 

inference and reasoning than an interactive application.  (2) 
The "knowledge base" of a node includes state information 
that is continually varying, in contrast with the static 
knowledge bases required by most ontology-based 
reasoning systems.  (3) The "facts" are not stored in a 
knowledge base but rather are embedded in the software that 
implements the communication protocol. 

We solve the first two problems by using a Prolog-
based OWL reasoner which provides not only very fast 
reasoning, but also considerably smaller memory 
requirements than other OWL based theorem provers. 
Furthermore, it allows the radio to update intermediate 
derivations dynamically in sync with an incoming stream of 
facts, as required by the second problem above.  The third 
problem is solved by using a feature of programming 
languages called reflection.  This feature is built into 
languages such as Java and C++, and it can be added to 
languages such as C. Reflection provides a powerful 
mechanism whereby a running program can observe its own 
data structure types and the values of particular variables.  
The advantage of reflection over an ad hoc approach is that 
the code implementing the communication protocol need 
not have any monitoring or retrieval code for providing this 
feature. 

In our prototype we show how the communication 
between two OBR nodes can be controlled to improve 
communication performance.  In the example presented in 
this paper, two OBR nodes tailor the training sequence 
length in each packet, according to the channel dynamics 
and noise level.  In static conditions, this permits a 60% 
reduction in the packet overhead (training sequence length), 
while equalizer training is still improved in situations of 
high noise or channel dynamics. Most importantly, these 
examples demonstrate how ontology based reasoning can be 
used to achieve these performance gains.  We also 
demonstrate a chain of interactions between two OBR nodes 
in the process of negotiating the protocol parameters. The 
real goal of these experiments was to show that 
opportunities for negotiating communication protocols do 
exist and can be achieved using the OBR concept. 
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This paper presents an update on our progress in the 
efforts to fully implement the concept of Ontology-Based 
Radios as discussed in [2]. We have implemented a number 
of features that put us closer to the ultimate goal – radios  
that have sufficient self-awareness for them to negotiate 
their communication protocols. In particular, we extended 
our ontology by adding a number of rules that specify the 
behavior of the OBR nodes. The behaviors are controlled by 
a reasoner that derives behavior that satisfies a top-level 
goal.  The goal is specified in terms of communication 
performance, and behavior is derived by means of rules. 

The architecture of our OBR consists of a collection of 
producer-consumer queues that are used for particular 
functions, such as sending and receiving packets, checking 
communication performance and logical inference.  This 
architecture is presented in Section 2. 

To implement such a concurrent architecture we needed 
a reasoner that is appropriate for this kind of architecture. 
The JTP theorem prover [3] that we used to demonstrate the 
proof-of-concept, worked very well for offline reasoning, 
but was not suitable for our requirements.  A discussion of 
our inference engine is provided in Section 3.  

The reasoning process makes use of both the ontology 
and a set of rules. The ontology defines the basic terms in 
which the nodes communicate – classes and properties. The 
rules specify, in declarative form, how to react to particular 
situations. Rules used in our demonstration are discussed in 
Section 4. Rules use both other rules and ground facts to 
derive conclusions. In the context of SDR, static facts that 
are known a priori are stored in a fact base.  But some of the 
ground facts are only available as the radio is operating.  
These ground facts change over time, sometimes at a very 
high rate.  These values are accessed through the 
mechanism called reflection, described in Section 5. 

In Section 6 we discuss how the capability of 
interoperability can be used to improve communication. In 
particular, we discuss how two OBR nodes negotiate 
equalizer training sequences. Finally, in Section 7 we 
provide our conclusions and future work. In particular, we 
focus on providing interoperability of OBR nodes that use 
different communication protocols (waveforms). 
 

2.  OBR Architecture 
 

The OBR architecture includes five services which are 
implemented using Java threads. Figure 1 shows these 
services: DSS (Data Source Service, which generates data), 
DO (Data Out Service, which sends out data), DI (Data In 
Service, which receives data), MS (Monitor Service, which 
monitors the received data and responses) and DS (Data 
Sink Service, which consumes data).  

The node labeled SDR in the architecture represents the 

software defined radio.  In the prototype system this is 
represented by a Java class which sends and receives 
messages.  This class includes all the communication 
functions, such as compressing, filtering, modulation and  
equalization. The RC node is the reasoning component, 
which is implemented using a version of Prolog called 
Kernel Prolog.  The Monitor Service uses RC to do 
reasoning. The five services communicate with one another 
by using producer-consumer queues. 

Five types of message are used in communication: data, 
confirm, query, answer and command. A “data message” is 
a message whose content is a sequence of characters, which 
was generated by the Data Source Service. A “confirm 
message” is a message whose content is either “Continue”, 
or “CommandReq.” The Continue message is used when  
performance is acceptable, so that no changes are needed.  
The CommandReq message is used when performance is 
not adequate, so that the OBR should adjust its 
communication protocol. A “query message” queries both 
the channel condition and the structure of the 
communication node.  An “answer message” carries the 
answer to a corresponding query. A “command message” is 
used to control the communication node, such as a 
command to change the communication protocol. Figure 2 
shows the five types of message.  

 
3. Inference in an OBR 

 
OBR inference is provided by RC, the reasoning 
component, which is a goal-driven system. The facts are 
loaded into Prolog dynamically and used to achieve a goal, 
such as to generate a command that changes the 
communication protocol used by the communication nodes. 

Figure 1: The Architecture of OBR 

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved



After reasoning, inferred facts are discarded.  This prevents 
the knowledge base from increasing in size over time.  
 The RC was implemented using Kernel Prolog [4], a 
lightweight Java based Prolog interpreter. The axioms of 

OWL have been written in Prolog, and our ontology for 
SDR, which was previously written in OWL, have also been 
translated into Prolog facts.  We have also developed a set 
of rules to react to particular situations, all of which are 
asserted into the knowledge base of Kernel Prolog when the 
RC  begins functioning. 
 An example of an OWL rule is the subPropertyRule.  
This rule states that if a property is a subproperty of another 
one, then any fact using the subproperty implies that the 
corresponding fact using the superproperty also holds.  For 
example, in the OBR ontology, the 
hasTransmitterPacket and the 
hasReceiverPacket properties are subproperties of 
hasPacket.  Consequently, a query for the packet for an 
object will return the packet even though a packet is always 
either a transmitted or a received packet.  Although this is a 
very simple example, it illustrates the general principle of 
inference.  Most uses of RC involve much deeper chains of 
inference. All the queries are processed by a Prolog 
interpreter so that all inferences will be properly performed.  
OWL has many built-in rules such as subClass, subProperty, 
disjointWith, unionOf. These rules represent the axioms of 
the OWL language. 
 

4. Rules 
 
The set of rules for communication processing includes 
rules to check performance of communication, and to 

generate queries and commands according to different 
channel conditions. 
 When data is received, the Monitor Service uses the RC 
to check performance. The rule to check performance 
includes, among others, a query for the equalizer error and a 
comparison between the equalizer error and predefined 
upper and lower thresholds.  If the equalizer error is 
between the thresholds, performance is considered to be 
acceptable and a “confirm” message with content 
“continue” will be sent back. Otherwise, a confirm message 
with content “CommandReq” will be sent back, which 
requests a command to change the structure of the 
communication protocol.  
 The following is an example of one of the rules used for 
checking performance: 
 

checkPerformance(X) :-  
equalizerError(E), 
pv(obr8upperPerformanceThreshold, 
object8MonitorServiceDispatch, UPt), 
pv(obr8lowerPerformanceThreshold, 
object8MonitorServiceDispatch, LPt), 
compare('>', E, LPt),  
compare('<', E, UPt),  
assign('Continue ', X). 

 
The rule begins with the conclusion or goal, in this case 
whether to check performance.  The “:-” symbol separates 
the goal from the hypothesis required to satisfy the goal.  In 
this case, if the extracted equalizer error is larger than the 
predefined lowerPerformanceThreshold (LPt) and it is 
smaller than the predefined upperPerformanceThreshold 
(UPt), then a “Continue” message will be returned. 
 The command generation rules will generate commands 
according to the channel condition and the protocol 
currently being used.  So a query for the channel condition 
and information about the current protocol will be issued 
first. The answers to those queries are facts which will be 
loaded into Prolog temporarily. After the commands are 
generated, the facts are discarded. 
 The following are examples of some command 
generation rules: 
 

command(C) :- prevPacketExist, 
queryNode(Answer), first(Answer, 
VPrevEL), rest(Answer, Left1), 
first(Left1, VRmsDelay), rest(Left1, 
Left2), first(Left2, VER), 
rest(Left2, Left3), first(Left3, 
VPrevTL), dif(VRmsDelay, VPrevEL, 
Dis), halfValue(VPrevEL, Half), 
compare('<', Dis, Half), pv(obr8pf, 

Figure 2. Message types 
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object8MonitorServiceDispatch, PF), 
compare('<', VER, PF), pv(obr8value, 
object8MonitorServiceDispatch, 
Value), decrease(VPrevTL, Value, 
Ltemp), compute(':', Ltemp, 1, TL), 
trainingDataCommand(TL, C). 
 
queryNode(Answer) :- 
queryOtherNode([[VPrevEL, VRmsDelay, 
VER, VPrevTL], [pv, rdf8type, VSDR, 
obr8SDR], [pv, obr8hasPrevPacketInfo, 
VSDR, VPPI], [pv, obr8hasPrevEL, 
VPPI, VPrevEL], [pv, obr8hasPackets, 
VSDR, VPacket], [pv, 
obr8hasLastMultipath, VPacket, 
VLastMultipath], [pv, obr8rmsdelay, 
VLastMultipath, VRmsDelay], [pv, 
obr8hasEqualizer, VPacket, 
VEqualizer], [pv, obr8equalizerError, 
VEqualizer, VER], [pv, obr8hasPrevTL, 
VPPI, VPrevTL]], Answer). 
 
trainingDataCommand(TL, Command) :- 
initPath(InitPath), 
pvexeString(obr8newTrainingData, 
variable8SDRObject, TL, 
TrainingDataCommand), 
concat(InitPath, TrainingDataCommand, 
Command). 

  
These rules say that if the difference between the 
rmsDelay and the previous equalizer coefficient vector 
length is not very large (smaller than half of the previous 
equalizer length), and if the equalizer error is smaller than a 
predefined performance threshold, then the length of the 
training data can be decreased by a predefined value. 
 The rules to check performance and generate 
commands are written in advance and loaded into Prolog 
interpreter when the communication node starts functioning. 
 

5. Reflection 
 
When a query or a command is received, the Monitor 
Service asks the RC to answer the query or execute the 
command.  Information about the current communication 
parameters are obtained by using reflection. 

Java reflection is a built-in feature of Java. It allows a 
Java program to examine itself introspectively during run 
time. In order to use Java reflection with Kernel Prolog, a 
new built-in class called “pvref” was written and added to 
Kernel Prolog’s built-in collection.  

The following shows how to link Java reflection with 
rule engine queries. First we define patterns and link them 

with Jave reflection.  A pattern is an expression having the 
form: (property slot1 slot2 ...), where a slot can be filled 
with either an object or a variable.  As a result of our 
modification to Kernel Prolog, certain patterns are 
recognized by the Prolog interpreter as being reflective.  For 
example, a pattern of the form (function object 
Variable), where function is Java method name, 
object is a Java object and Variable is a variable, is 
evaluated by reflectively computing the value of the Java 
expression object.function() and setting 
Variable to the result. 
 In our experiment, a query is composed with a sequence 
of patterns with variables. When each pattern in the query  
is satisfied by Prolog, all the variables in the query will be 
assigned to values. In those variables, some of them are 
specified as “must bind” variables.  Similarly, a command is 
composed of a sequence of patterns with variables, just like 
a query, except that at least one pattern is an executable 
pattern.  For example, a pattern of the form (function, 
object, value) is evaluated by reflectively executing 
the Java expression object.function(value). 
Commands are distinguished from queries by using a 
different built-in function.  Queries use pvref, while 
commands use pvexe. 
 

6.  An Example: Negotiation of Equalizer Training 
Sequences 

 
In the following example, we will show how the interaction 
between two OBR nodes can be controlled to improve 
communication performance. 
 
6.1. Packet Structure 
  
We first describe the structure of packets transmitted by the 
SDR radio component. In our experiment, each transmitted 
packet includes a header, training data and ordinary data. 
We use DSSS as the alphabet for the header and for the 
training data. For example, DSSS(2, 7) is an instance of 
class DSSS, the “2” meaning that each chip is a BPSK chip, 
and the “7” meaning that the length of the bit vector is 27-1 
= 127. The bit vector is generated as an m-sequence. So 
using alphabet DSSS(2, 7), each header or training symbol 
will be mapped into 127 chips, where each chip is a BPSK 
chip.  

In summary, each transmitted packet includes: a header 
symbol (127 chips); several training data symbols (the 
number of training data symbols depending on the channel 
characteristics, with each symbol represented by 127 chips 
if we use the DSSS(2, 7) alphabet, or 31 chips if we use the 
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DSSS(2, 5) alphabet); and a sequence of data symbols, each 
being a BPSK symbol.  

The RLS algorithm is used to calculate the multipath 
structure of the fading channel, and an equalizer based on 
the RLS algorithm is used by the receiver to process the 
received data [5]. The equalizer coefficient vector is divided 
into a feedback coefficient vector and a feed forward 
coefficient vector. The length of the feedback coefficient 
vector of our equalizer is one third of the length of the 
equalizer. 
 
6.2. Establishing the communication channel 
  
In this example, negotiation of the length of the training data 
was accomplished by six transmissions. Suppose we 
initialize one transmission node (call it node A) as the 
transmitter, another node (node B) as  the receiver. Then 
after node A sends data to node B, node B will check 
performance. If performance is satisfactory, then node B 
return a “confirm” message with content “Continue”, and 
node A will continue to send data to B. If the performance is 
not satisfactory, a “confirm” message with content 
“CommandReq” (request a command from the other node) 
will be returned. Node A will then generate a command to 
change the communication protocol. The command 

generation rules first send a query from node A to node B 
requesting the channel condition and the current protocol 

parameters. When node B receives this query, it will infer 
the answer and send the answer back to node A. When node 
A receives the answer, it will generate the command. After 
the command is generated, it is sent to node B, and  
executed on node A, thus changing the protocol at node A. 
When node B receives the command, it will execute the 
command, thus changing the protocol at node B. A 
“confirm” message with content “Continue” is then sent to 
node A.    
 
6.3. Example: Negotiation of equalizer training length 
       

In this example, we will show that by negotiating the 
length of the training data according to the channel 
dynamics and noise level, we can reduce the packet 
overhead, while equalizer training is improved in situations 
of high noise or channel dynamics. 

To initialize the experiment, we set the transmitted 
packet to use a DSSS(2, 7) symbol (mapped to 127 chips) as 
the header, and a sequence of 12 DSSS(2, 5) symbols (31 
chips for each symbol) as the training data.  

The predefined upperPerformanceThreshold 
and lowerPerformanceThreshold of the 
performance checking rules are set to the same value to 
make sure a command request will be issued each time that 

the performance is checked. The command rules are defined 
in the following way: 

Figure 3. Some example data 
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 1). If the difference between the rmsDelay and the 
previous equalizer feedback coefficient vector length is 
large (larger than half of the previous equalizer feedback 
coefficient vector length), then a new equalizer must be 
constructed, the length of equalizer being 3*(integer part of 
rmsDelay + 1). A new training data is also constructed, 
with the length of (3*rmsDelay*20) mod (symbol length), 
which is about 20 times the length of the equalizer.  
 2). If the difference between the rmsDelay and  the 
previous equalizer feedback coefficient vector length is not 
very large (smaller than half of the previous equalizer 
feedback coefficient vector length), and if the equalizer 
error is smaller than a predefined performance threshold, 
then the length of the training data can be decreased by a 
predefined value. The old equalizer will be used. 
 3). If the difference between the rmsDelay and  the 
previous equalizer feedback coefficient vector length is not 
very large (smaller than half of the previous equalizer 
feedback coefficient vector length), and if the equalizer 
error is larger than a predefined performance threshold, then 
the length of the training data can be increased by a 
predefined value. The old equalizer will be used. 
 The predefined performance threshold was set to 0.122. 
The increase or decrease value was set to 1, which means 
that one symbol will be added or removed from training 
data sequence each time.  
 Figure 3 shows the results of experiments using two 
acoustic nodes. The four plots in Figure 3 show the average 
rmsDelay, the length of the equalizer coefficient vector, the 
length of the training data sequence and the length of the 
ordinary data sequence. We tried three inter-node ranges: 
1m, 2m and 3m. Some objects were placed around the 
speaker and microphone  so that there would be some 
multipath effects.  

From Figure 3 we can see that for the worst condition 
(in our case, 3 meters distance with reflection), about twenty 
symbols were selected according to the negotiation rules, 
while in other cases, fewer symbols were needed. From 
these figures we see this approach can result in a 60% 
reduction in packet overhead.  

The last plot shows the change of the equalizer error 
when the communication nodes change their equalizer and 
training data. In this experiment, the distance between two 
nodes was 3 meters, and since we initially used only twelve 
symbols as training data, the first three transmissions had 
high equalizer errors. In fact, this situation requires at least 
twenty training symbols. The equalizer size of the two 
nodes was increased to twenty in the third packet, and 
consequently, the equalizer error was reduced greatly. 
 
 

7.  Conclusions and future work 
 

We have presented a mechanism for software defined 
communication nodes to interoperate, i.e., understand other 
nodes and modify the processing of packets during a 
communication session both at the source and the 
destination. A negotiation of two OBR nodes to tailor the 
training sequence length according to the channel dynamics 
and noise level was used as an example, and the result 
shows that this negotiation results in a 60% reduction in the 
packet overhead, and equalizer training is improved in 
situations of high noise or channel dynamics. The main goal 
for these experiments was to show that opportunities for 
negotiation of protocol parameters do exist and can be 
achieved using the OBR concept presented in this paper. In 
the future we will continue to investigate the interoperability 
of the communication nodes, in particular, we will focus on 
using different communication protocols (waveforms). 
 At this time we are not aware of any other 
implementation of an ontology-based radio. The closest to 
our approach is the concept of the XG program [6] in which 
ontologies and negotiation are supposed to be used for 
dynamic spectrum management. This concept is described 
in [7, 8]. It is our belief that our approach is appropriate for 
the  implementation of  this concept. 
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