

SYSTEM LEVEL HARDWARE ABSTRACTION FOR SOFTWARE DEFINED

RADIOS

Cyprian Grassmann (Infineon Technologies AG, CPR ST, 81739 Munich, Germany,
cyprian.grassmann@infineon.com), Mirko Sauermann

(mirko.sauermann@infineon.com), Hans-Martin Bluethgen (hans-
martin.bluethgen@infineon.com), Ulrich Ramacher (ulrich.ramacher@infineon.com)

ABSTRACT

Next generation mobile devices employ multiple
programmable processing resources, which need to be or-
chestrated efficiently by the designer. The usage of low
level operating system APIs limits the reusability of the
implementation substantially. Moreover, expensive re-
implementations are needed during design space
explorations. An explicit and platform independent
representation of parallelism within the system model on
different levels of abstraction is essential for a successful
and quick design process as it relies on code generation and
compilation techniques. Throughout this paper we discuss
the prerequisites for a substantial support of the design
process by code generation and compilation techniques and
the implementation of according tool extensions. The
development of the tool extensions is based on the Eclipse
framework [1] and simplified parts from a WLAN 802.11b
model are used as test examples for the design process.

1. INTRODUCTION

Increasing complexity of software implemented radio stan-
dards and the need for performance enhancements from re-
lease to release, fuels the interest in hardware abstraction for
signal processing systems and for software defined radios in
particular. Normally hardware is abstracted through appli-
cation programming interfaces (APIs), like they are pro-
vided by operating systems. This kind of abstraction speci-
fies an API composed of a common set of services, which
are fairly low level. As the API warrants properties of its
services, the hardware is already specified to a certain de-
gree. The mapping process is simpler for programs using
such APIs but unfortunately it restricts the possible alterna-
tives of hardware architectures to a smaller set. Especially it
is nearly impossible to find a common set of services, which
abstracts from different kinds of parallel architectures.
Similar problems appear with reconfigurable logic. One
way to tackle with that problem is the introduction of rich,
application specific APIs, which need to be continuously

adapted to evolving standards and progresses in the signal
processing. Not only the maintenance and porting of such
libraries to different architectures, but also the limited
reusability of the code, which uses such APIs is the major
drawback of that solution. Instead we propose a system
level description for signal processing systems, which
serves as the origin of a model based design process. Rather
than implementing the base band processing in some of the
programming languages, using a given OS-API, a
functional component view is used, which is extended by so
called “non-functional” information, like timing require-
ments and quality of service constraints. As a functional
component view just covers the coarse grain data flow
nature of the signal processing system, additional thoughts
need to go into the action semantic used inside of the
functional components and into the specification of control.
Any procedural language like C or Java may be a straight
forward solution to describe the action semantic of the
functional components, but the mapping to parallel architec-
tures is complicated or prohibited, because data
dependencies can’t be analyzed completely. Additionally
the programmer may be able to give hints for different
parallel mappings of the same algorithm, to increase the
chance for an efficient mapping to heterogeneous parallel
hardware architectures. Also a lot of care has to be taken for
a clear separation of control and signal processing. Only if
that separation is maintained, efficient partitioning and code
generation mechanisms can be developed. An efficient code
generation is a key technology for quick design iterations
based on the system model that we propose. With this paper
we will give a brief overview over the possible candidates
for a system description and describe our approach towards
a model based design process, which supports the mapping
to parallel architectures. As this approach can’t be realized
without low level APIs, supporting the code generation and
compile process, we also discuss the impact of this
approach on this kind of APIs. A simplified receive chain
from our WLAN 802.11b model serves as concrete
example.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

2. MODEL BASED SYSTEM DESIGN

The main objectives of a model based design approach are
the clear separation of the system modeling and the system
implementation onto target hardware architectures and the
ability to execute the model for early verification. The sepa-
ration of modeling and implementation basically allows the
reuse of a model with different target hardware architec-
tures, hence it also allows to design the target hardware ar-
chitecture concurrently to the model.
Nowadays design processes following this concept just
partly. Especially for systems which are dominated by
signal processing tasks, more or less larger parts of the
overall system are modeled using tools like Simulink.
Simulinks representation is well suited for data flow models
and does not necessarily requires to model the system in a
target specific way. Nevertheless a lot of designs already
contain a lot of target specific aspects, which prohibit the
reuse of these designs in a new system model. It is
important to note, that the target specific information itself
is not the problem, but rather its intended or unintended
mangling with the description of the model behavior. The
target specific information should rather be clearly
separated as a set of constraints to the model – one set for
each target hardware architecture. Modeling only parts of
the system obviously prohibits early system verification.
Not only the time pressure during product designs but also
the time consuming simulation of the complex system mod-
els results in a limitation to partial models of a system. A
substantial relieve can be expected by the seamless integra-
tion of sophisticated simulation techniques into the design
process. Acceleration need to be realized by distributed
computing or hardware acceleration, if a further abstraction
of the model is prohibited. It should not be unmentioned
here, that tools like Simulink also limit the possible design
space, as they provide limited semantic and usually focus on
a specific computational model like a data flow model. That
would lead to an unreasonably high effort for the modeling
if systems with a mixture of computational models have to
be modeled – which is the normal case and not the excep-
tion. Hence the gap between theory and practice is also due
to the lack of efficient tool support, which is based on the
lack of according techniques to transform the higher level
representations of the model to a representation which
allows for implementation. As the higher level representa-
tion needs to be translated into a representation closer to the
implementation, preserving the semantics, it can be referred
to as a compilation. Often the term code generation is used
for this transformation as a lot of code which will be com-
piled by compilers of the target architecture is generated
from the abstract models of the higher level representation.
Ideally a high-level representation gives the designer suffi-
cient semantically expressiveness and guidance for a de-

scription which is independent form the target architecture.
Additionally it should be possible to add a rich set of con-
straints to enable a tool based transformation of the higher
level representation to a representation closer to the imple-
mentation. It is self explanatory, that the high level repre-
sentation is executable to allow an early verification.

3. MODELLING LANGUAGES

Modelling languages like the waveform description lan-
guage WDL [2] are aiming to provide an ideal high-level
representation, avoiding limitations by the combination of
aspects from different existing languages. WDL suppose to
incorporate aspects from functional, object oriented, block
diagram, state machine, synchronous and specification lan-
guages to form a language for a hierarchical decomposition
of behaviour. The refinement to an implementation should
take place with help of a set of constraints which is not fur-
ther detailed.
WDL should be realized using Ptolemy II from University
of California at Berkeley [3], as it already fulfils many of
the requirements asked for by the WDL specification and
allows the execution of the model by a Java simulation.
The question is, why new modelling languages like WDL
are invented, even if there is a bunch of languages available
to model systems and moreover why the success of all these
languages is reasonably low – except for languages in spe-
cific domains, like UML in the object oriented domain. On
the one hand this is due to a rather conservative attitude of
the EDA industry and on the other hand based on the lack
of sufficient tool support for the new language capabilities.
This is also true for WDL: A central aspect, the refinement
to the implementation, including the code generation is still
in its infancy. Only if a decent support for these steps in the
design process is available, it is reasonable for a system de-
signer to consider the shift to a new modelling language.
Additionally legacy code and models are good reasons to
stick with an already existing modelling language.
Hence a deeper and longer lasting impact to the overall de-
sign process can be expected by focusing onto
enhancements to the current state of the art modelling
techniques and languages picking up the designer at his
current level of abstraction. Additionally a common
acceptance and understanding of the modelling language is
crucial for its success. Therefore the adaptation and
extension of UML [4], like it is actually taking place with
SysML [5] will hopefully lead to a widely accepted solution
in the community. In addition to this, modelling tools and
techniques like Simulink should be interfaced and extended
for a continuously migration towards a unified description.
The most valuable extension to these tools will be a well
defined format and method to add constraints for a
refinement to implementation, like with a logic language
used in Metropolis [6]. This will lead to a relieve of the high

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

level description from properties which are specific to the
target hardware architecture and will allow for a further
automation of the code generation process.
A critical part of each modelling language is the underlying
language which is used to describe the behaviour of func-
tional blocks, as this language has to be compiled or synthe-
sised efficiently to the target hardware architecture. Most
often programming languages like C, C++ or Java are used.
Hence the exploitation of parallelism on this level need to
be done by loop nest analysis and exploitation of instruction
level parallelism during the compilation. Parallel program-
ming languages can ease the compile process and force the
designer to explicitly express the parallelism on this level
too. Nevertheless none of the parallel programming lan-
guages has come to acceptance so far, because of the low
maturity of the compilation techniques and low portion of
massively parallel commercial systems in the past.
However, due to the raising complexity and parallelism of
systems today, explicit parallel programming languages and
the explicit documentation of data and control dependencies
within the system gets more important.

4. CODE GENERATION

The code generation process and its support by the model-
ling language needs to be further specified, as code genera-
tion can take place on multiple abstraction levels and can
potentially cover very different aspects of the design.
Ideally it would be possible to describe the behaviour and
the structure of the system in very abstract manner, using
functional component diagrams and a semantically rich
mathematical description for the behaviour of the
components. The code generation should then not only be
able to analyze the behaviour of each component but rather
be able to extend this analysis over multiple components
and to modify and optimize the underlying algorithms for an
efficient implementation onto the target hardware
architecture, including the partitioning into software and
hardware implementations.
Such a scenario is currently far of reach, as the code genera-
tion engine would need to be able to rework the underlying
algorithms of the model without changing the indented be-
haviour of the system. Up to now this task can only be ad-
dressed by the system- and algorithm-designers.
Approaches for an automatic derivation of special
instructions or dedicated hardware components during the
refinement to an implementation are addressed by projects
like MOVE [7, 8] and will not be further discussed in this
article, as it focuses on a software implementation alone.
Nevertheless code generation can be efficiently exploited to
map the structure and control of a system model to an im-
plementation onto the target hardware architecture, taking
the behavioural components as black boxes. Consequently
the granularity of the model is predetermined by the func-

tional partitioning and the design of the functional compo-
nents. The main steps in that kind of code generation are to
find a valid schedule of the component functions and to de-
clare and link the data and control buffers needed for its
execution. This can be done fairly easy for a single task en-
vironment, but as soon as multithreading or parallel hard-
ware should be exploited the code generation is getting
more demanding, and also more important for a successful
and quick design process. Even if there are no satisfying au-
tomatisms to find a good partitioning onto parallel hardware
targets - which may also be of heterogeneous nature - the
design process is still substantially accelerated if all the
buffers, synchronization primitives and their arrangement in
a parallel program (e.g. by the generation of multiple thread
functions) are generated automatically. It allows a quick
assessment of different alternatives for a partitioning of the
system onto parallel target hardware architectures and
avoids error prune, manual modifications of the software
implementation which can easily consume person months to
run free of errors.
We use a template based code generation process, which
allows us to generate multithreaded C-code for simplified
receive and transmit chains of WLAN 802.11b. Extensions
of the code generator needed for more complex models,
including complete receive and transmit chains, are
currently under development.

Figure 1: Code generation process

The basic code generation process is shown in Figure 1. The
structure of the model is extracted from the Simulink MDL-
file. Additionally the data types and sizes of the connections
between the functional components are taken from the
<block name>.pl files. The pl-file format is based on the
ptlang format from Ptolemy. We use this format because it
allows us to describe the functional blocks in a fairly
generic way, without too many tool specific aspects,
contrary to the description with S-functions in Simulink.

Graphical Design Entry
UML / Simulink

Set of Constraints:
- Latency requirements
- Throughput requirements
- buffer strategy
- assignment to processors
- … Library of Primitives (*.pl files)

- Simulation View (C/C++)
- DSP View (DPCE / ASM)
- Execution Costs (profiling)
- Timing

Source code templates
-Thread functions
- Buffer declarations
- OS primitives (sync)

Parser

Multithreaded
program

Internal data
structure

(annotated graph)

Parser based
template

customization

Glue code
generation

Code Generator

Graphical Design Entry
UML / Simulink

Set of Constraints:
- Latency requirements
- Throughput requirements
- buffer strategy
- assignment to processors
- … Library of Primitives (*.pl files)

- Simulation View (C/C++)
- DSP View (DPCE / ASM)
- Execution Costs (profiling)
- Timing

Source code templates
-Thread functions
- Buffer declarations
- OS primitives (sync)

Parser

Multithreaded
program

Internal data
structure

(annotated graph)

Parser based
template

customization

Glue code
generation

Code Generator

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

To keep the link to Simulink we implemented a generator,
which generates S-functions from pl-files.

Figure 2: generic representation of functionality

The pl-file format itself is further extended by sections
which allow the description of internal states and estimated
cycle times for the execution of the enclosed function.
Hence it serves as the central generic description of func-
tionality (Figure 2). Additionally we investigate the
possibilities to use parallel programming languages and
language extensions, which provide a substantial support to
the compilation process. In this context we used Data Par-
allel C-Extensions (DPCE) [9] as input format for our
SIMD-compiler which targets a special SIMD DSP-archi-
tecture [10]. DPCE appears to be helpful, as a part of the
loop nest analysis can be omitted and the generation of se-
quential code from the parallel code is relatively straight
forward. Therefore simulations can take place on the gener-
ated sequential code. Nevertheless we also discovered the
need for semantic extensions to enable further optimizations
within the compiler.
Due to the ongoing research and development of the code
generation process the designer currently has to determine
the buffer strategy and other “non-functional” aspects to
enable the code generation process. Up to now the buffer
strategy and similar “non-functional” information is either
kept in additional text files or in separate objects within the
implementation. We investigate formal and modular for-
mats, like the logical language used in Metropolis, which
ensures better portability and consistency of system model.

5. PARTITIONING AND SCHEDULING

Even if the partitioning and scheduling of an application
onto the target system is done manually, simulation runs are
still needed to assess the quality of the respective solution.
To avoid multiple simulation runs with different partition-
ings and different schedules, an optimization based on the
costs for the execution of each functional block and the cost
to communicate the results to succeeding blocks can be used
to determine the quality and the best candidate from
multiple partitionings and schedules. We model each
operation mode of the base band processing by a graph,
apply a multi level partitioning to it and assess all possible
schedules for the given partitioning [11].
For some systems, like for WLAN 802.11b it is necessary to
setup multiple instances of the same processing chain to
fulfil throughput requirements. It is important to know if
one of the functions in the chain has a state which needs to
be preserved from one execution of the function to the next,
because this state need to be communicated and synchro-
nized between the multiple instances of the processing
chain. Therefore we extract state information from the pl-
files of the model and use it when multiple instantiations of
processing chains leads to an expansion of the original
graph. The complete process of the partitioning and sched-
uling solution is sketched in Figure 3.

Figure 3: partitioning and scheduling

Implementation

Primitives
Library

MLD Format

Primitives
Library

Simulink Format

Primitives Library
Source Code

<block name>.pl

Primitives
Library

DSP-Assembly
<block name>.asm

Simulation

Primitives
Library

plain C-functions

Primitives
Library

VHDL hard macro
<block name>.vhdl

•C-function
•Interfaces
•Internal states
•Execution time

Generator
(ptlang)

Generator
(Perl Script)

Generator
(parser &
templates)

Hardware
designer

programmer

Implementation

Primitives
Library

MLD Format

Primitives
Library

Simulink Format

Primitives Library
Source Code

<block name>.pl

Primitives
Library

DSP-Assembly
<block name>.asm

Simulation

Primitives
Library

plain C-functions

Primitives
Library

VHDL hard macro
<block name>.vhdl

•C-function
•Interfaces
•Internal states
•Execution time

Generator
(ptlang)

Generator
(Perl Script)

Generator
(parser &
templates)

Hardware
designer

programmer

Simulink model
(MDL-File)

MDL-File Parser

Graph expansion

External Data
(.pl files)

Partitioned and scheduled graph

Eclipse Frame Work

PL-File Parser

Internal Data Structure
Task Precedence Graph TPG

state and timingstructure

Expanded Task Precedence Graph E-TPG

Multilevel Graph Partitioning

Partitioned Graph

Scheduling

Simulink model
(MDL-File)

MDL-File Parser

Graph expansion

External Data
(.pl files)

Partitioned and scheduled graph

Eclipse Frame Work

PL-File Parser

Internal Data Structure
Task Precedence Graph TPG

state and timingstructure

Expanded Task Precedence Graph E-TPG

Multilevel Graph Partitioning

Partitioned Graph

Scheduling

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Figure 4: Simulink model of simplified 802.11b receive chain

6. OPERATING SYSTEM

Only a very lean operating system API is needed to support
the implementation of wireless base band standards. Hence
we developed an operating system API which is reduced to
21 functions, including thread handling, messaging and syn-
chronization. Interrupt handling is optional and can be
added if needed. The resulting operating system not only
has a very small memory footprint of about 13 kB, but is
also highly portable and configurable, because it employs a
clear separation of platform dependent and independent
parts. All services are implemented platform independent if
possible. Based on the minimization and the clear separation
of platform dependent and independent parts, we are able to
generate the platform dependent parts of the operating
system with the help of an architecture description.

7. WLAN 802.11B IMPLEMENTATION

The development of the tool extensions described through-
out this paper is guided by a reference implementation of
WLAN 802.11b. Hence generated code can easily be
checked against the manual implementation. Moreover we
gained valuable experience by the manual implementation
of the transmit and receive chains for this standard, to intro-
duce improvements at the right places within the design and
development process. E.g. the observed relation between
signal processing code size and control code size, which is
actually 2000 lines versus 8000 lines demands for a code
generation solution, which relives the designer from the
manual implementation of the control code. This is espe-
cially true, because large parts of the code are very regular
and with every change in the partitioning or scheduling, the

implementation has to be changed substantially. On the
other hand signal processing implementations are highly
individual and can hardly be automated by some tool
process.
Additionally we were able to specify further requirements to
the signal processing implementation, which substantially
reduce the complexity of the control implementation and
also simplify the implementation of the code generation. A
simple example is the detection of a processing state if mul-
tiple processing chains are present: If an instance of a func-
tion reaches a state, it may notify this by setting a corre-
sponding output value. As a consequence all other instances
of the same function would subsequently set the same value
too. As the control only needs to act on the first occurrence,
some additional handling would be needed to suppress all
subsequent notifications by the other function instances.
Integrating this mechanism into the function itself, so that
only one instance of the function signals the occurrence just
once, simplifies the control implementation and therefore
the code generation reasonably.
As the implementation of the code generation is in a early
state, we successively raising the complexity of the proc-
essing chains, for which we generate code. Figure 4 shows a
Simulink model, which is used to test the partitioning and
scheduling as well as the code generation. It is a part of the
1 and 2 MBit receive chain of our WLAN 802.11b imple-
mentation and allows a simulation of the model. During the
processing of this model, all blocks, which are only needed
for the visualization of the simulation output, like scope and
data conversion are omitted and only blocks relevant to the
target system are preserved.
The next challenging step for our model based approach is
the seamless switching between different processing modes,
represented by different processing chains.

Unbuffer5

Unbuffer3

Unbuffer1

Unbuffer

pospeak

State Machine
"averaging"

Scope7

Scope6

Scope5

Scope4

Scope1

Scope
X ZRXfi l ter

RXfi l ter1

X ZRXfi l ter

RXfi l ter

X
Z

Pos
GetPeak

GetPeak

ZFrontEnd

FrontEnd1

ZFrontEnd

FrontEnd

To
Frame

Frame Status
Conversion7

To
Frame

Frame Status
Conversion5

To
Frame

Frame Status
Conversion3

To
Frame

Frame Status
Conversion1

X_Re

X_Im

Z_Re

Z_Im
DiffDemod

DiffDemod

double

Data Type
Conversion

X ZCorrelation

Correlation1

X ZCorrelation

Correlation

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

8. CONCLUSION

Throughout this paper we showed the need for a system
level abstraction of parallel hardware properties, to achieve
a decoupling of the application and the architecture design
and to achieve an acceleration of the design process by code
generation. A partitioning and scheduling solution as well
as a code generation process was presented, based on a
system level model. To avoid the reimplementation of
functionality, which is already provided by available tools,
new steps in the design process are developed as plug-ins
using the Eclipse framework and by interfacing tools like
Simulink as front-end and simulation environment for the
application model.
The evolutionary extension of existing tools has the advan-
tage of an immediate impact to the design process. Never-
theless the proposed extensions addressing fundamental
steps within the design process, like the partitioning and
scheduling, as well as the code generation for multithreaded
or multi-core architectures. Hence these tool extensions can
be reused with more suitable modeling languages.
The application of this approach to the modeling of WLAN
802.11b and its manual reference implementation already
showed the positive impact of a code generation to the de-
sign process. Further investigations are needed to allow a
code generation for more complex control tasks, like the
switching between different processing chains and a
detailed analysis of the savings in development time will
follow up.

9. REFERENCES

[1] Eclipse Platfrom Technical overview,

http://www.eclipse.org/whitepapers/eclipse-overview.pdf
[2] E. D. Willink, “The Waveform Description Language”, in

Software Defined Radio, pp. 365-397, Wiley & Sons, Sussex,
England 2002

[3] Edward A. Lee, “Overview of the Ptolemy Project”,
Technical Memorandum No. UCB/ERL M03/25, University
of California, Berkeley, CA, 94720, USA, July 2, 2003.

[4] Morgan Björkander and Cris Kobryn, “Architecting Systems
with UML 2.0”, IEEE Software, July/August 2003

[5] SysML Specification v. 0.85 Draft,
http://www.sysml.org/artifacts/spec/SysML-v0.85R1-PDF-
041011.zip

[6] F. Balarin and Y. Watanabe and H. Hsieh and L. Lavagno and
C. Paserone and A. Sangiovanni-Vincentelli, “Metropolis: an
integrated electronic system design environment”, IEEE
Computer, vol 36, no. 4, pp 45-52, apr 2003.

[7] M. Arnold and H. Corporaal, “Automatic Detection of
Recurring Operation Patterns”, CODES’99, Rome Italy, May
1999.

[8] H. Corporaal and H. Mulder, “MOVE: A framework for high-
performance processor design, Supercomputing-91, pp. 692 –
701, Albuquerque, November 1991.

[9] Numerical C Extensions Group of X3J11 DPCE
Subcommittee, “Data Parallel C Extensions”, Technical
Report, Version 1.6, X3J11/94-080, WG14/N395, December
31, 1994

[10] H.-M. Bluethgen and C. Grassmann and W. Raab and U.
Ramacher, “A Programmable Baseband Platform for
Software-Defined Radio”, SDR’04 Technical Conference,
Phoenix, November 2004

[11] M. Nunkesser, “Mapping Task Graphs to Digital Signal
Processors”, Technical Report TR 460, Department of
Computer Science, ETH Zürich October 2004

[12] T. Grandpierre, C. Lavarenne and Y. Sorel, “Optimized Rapid
Prototyping For Real Time Embedded Heterogeneous
Multiprocessors”, CODES'99 7th International Workshop on
Hardware/Software Co-Design, Rome, May 1999

[13] W. Raab et al., “A Development System for Heterogeneous
Multiprocessor Architectures”, IEEE Workshop on
Heterogeneous Reconfigurable Systems on Chip (SoC),
Hamburg, 2002.

[14] S. Niemann, “Functional Modeling With UML”, Technical
Report, I-Logix, 2004

[15] J. Long, “Relationshiops between Common Graphical
Representations in System Engineering”, Technical Report,
Vitech Corp., 2002

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

