

Asymmetric Modulation for Cognitive Radio and Intelligent Environments

2004 Software Defined Radio Technical Conference and Product Exposition

Eric Kreb Scientific Applications International Corporation krebe@saic.com Robert Morelos-Zaragoza San Jose State University r.morelos-zaragoza@ieee.org

Outline

- Introduction
- Asymmetric Modulation
 - Design
 - Mathematical Analysis
 - Graphical Analysis
- Asymmetric Coherence
- Opportunities for Intelligent Environments
- Conclusion

Complex Baseband System Model

Advanced Research and Engineering Solutions (ARES)

Orthogonal Basis Functions

Common Modulation Schemes

Advanced Research and Engineering Solutions (ARES)

Modulated Envelope

Asymmetric Modulation Design

Advanced Research and Engineering Solutions (ARES)

AsPSK

Asymmetric Phase-Shift Keying

AsQAM

Asymmetric Quadrature Amplitude Modulation

Asymmetric Phase-Shift Keying

Advanced Research and Engineering Solutions (ARES)

Mapping Functions

AsPSK: Constellations

AsPSK-
$$\mathbf{z}_1$$
 & AsPSK- \mathbf{z}_2

$$P_{b1} \approx Q \left(\sqrt{2 \cdot \lg(M)} \cdot \sqrt{\frac{E_B}{N_0}} \cdot \sin\left\{\frac{\pi \cdot (M - 1 - \alpha)}{M}\right\} \right)$$

$$P_{b2} \approx Q \left(\sqrt{2 \cdot \lg(M)} \cdot \sqrt{\frac{E_B}{N_0}} \cdot \sin\left\{ \pi \left[\frac{M - 1}{M} \right]^{(1 - \alpha)} \right\} \right)$$

AsPSK: Dynamic Control

Advanced Research and Engineering Solutions (ARES)

AsQAM: Lattice Structure

AsQAM: Lattice Structures

Advanced Research and Engineering Solutions (ARES)

AsQAM: Constellations

Advanced Research and Engineering Solutions (ARES)

٠

AsQAM: BER in AWGN

Advanced Research and Engineering Solutions (ARES)

QAM & AsQAM $P_{b_{QAM}} \approx \frac{3}{4} Q \left(\frac{2}{\sqrt{5}} \sqrt{\frac{E_B}{N_o}} \right)$ $P_{b_AsQAM} \approx Q \left(\frac{2\sqrt{2}}{3} \sqrt{\frac{E_B}{N_0}} \right)$

AsQAM vs. Standard QAM

Advanced Research and Engineering Solutions (ARES)

Nearest-Neighbor Distances	
Ge	16-AsQAM- 🖀 1
1	0.6761
2	0.6688
3	0.6690
4	0.6659
16-QAM	0.6325

Clock Synchronization

Advanced Research and Engineering Solutions (ARES)

Coherent & Noncoherent

Advanced Research and Engineering Solutions (ARES)

noncoherent 4-AsPSK-v1 100 bSize = 2 bSize = 10 10^{-1} •bSize = 50 **H** 10⁻² bSize = 200 4-DPSK 10-3 4 PSI 10 10 12 6 8 14 Δ E_b/N_o

AsPSK- 2

AsPSK- 2

- Dynamic Design
- Synchronization and Data Transfer Modes

Opportunities for

- Low Priority Data Transfer at Low Cost
- Continuous and Discrete Constellation Monitoring

Conclusion

- Discrete and Continuous Dynamic Designs
- Optimal Lattice Structure
- Asymmetric Coherence
- Environmental Intelligence Capability

References

- [1] S. Haykin, Communication Systems, 4th ed., New York: Wiley, 2001
- [2] M. Isaka, M. Fossorier, R. Morelos-Zaragoza, S. Lin, H. Imai, "Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding – Part II: Asymmetric Constellations," IEEE Transactions on Communications, no. 5, pp. 774-786, May 2000
- [3] L. Venkata Subramaniam, S. Rajan, R. Bahl, "Performance of 4- and 8-State TCM Schemes with Asymmetric 8-PSK in Fading Channels," IEEE Transactions on Vehicular Technology, vol. 49, No. 1, pg 211-219, January 2000
- [4] F. Sanzi, M. C. Necker, "Totally Blind APP Channel Estimation with Higher Order Modulation Schemes," Proceedings of the Vehicular Technology Conference, Orlando, October 2003
- [5] G. Colavope, R. Raheli, "On Noncoherent Sequence Detection of Coded QAM," IEEE Communications Letters, Vol. 2, No. 8, August 1998