

Wideband Modem Design Using FPGAs

Rob Pelt Altera

© 2004 Altera Corporation

Outline

- Analog Up Conversion
- Digital Up Conversion (DUC)
- Polyphase Digital Up Conversion
- Conclusion
- Questions

Analog Up Conversion

Current Modems

- Digital Baseband
- Digital Intermediate Frequency (IF) \rightarrow Possibly
- Analog RF (Possible Direct Up Conversion)

Analog Digital Up Conversion

Impairments are Introduced

- High Order Mixing Products
 - 3rd, 5th, 7th, . . . Order Terms
- Error Vector Magnitude (EVM) Impairments
 - I/Q Phase & Magnitude Imbalance
- Carrier Feed-through
- Harmonics
- Sideband Noise
- Analog Filter Characteristics
 - Non-Linear Phase
 - Group Delay Variation

Moving from Analog to Digital

Advantages

- Higher Performance
- Lower Implementation Loss
- Time to Market
- Flexibility
- Disadvantages
 - Incremental Cost
 - Higher Power

Digital Up Conversion

- Quadrature Digital IF
- Eliminates I/Q Imbalance (EVM Distortion)
- Single D/A Converter

Digital Up Conversion in FPGA

- Current FPGAs are Feature Rich
 - Arithmetic Operators
 - Embedded Memory
 - High-Speed I/O
 - PLL
- FPGA Clock Speeds are >300 MHz
 - Bandwidths up to 150 MHz

Altera's Stratix II FPGA Family

Device	Equivalent Logic Elements	Total Memory Bits	18x18 Multipliers	PLL
EP2S15	15,600	419,328	48	6
EP2S30	33,880	1,369,728	64	6
EP2S60	60,440	2,544,192	144	12
EP2S90	90,960	4,520,448	192	12
EP2S130	132,540	6,747,840	252	12
EP2S180	179,400	9,383,040	384	12

Digital Up Converter

- Stratix II Common Building Blocks
- Speeds at >300 MHz
- Nyquist Bandwidth of ~150 MHz

Component	Maximum Speed		
FIR Filter	339 MHz		
NCO	404 MHz		
FFT (256 point)	314 MHz		

Polyphase Approach

Current D/A converters Have Sample Rates of >1 GSPS

Bandwidth of >500 MHz

- Standard DUC Approaches Limit Bandwidth to ~150 MHZ
- Polyphase DUC can Take Advantage of D/A Sample Rates
 - Bandwidths up to DAC Nyquist

Polyphase Approach

- Familiar Polyphase Decomposition
- Each Sub-Filter Processes a Different Phase of the Input Signal
- Output Commutator Supplies Up-Sampling

Polyphase Digital Up Conversion

- Polyphase Decomposition of Up-Conversion
 Sub-DUC Replaces Sub-Filters
- Low Voltage Differential Signaling (LVDS)
 - Serializer Mux
 - Replaces Commutator

Sub-DUC Construction

Mixer

- Normal Polyphase Decomposition
- NCO
 - Frequency
 - Initial Phase
 - Spectral Inversion Compensation

NCO Frequency

Set frequency Based on Desired Alias

$$F_{a_gen} = \begin{cases} F_{gen} & \text{for } F_{gen} < F_{s_nco}/2 \\ F_{gen} - (F_{s_nco} * alias) & \text{for } F_{gen} > F_{s_nco}/2 \end{cases}$$

Where:

Fa_gen is alias frequency setting for the NCO Fgen is the desired output frequency *alias* is the Nyquist zone number

NCO Phase

Phase Set for Alias Frequency

$$\phi_N = \frac{360 * F_{gen}}{F_s dac * N}$$

Where:

N is the number of sub-DUCs Fs_dac is the clock speed of the DAC Fgen is the desired output frequency

Conclusion

- FPGAs are Well Equipped for Digital Up Conversion
- D/A Converters with GHz Sampling Rates are Available
- Using Polyphase Decomposition & Aliasing, FPGAs Can Be Used to Interface to the GHz D/A Converters

Thank You For More Information Visit www.altera.com

© 2004 Altera Corporation