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ABSTRACT 
 
In this paper we investigate the relationship between logical 
and physical structures of a Modular Software Defined 
Radio (Mod-SDR) system, based on multi-processor hard-
ware. The logical interdependence of software modules and 
functions in the signal processing chain is captured in a 
directed graph where both input/output data and inter-
mediate results flow along directed arcs and where nodes 
represent software modules or entire communication 
functions. While the need for data exchange is obvious on a 
logical level, its mapping to physical resources is not. 
Computation and data communication require synchro-
nization such that the SDR terminal can provide best 
performance to its user. Hence, our object of interest is 
partitioning and scheduling for software defined physical 
layers, which is a core component of any SDR operating 
system firmware. We briefly review a partitioning approach 
[1] which we have developed for application in the SDR 
domain. Subsequent scheduling is treated in greater detail. 
Taking the graph of an IMT-2000 W-CDMA 64kbps uplink 
as an example we explore hardware architecture options 
when using an application-specific co-processor, and we 
discuss the achievable system speedup. Finally, we arrive at 
a conclusion regarding subsystem pipelining and dynamic 
power dissipation in CMOS hardware implementations. 
 
 

1. INTRODUCTION TO MODULAR SDR 
 
Benefits and challenges of Software Defined Radio have 
been discussed extensively in the past [2][3][4]. The focus 
of most work is either on one specific hardware part of the 
signal processing chain of a transceiver, or on algorithm 
design for the digital baseband. However, coordination of 
the interplay of communication functions, to be executed on 
available hardware, has not been systematically covered 
hitherto. Therefore, our research interest is in structures and 
algorithms for optimum design of software defined physical 
(PHY) layers in mobile terminals. This includes design 
guidelines for both hardware and software. From our point 

of view the term “software” means digital signal processing 
modules which are executed under the direct control of real-
time operating system (RTOS) firmware. The execution of 
such modules generally entails allocation of hardware 
resources such as processors, memories, buses etc. An early 
document of the SDR Forum [5] roughly sketches the 
process of resource allocation (see Fig. 1), however, not 
specifying techniques required to achieve such a goal.  
 
1.1. Modularity 
 
Regarding 3G mobile communication systems even rough 
estimates produce enormous numbers of FLOPS for the 
processing power required to realize even a most simple 
PHY layer in software. Given the technological challenges 
to provide such extreme processing power we believe that it 
may be commercialized soonest with multi-processor 
hardware. Whether later such a multi-processor system is 
realized as a System-on-Chip, or as an FPGA with immersed 
CPU cores, or as a pure multi-DSP board, is not for us to 
say.  At the moment, it is just important that our approach to 
Mod-SDR design scales smoothly with all these variants and 
with technological advancement. 
 
 

 
 

Fig. 1: Layered Resource Allocation,  Source: SDR Forum [5] 
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Fig. 2: Directed graph of an IMT-2000 W-CDMA transmitter, 64kbps uplink mode, abstracted from [6] 

 
Our model of software radio is modular in two ways: 

First of all, in an open multi-layer SDR platform software is 
certainly not one monolithic block of machine-executable 
code, but rather a hierarchical library of communication 
functions, subfunctions and – at the lowest level – modules, 
which are basically indivisible sequences of machine code. 
Second, the underlying SDR hardware may also be modular 
in a way that it can be composed of general-purpose digital 
signal processors as well as Application Specific Standard 
Product (ASSP) components, according to customers' needs. 
This view of Mod-SDR may be interesting to equipment 
manufacturers who are naturally skeptical SDR techniques. 
In particular, the availability of a unified flexible operating 
system could not only support short time to market, but also 
amortization of software development cost over several 
product lines. 
 
1.2. Related Work 

 
In previous work [7] we have focused on non-preemptive 
scheduling of a multi-processor, where inter-processor 
communication was assumed to be infinite-bandwidth and 
collision-free. In the present paper, we render the model 
more realistic by considering finite data exchange bit rate 
and collision arbitration on a dual bus hardware system. The 
proposed methods are related to static partitioning and 
scheduling of software modules which are characterized by 
strong logical interdependencies through data flow and 
precedence constraints. Hence, dynamic scheduling policies 
such as EDF and LLA [8], or combinations and variants 
thereof, have no helpful meaning in this context because 
these methods act on strictly independent processes. In 
addition to that, many of these algorithms assume a 
preemptive operating system. 

In [7] we argue in detail why SDR is essentially an 
embedded system design problem, where the real-time 
requirements are strictly imposed by the radio interface of a 
requested communication mode. It is imperative that the 
PHY layer RTOS is also a decision system. The firmware 
accepts or rejects a mode request, based on its successful or 
unsuccessful partitioning and scheduling among available 

terminal hardware. Once a mode is accepted, the sequence 
of functions, subfunctions, and – eventually – modules is 
fixed, and so is the demand for processing power. In this 
context, we see no eventuality of statistical demand for 
processing power [9]. Nevertheless, it is not known to the 
partitioning and scheduling algorithm a priori which kind of 
communication mode a user might want to request, which 
hardware configuration may have been set up, or how much 
battery power that user is willing to sacrifice. In other words, 
our approach must be capable of dealing with diverse 
physical and logical structures, and operate modular systems 
under difficult boundary conditions. 

 
2. GRAPHS 

 
In general, processors, memory, buses (or any other inter-
connect fabric) form the entirety of what we call the physical 
structures of an SDR. Logical structures, in contrast, are 
captured in a directed graph where both input/output data 
and intermediate computation results flow along directed 
arcs and where nodes represent software modules (solid 
dots), or entire communication functions (circled dots). 
Figure 2 shows the example which we refer throughout this 
paper: The transmitter of an IMT-2000 W-CDMA terminal 
operating in a 64 kbps dedicated traffic channel (DTCH) 
mode in the uplink. The given logical structure is an abstract 
transcription of [6]. In contrast to [7], both modules and 
functions are uniquely numbered on the top-level hierarchy 
of the graphical representation. 

The central point in our approach is to perceive these 
logical structures from a processor point of view. Whatever 
the software design approach behind a module or function, it 
is scheduled for execution at a certain instant of time, it 
consumes input data, it causes a processing runtime to pass 
on a processor, and it produces output data which usually 
constitutes some intermediate result to be consumed by 
successor modules. Whether the module contains para-
meterized code [10][11] or standard-specific DSP code, or 
even hardware-specific instructions, does not matter to us. 
All that counts is its main behavioral attribute, namely 
processing runtime.  
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2.1. Resource-Runtime Model 
 
In the present paper we employ the following stochastic 
linear resource-runtime model: 
 

mm rcp ⋅⋅= α       (1) 
 
where pm is the processing runtime of module m and rm is 
m’s resource demand of local memory for its output data. 
The constant α is a processor-specific runtime, and c is a 
unitless random factor modeling the vast variety of software 
implementations in an SDR environment [12]. Throughout 
this paper, c is drawn from a random process with windowed 
Gaussian probability density, where µc=1.0, σ=0.25, and the 
rectangular window spans the interval [0.5; 1.5] of c values. 
That is to say: actual implementations of modules may 
randomly differ by ±50% from the strictly linear resource 
runtime relation at µc=1.0. Whether runtimes are indeed 
caused by running software modules or result from using 
dedicated hardware does in no way alter our modeling of 
Mod-SDR. Therefore, it may be seen as a complement to 
other SDR design paradigms, for example, PaC-SDR [13], 
or as a basic model for a more general theory of flexibly 
assembled modular systems. As such it may be of interest 
not only to SDR software programmers, but also to equip-
ment manufacturers and system designers. 
 

3. BASIC HARDWARE SYSTEM FEATURES 
 
Figure 3 shows our assumed hardware architecture which 
includes two general-purpose processors (P1 and P2), an 
application-specific co-processor (CO) and distributed 
memory (M1, M2 and M). Inter-processor communication is 
asynchronous over the Shared Memory which is used to 
store intermediate results. Processors are actively involved 
in bus transfers, i.e. a processor transferring data to/from the 
Shared Memory cannot execute communication functions in 
the meantime.  
 The system is equipped with two separate data buses 
(solid horizontal arrows), where bus access is exclusive. In 
principle, all processors be connected (vertical arrows, both 
solid  and outlined)  to both buses.  However,  regarding  the 
 

 
Fig. 3: Physical structures of the Mod-SDR system 

hardware  implementation  effort  it  would  be  beneficial to 
provide only a single bus connection per processor (solid 
arrows). 
 Data enter and leave the system via the Interface 
Memory. Input data (bits of some protocol data unit, for 
example) arrive at the PHY layer service access point (SAP) 
for processing during the real-time frame ∆T. Likewise, 
output data (I/Q signal samples) have to be passed to the 
analog RF frontend every ∆T. In order to ensure that 
interacting hardware parts can unconditionally write their 
exchange data to some memory location during all ∆T, the 
interaction at the system interface is assumed to follow a 
pipelining concept: While the hardware system is active on 
one part of the interface memory, subsequent data arriving at 
the interface during ∆T are written to the shadow memory 
part of the interface. At real-time frame boundaries pointers 
to the active and the shadow memory are merely swapped, 
so processing can continue immediately on both sides of the 
interface. 
 In contrast to former memory organization [12], where 
shadow memory had been part of the Shared Memory, we 
save some unnecessary i/o bus transfers and make inter-
system interaction much simpler. Hence, in the following we 
can safely deal with the PHY layer, which is now a well-
defined embedded system to the wireless terminal. 
 

4. PARTITIONING 
 
The proposed approach for partitioning software modules 
among processors in a Mod-SDR is based on a fundamental 
algorithm by Kernighan and Lin (KL), which had originally 
been developed to distribute electronic components among 
printed circuit boards while minimizing the cost of inter-
board connections [1]. Formulated in an abstract way: 
Devide a node set S of 2n nodes into two disjoint subsets A 
and B of size n each, called partitions. Component 
connection cost is collected in a symmetric cost matrix 
C=[cij], 1 ≤ i,j ≤ n, where cij = cji ∈ R are link cost between 
nodes i and j. Link cost can be either external or internal, 
depending on whether the link is between nodes of the same 
set or reaches into the other set, respectively. The basic idea 
of the KL Algorithm is to gradually reduce external cost by 
exchanging node pairs between A and B until there is no 
more positive gain from their set exchange procedure. 
 Link cost in our Mod-SDR can be identified with a 
processing runtime pij, which is a property of an edge <i,j> 
and not a node property like pm. In particular, pij be the time 
that one processor spends communicating to the Shared 
Memory instead of computing useful results. Not only the 
source processor has to write, but also the destination 
processor has to read data from the Shared Memory. Hence 
link cost cij is twice the time pij of one processor. A detailed 
description of our adaptation of the KL Algorithm to Mod-
SDR can be found in [12]. 
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 Should a partitioning cut separate two connected nodes, 
link cost cij is resolved into two basic bus transfer modules 
with runtime pij which is tied to the bus speed rather than to 
the processor speed. Furthermore, the runtime pij is not 
subject to stochastic variation, but deterministically depends 
on the amount of data to be transferred over the bus. 
Accordingly, we introduce the relative bus speed β 
indicating how much faster some data block is transferred 
over the bus as compared to its being processed by either of 
the general-purpose processors at c=1.0. In the experimental 
section the relative bus speed β re-appears as a major 
hardware parameter relevant for system performance. 
 

5. SCHEDULING 
 
The adapted KL Algorithm allows partitioning of modules 
among two identical processors P1 and P2 connected by a 
dual bus system. However, the sequencing of modules is as 
yet undetermined at this stage. Only now scheduling comes 
into play. 
 Our approach makes use of Hu’s labeling idea [14]. 
Nodes are labeled by their so-called Hu Level which is the 
maximum accumulated runtime distance to a graph’s target 
node (the SAP of the analog RF frontend, see Fig. 2). In 
contrast to Hu’s original algorithm, however, scheduling 
decisions are taken on a per-processor basis because all 
nodes have already been assigned to a processor during the 
partitioning stage. The box to the right provides the pseudo-
code of our scheduling algorithm which honors the 
prioritization of bus transfers, the existence of a dual bus 
system and the pipelining of signal processing over several 
radio frames. All of these aspects have been recognized [12] 
as being essential for meeting the exact design conditions of 
our partitioning approach. 
 

6. SYSTEM PERFORMANCE 
 
The design guidelines of this paper are intended to relate 
aspects of signal processing modules to the hardware 
architecture of Mod-SDR. In particular, we want to study the 
power-efficient use of an accelerated co-processor for an 
increase in system performance. 
 First of all, it is to be decided which nodes are good 
candidates for co-processor execution. It is easy to show by 
partial differentiation that the greatest decrease in aggregate 
processing runtime of the entire system results from 
accelerating nodes with greatest runtime, when co-processor 
acceleration is linear. Therefore, we assign the four chip 
level processing nodes (see Fig. 2) to the co-processor. 
 To be able to quantify the co-processor benefit in the 
experimental section we take into account the minimum 
runtime which is theoretically achievable by the hardware 
system: The aggregate runtime of all nodes, excluding all 
bus  transfers  and   chip  level  processing,   divided  by  the 

  
 1 ActiveNodes 
     = determine_successors_of_scheduled_nodes; 
  2 ActiveNodes 
     = sort(ActiveNodes | HuLevel/runtime); 
  3 if (option_non_pipelined) 
  4   ActiveNodes  
       = remove_anticausal_nodes(ActiveNodes); 
  5   if (is_empty(ActiveNodes)) 
  6     LOGICAL_WAIT_IDLE  
           until not(is_empty(ActiveNodes)) 
  7   end 
  8 end 
  9 if (option_prioritize_bus_tx) 
10   CandidateNodes = find(ActiveNodes | bus_tx); 
11   if not(is_empty(CandidateNodes)) 
12     CandidateNodes  
         = sort(CandidateNodes | HuLevel/runtime); 
13     RunnableNode = CandidateNodes(top); 
14     AlternativeNode  
         = find(ActiveNodes | not(bus_tx))(top); 
15   else 
16     RunnableNode = ActiveNodes(top); 
17     AlternativeNode = empty; 
18   end 
19 else 
20   RunnableNode = ActiveNodes(top); 
21   AlternativeNode = empty; 
22 end 
23 if (is_bus_tx(RunnableNode)) 
24   if not(conflict = check(bus_1)) 
25     NodeToSchedule = RunnableNode; 
26     mark_busy(bus_1); 
27   elseif exists(bus_2) 
28     if not(conflict = check(bus_2))) 
29       NodeToSchedule = RunnableNode; 
30       mark_busy(bus_2); 
31     else  %% both buses are busy 
32       if is_empty(AlternativeNode) 
33         PHYSICAL_WAIT_IDLE  
             until earliest(not(conflict(bus_any))); 
34       else 
35         NodeToSchedule = AlternativeNode; 
36       end 
37     end 
38   else  %% single bus is busy 
39     if is_empty(AlternativeNode) 
40       PHYSICAL_WAIT_IDLE 
             until earliest(not(conflict(bus_1))); 
41     else 
42       NodeToSchedule = AlternativeNode;        
43     end 
44   end 
45 else  %% no bus access required 
46   NodeToSchedule = RunnableNode; 
47 end  
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number of general-purpose processors. This minimum run-
time still depends on the realization, but it is easy to 
compute during simulation. The ratio of this minimum 
runtime to the actual system runtime can be interpreted as 
the achievable fraction of the theoretical maximum speedup 
when using the co-processor. 
 

7. ARCHITECTURE OPTIONS 
 
Adding the co-processor means introducing a third 
processor to the system. However, our partitioning and 
scheduling algorithms have only been developed for a two-
processor system. Generalizing the KL Algorithm is 
expected to be difficult, and much of the true co-processor 
benefit would probably depend on the scheduling policy 
which would have to be created for three processors running 
on two buses. Therefore, let us rather explore the theoretical 
bounds on achievable speedup, operating no more than the 
original two-processor system. 
 On one hand, a co-processor is only useful if it creates 
at least some non-negative speedup over the non-accelerated 
two-processor system. This case is readily covered by our 
model. On the other hand, no real system can perform better 
than a hypothetical system which employs an infinitely fast 
co-processor. The remainder of this hypothetical system is 
left with two identical processors P1 and P2, and data 
transfers over a finite-speed bus system, as before. Figures 5 
and 6 show simulation results for the non-accelerated system 
and the hypothetical system, respectively. Both the 
achievable fraction of maximum speedup (dots, value range 
[0;1]) and the observed bus activity (circles, values in 
percent) are plotted as a function of the relative bus speed β. 
Sample size is 400 per β. 
 Experiments with a single bus system (not shown gra-
phically here) yield comparable results, where the speedup is 
merely shifted to the right by a factor of about two. We 
recognize that the achievable fraction of speedup approaches 
1.0 as β increases, but even the fastest co-processor suffers 
from a major drawback: a large amount of intermediate 
results still needs to be transferred over the dual bus system 
at finite speed. 
 
7.1. Pipelined Co-processor Operation 
 
An architectural approach to mitigate the observed bus 
transfer problem is to divide the hardware into two sub-
systems: the co-processor plus one bus merge to become the 
pipelined co-processor subsystem, while the residual system 
includes P1, P2 and the second bus. Pipelining for these 
subsystems is realized in much the same way as for inter-
system interaction (see section 3), but now the system-
internal Shared Memory must provide space for both active 
and shadow memory.  
 

 
Fig. 5: Non-accelerated system, two buses 

 
 

 
Fig. 6: Hypothetical system, two buses 

 
 
 The main advantage of this approach is that the residual 
subsystem must no longer the large amount of chip samples 
to the interface memory, but only the output data of 2nd 
interleaving (signal processing stage “E”, see Fig. 2). A 
potential drawback consists in using a single bus only, 
because it violates the exact design conditions of our 
partitioning approach.  
 Figure 7 shows the fraction of achievable maximum 
speedup (dots), activity of the single bus (circles), and a 
realistic upper bound on speedup (triangles) as a function of 
relative bus speed β. In contrast to the theoretical maximum, 
the realistic upper bound takes into account all strictly serial 
bus transfers of the graph which is mapped to the residual 
subsystem. We observe that the achievable speedup fraction 
is close to the realistic upper bound and quickly approaches 
1.0 for reasonable bus speeds. Formally, this advantage 
comes at the price of the additional delay of one real-time 
period ∆T, induced by the concept of subsystem pipelining. 
It is important  to notice that  the results of Fig. 7 only 
remain valid  if  the pipelined co-processor subsystem  meets 
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Fig. 7: Residual subsystem, one bus 

 
the same (new) real-time deadline of ∆T, which is produced 
by the residual system. Therefore, we have to verify that the 
advantage of operating the residual subsystem at a low bus 
speed is not annihilated by any excessive clock speed in the 
pipelined co-processor subsystem. 
 

8. DYNAMIC POWER DISSIPATION 
 
The major drawback of high clock speed is dynamic power 
dissipation Pd [15]: 

2~ VCfP ad ⋅⋅      (2) 
 

where fa is the average switching frequency, C is the 
effective capacitance and V is the voltage level. We assume 
perfect clock gating during idle times, i.e. dynamic power is 
only dissipated during the true co-processor and bus activity. 
In principle, both the co-processor (C0, f0’ ) and the bus (C1, 
f1‘ ) may be loaded with different capacitances and clocked 
at different speeds. A given deadline ∆T can be reached 
using any out of a continuum of clock ratios f0’ / f1’ . Hence 
it would be of advantage for Mod-SDR operation to know 
the optimum clock ratio, if such one exists. 

 

 
Fig. 8: Aggregate runtimes of  co-processor (T0) and bus (T1)  

 
 
Let us assume that the sum of aggregate runtime of the 

co-processor (T0) and the bus (T1) need to be reduced by an 
amount dT to meet the real-time period ∆T. Figure 8 
visualizes the situation. 
 

Let us further assume that the constant fraction r, 0 ≤ r ≤ 1, 
of the required dT is covered by an increase in bus speed, 
and the rest of (1-r)⋅dT is covered by the co-processor. Then 
the frequency increase factor k1 over a regular bus operating 
at relative speed β can be expressed as: 
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where γ is the target runtime ratio and ϕ is the co-processor 
portion of the sum of aggregate runtimes: 
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Similarly, frequency increase factor k0 for the accelerated 
co-processor over one running at the specific runtime α is: 
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The dynamic power increase factor kP for the subsystem is: 
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where the average frequencies in denominator are fa,0 = ϕ⋅f0 
and fa,1 = (1-ϕ)⋅f1, and in the numerator:  
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Expressing the timing relations of (7) and (8) in terms of (4) 
and substituting  k0 and k1 by (3) and (5), the power increase 
factor kP eventually turns out to be:  

[ ] 11 −−= γPk      (9) 
 
We recognize that the increase in dynamic power dissipation 
is no function of ϕ, or of the fraction r, or of any effective 
capacitances C0 and C1 , but of γ only. The actual γ value of 
a Mod-SDR realization depends on the real-time period ∆T 
produced by our partitioning and scheduling for the residual 
subsystem. 
 
8.1. Simulation Results 
 
Figure 9 shows the power factor as a function of relative bus 
speed β of the residual subsystem. Since at low β it mainly 
suffers from the bus bottleneck, the pipelined co-processor 
subsystem performs sufficiently well with moderate power 
factors. As bus speed grows beyond β =10 the spread among 
power factors becomes relatively stable, and the majority of 
values falls into the range 5 ≤ kp ≤ 25. 
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Fig. 9: Power factor for the pipelined co-processor subsystem 

 
 
 Finally, we need to compare these results with the 
power demand of the non-pipelined system, which is based 
on the same hardware. Therefore, let us set our common 
design goal to achieving 90% of the theoretical maximum 
speedup. 
 On one hand, when operating the Mod-SDR in a non-
pipelined way, relative bus speed must be pushed to around 
β=50 (see Fig. 6) to achieve the design goal. Both buses are 
active about 10% of the real-time period ∆T. On the other 
hand, when using pipelined subsystems, β=10 already 
achieves the design goal, while the activity of the residual 
system’s bus is about 20%. Under the assumption that two 
distinct buses are loaded with twice the effective capacitance 
of a single bus it follows that dynamic power dissipation of 
is by a factor of 5 lower for the pipelining approach. 
 To complete the power budget we also need to discuss 
P1, P2 and CO. Given our partitioning approach, P1 and P2 
are almost non-stop busy, regardless of how the Mod-SDR is 
operated, so they equally add to both sides of the budget. 
Now, regarding CO, we have to consider its activity in the 
both the non-pipelined and the pipelined case. Our results 
indicate a finite demand of 5 to 25 times the dynamic power 
dissipated by a pipelined, but non-accelerated co-processor 
subsystem. Without pipelining we can invest the same 
amount of power into CO alone, but fail to meet the design 
target, because Fig. 6 only provides an upper bound. In other 
words: The factor of 5 in bus power mentioned above is 
certainly conservative. The true factor will indeed be greater 
than 5. 

9. CONCLUSION 
 
 In terms of power efficiency, the pipelined operation of 
two subsystems is always superior to the non-pipelined 
variant, although we are using the same hardware. Insight 
into this matter is particularly important for signal process-

ing in mobile terminals where battery power is naturally 
scarce. Savings in dynamic power dissipation mainly result 
from running the pipelined subsystems at different speeds, 
just as fast as needed to achieve the design goal. 
 The power efficiency potential may even be augmented 
by the fact that pipelining requires less bus connections per 
processor: The outlined arrows of Fig. 3 can all be left out, 
which reduces the hardware design effort and may as well 
bring down effective bus capacitances. Concrete values for 
the savings depend on the bus portion of the overall dynamic 
power dissipation. 
 We believe that pipelining, in general, shows great 
potential to become one of the major operating guidelines 
for Mod-SDR systems. So far, however, the advantages of 
pipelined operation have unexceptionally come at the price 
of additional memory demand and delay. These aspects have 
to be treated in more detail in future work on software 
partitioning for Mod-SDR systems. 
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