

SOFTWARE PARTITIONING AND HARDWARE ARCHITECTURE

FOR MODULAR SDR SYSTEMS

Arnd-Ragnar Rhiemeier, Friedrich K. Jondral
Universitaet Karlsruhe (TH), Karlsruhe, Germany

{rhiemeier, jondral}@int.uni-karlsruhe.de

ABSTRACT

In this paper we investigate the relationship between logical
and physical structures of a Modular Software Defined
Radio (Mod-SDR) system, based on multi-processor hard-
ware. The logical interdependence of software modules and
functions in the signal processing chain is captured in a
directed graph where both input/output data and inter-
mediate results flow along directed arcs and where nodes
represent software modules or entire communication
functions. While the need for data exchange is obvious on a
logical level, its mapping to physical resources is not.
Computation and data communication require synchro-
nization such that the SDR terminal can provide best
performance to its user. Hence, our object of interest is
partitioning and scheduling for software defined physical
layers, which is a core component of any SDR operating
system firmware. We briefly review a partitioning approach
[1] which we have developed for application in the SDR
domain. Subsequent scheduling is treated in greater detail.
Taking the graph of an IMT-2000 W-CDMA 64kbps uplink
as an example we explore hardware architecture options
when using an application-specific co-processor, and we
discuss the achievable system speedup. Finally, we arrive at
a conclusion regarding subsystem pipelining and dynamic
power dissipation in CMOS hardware implementations.

1. INTRODUCTION TO MODULAR SDR

Benefits and challenges of Software Defined Radio have
been discussed extensively in the past [2][3][4]. The focus
of most work is either on one specific hardware part of the
signal processing chain of a transceiver, or on algorithm
design for the digital baseband. However, coordination of
the interplay of communication functions, to be executed on
available hardware, has not been systematically covered
hitherto. Therefore, our research interest is in structures and
algorithms for optimum design of software defined physical
(PHY) layers in mobile terminals. This includes design
guidelines for both hardware and software. From our point

of view the term “software” means digital signal processing
modules which are executed under the direct control of real-
time operating system (RTOS) firmware. The execution of
such modules generally entails allocation of hardware
resources such as processors, memories, buses etc. An early
document of the SDR Forum [5] roughly sketches the
process of resource allocation (see Fig. 1), however, not
specifying techniques required to achieve such a goal.

1.1. Modularity

Regarding 3G mobile communication systems even rough
estimates produce enormous numbers of FLOPS for the
processing power required to realize even a most simple
PHY layer in software. Given the technological challenges
to provide such extreme processing power we believe that it
may be commercialized soonest with multi-processor
hardware. Whether later such a multi-processor system is
realized as a System-on-Chip, or as an FPGA with immersed
CPU cores, or as a pure multi-DSP board, is not for us to
say. At the moment, it is just important that our approach to
Mod-SDR design scales smoothly with all these variants and
with technological advancement.

Fig. 1: Layered Resource Allocation, Source: SDR Forum [5]

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Fig. 2: Directed graph of an IMT-2000 W-CDMA transmitter, 64kbps uplink mode, abstracted from [6]

Our model of software radio is modular in two ways:

First of all, in an open multi-layer SDR platform software is
certainly not one monolithic block of machine-executable
code, but rather a hierarchical library of communication
functions, subfunctions and – at the lowest level – modules,
which are basically indivisible sequences of machine code.
Second, the underlying SDR hardware may also be modular
in a way that it can be composed of general-purpose digital
signal processors as well as Application Specific Standard
Product (ASSP) components, according to customers' needs.
This view of Mod-SDR may be interesting to equipment
manufacturers who are naturally skeptical SDR techniques.
In particular, the availability of a unified flexible operating
system could not only support short time to market, but also
amortization of software development cost over several
product lines.

1.2. Related Work

In previous work [7] we have focused on non-preemptive
scheduling of a multi-processor, where inter-processor
communication was assumed to be infinite-bandwidth and
collision-free. In the present paper, we render the model
more realistic by considering finite data exchange bit rate
and collision arbitration on a dual bus hardware system. The
proposed methods are related to static partitioning and
scheduling of software modules which are characterized by
strong logical interdependencies through data flow and
precedence constraints. Hence, dynamic scheduling policies
such as EDF and LLA [8], or combinations and variants
thereof, have no helpful meaning in this context because
these methods act on strictly independent processes. In
addition to that, many of these algorithms assume a
preemptive operating system.

In [7] we argue in detail why SDR is essentially an
embedded system design problem, where the real-time
requirements are strictly imposed by the radio interface of a
requested communication mode. It is imperative that the
PHY layer RTOS is also a decision system. The firmware
accepts or rejects a mode request, based on its successful or
unsuccessful partitioning and scheduling among available

terminal hardware. Once a mode is accepted, the sequence
of functions, subfunctions, and – eventually – modules is
fixed, and so is the demand for processing power. In this
context, we see no eventuality of statistical demand for
processing power [9]. Nevertheless, it is not known to the
partitioning and scheduling algorithm a priori which kind of
communication mode a user might want to request, which
hardware configuration may have been set up, or how much
battery power that user is willing to sacrifice. In other words,
our approach must be capable of dealing with diverse
physical and logical structures, and operate modular systems
under difficult boundary conditions.

2. GRAPHS

In general, processors, memory, buses (or any other inter-
connect fabric) form the entirety of what we call the physical
structures of an SDR. Logical structures, in contrast, are
captured in a directed graph where both input/output data
and intermediate computation results flow along directed
arcs and where nodes represent software modules (solid
dots), or entire communication functions (circled dots).
Figure 2 shows the example which we refer throughout this
paper: The transmitter of an IMT-2000 W-CDMA terminal
operating in a 64 kbps dedicated traffic channel (DTCH)
mode in the uplink. The given logical structure is an abstract
transcription of [6]. In contrast to [7], both modules and
functions are uniquely numbered on the top-level hierarchy
of the graphical representation.

The central point in our approach is to perceive these
logical structures from a processor point of view. Whatever
the software design approach behind a module or function, it
is scheduled for execution at a certain instant of time, it
consumes input data, it causes a processing runtime to pass
on a processor, and it produces output data which usually
constitutes some intermediate result to be consumed by
successor modules. Whether the module contains para-
meterized code [10][11] or standard-specific DSP code, or
even hardware-specific instructions, does not matter to us.
All that counts is its main behavioral attribute, namely
processing runtime.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

2.1. Resource-Runtime Model

In the present paper we employ the following stochastic
linear resource-runtime model:

mm rcp ⋅⋅= α (1)

where pm is the processing runtime of module m and rm is
m’s resource demand of local memory for its output data.
The constant α is a processor-specific runtime, and c is a
unitless random factor modeling the vast variety of software
implementations in an SDR environment [12]. Throughout
this paper, c is drawn from a random process with windowed
Gaussian probability density, where µc=1.0, σ=0.25, and the
rectangular window spans the interval [0.5; 1.5] of c values.
That is to say: actual implementations of modules may
randomly differ by ±50% from the strictly linear resource
runtime relation at µc=1.0. Whether runtimes are indeed
caused by running software modules or result from using
dedicated hardware does in no way alter our modeling of
Mod-SDR. Therefore, it may be seen as a complement to
other SDR design paradigms, for example, PaC-SDR [13],
or as a basic model for a more general theory of flexibly
assembled modular systems. As such it may be of interest
not only to SDR software programmers, but also to equip-
ment manufacturers and system designers.

3. BASIC HARDWARE SYSTEM FEATURES

Figure 3 shows our assumed hardware architecture which
includes two general-purpose processors (P1 and P2), an
application-specific co-processor (CO) and distributed
memory (M1, M2 and M). Inter-processor communication is
asynchronous over the Shared Memory which is used to
store intermediate results. Processors are actively involved
in bus transfers, i.e. a processor transferring data to/from the
Shared Memory cannot execute communication functions in
the meantime.
 The system is equipped with two separate data buses
(solid horizontal arrows), where bus access is exclusive. In
principle, all processors be connected (vertical arrows, both
solid and outlined) to both buses. However, regarding the

Fig. 3: Physical structures of the Mod-SDR system

hardware implementation effort it would be beneficial to
provide only a single bus connection per processor (solid
arrows).
 Data enter and leave the system via the Interface
Memory. Input data (bits of some protocol data unit, for
example) arrive at the PHY layer service access point (SAP)
for processing during the real-time frame ∆T. Likewise,
output data (I/Q signal samples) have to be passed to the
analog RF frontend every ∆T. In order to ensure that
interacting hardware parts can unconditionally write their
exchange data to some memory location during all ∆T, the
interaction at the system interface is assumed to follow a
pipelining concept: While the hardware system is active on
one part of the interface memory, subsequent data arriving at
the interface during ∆T are written to the shadow memory
part of the interface. At real-time frame boundaries pointers
to the active and the shadow memory are merely swapped,
so processing can continue immediately on both sides of the
interface.
 In contrast to former memory organization [12], where
shadow memory had been part of the Shared Memory, we
save some unnecessary i/o bus transfers and make inter-
system interaction much simpler. Hence, in the following we
can safely deal with the PHY layer, which is now a well-
defined embedded system to the wireless terminal.

4. PARTITIONING

The proposed approach for partitioning software modules
among processors in a Mod-SDR is based on a fundamental
algorithm by Kernighan and Lin (KL), which had originally
been developed to distribute electronic components among
printed circuit boards while minimizing the cost of inter-
board connections [1]. Formulated in an abstract way:
Devide a node set S of 2n nodes into two disjoint subsets A
and B of size n each, called partitions. Component
connection cost is collected in a symmetric cost matrix
C=[cij], 1 ≤ i,j ≤ n, where cij = cji ∈ R are link cost between
nodes i and j. Link cost can be either external or internal,
depending on whether the link is between nodes of the same
set or reaches into the other set, respectively. The basic idea
of the KL Algorithm is to gradually reduce external cost by
exchanging node pairs between A and B until there is no
more positive gain from their set exchange procedure.
 Link cost in our Mod-SDR can be identified with a
processing runtime pij, which is a property of an edge <i,j>
and not a node property like pm. In particular, pij be the time
that one processor spends communicating to the Shared
Memory instead of computing useful results. Not only the
source processor has to write, but also the destination
processor has to read data from the Shared Memory. Hence
link cost cij is twice the time pij of one processor. A detailed
description of our adaptation of the KL Algorithm to Mod-
SDR can be found in [12].

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

 Should a partitioning cut separate two connected nodes,
link cost cij is resolved into two basic bus transfer modules
with runtime pij which is tied to the bus speed rather than to
the processor speed. Furthermore, the runtime pij is not
subject to stochastic variation, but deterministically depends
on the amount of data to be transferred over the bus.
Accordingly, we introduce the relative bus speed β
indicating how much faster some data block is transferred
over the bus as compared to its being processed by either of
the general-purpose processors at c=1.0. In the experimental
section the relative bus speed β re-appears as a major
hardware parameter relevant for system performance.

5. SCHEDULING

The adapted KL Algorithm allows partitioning of modules
among two identical processors P1 and P2 connected by a
dual bus system. However, the sequencing of modules is as
yet undetermined at this stage. Only now scheduling comes
into play.
 Our approach makes use of Hu’s labeling idea [14].
Nodes are labeled by their so-called Hu Level which is the
maximum accumulated runtime distance to a graph’s target
node (the SAP of the analog RF frontend, see Fig. 2). In
contrast to Hu’s original algorithm, however, scheduling
decisions are taken on a per-processor basis because all
nodes have already been assigned to a processor during the
partitioning stage. The box to the right provides the pseudo-
code of our scheduling algorithm which honors the
prioritization of bus transfers, the existence of a dual bus
system and the pipelining of signal processing over several
radio frames. All of these aspects have been recognized [12]
as being essential for meeting the exact design conditions of
our partitioning approach.

6. SYSTEM PERFORMANCE

The design guidelines of this paper are intended to relate
aspects of signal processing modules to the hardware
architecture of Mod-SDR. In particular, we want to study the
power-efficient use of an accelerated co-processor for an
increase in system performance.
 First of all, it is to be decided which nodes are good
candidates for co-processor execution. It is easy to show by
partial differentiation that the greatest decrease in aggregate
processing runtime of the entire system results from
accelerating nodes with greatest runtime, when co-processor
acceleration is linear. Therefore, we assign the four chip
level processing nodes (see Fig. 2) to the co-processor.
 To be able to quantify the co-processor benefit in the
experimental section we take into account the minimum
runtime which is theoretically achievable by the hardware
system: The aggregate runtime of all nodes, excluding all
bus transfers and chip level processing, divided by the

 1 ActiveNodes
 = determine_successors_of_scheduled_nodes;
 2 ActiveNodes
 = sort(ActiveNodes | HuLevel/runtime);
 3 if (option_non_pipelined)
 4 ActiveNodes
 = remove_anticausal_nodes(ActiveNodes);
 5 if (is_empty(ActiveNodes))
 6 LOGICAL_WAIT_IDLE
 until not(is_empty(ActiveNodes))
 7 end
 8 end
 9 if (option_prioritize_bus_tx)
10 CandidateNodes = find(ActiveNodes | bus_tx);
11 if not(is_empty(CandidateNodes))
12 CandidateNodes
 = sort(CandidateNodes | HuLevel/runtime);
13 RunnableNode = CandidateNodes(top);
14 AlternativeNode
 = find(ActiveNodes | not(bus_tx))(top);
15 else
16 RunnableNode = ActiveNodes(top);
17 AlternativeNode = empty;
18 end
19 else
20 RunnableNode = ActiveNodes(top);
21 AlternativeNode = empty;
22 end
23 if (is_bus_tx(RunnableNode))
24 if not(conflict = check(bus_1))
25 NodeToSchedule = RunnableNode;
26 mark_busy(bus_1);
27 elseif exists(bus_2)
28 if not(conflict = check(bus_2)))
29 NodeToSchedule = RunnableNode;
30 mark_busy(bus_2);
31 else %% both buses are busy
32 if is_empty(AlternativeNode)
33 PHYSICAL_WAIT_IDLE
 until earliest(not(conflict(bus_any)));
34 else
35 NodeToSchedule = AlternativeNode;
36 end
37 end
38 else %% single bus is busy
39 if is_empty(AlternativeNode)
40 PHYSICAL_WAIT_IDLE
 until earliest(not(conflict(bus_1)));
41 else
42 NodeToSchedule = AlternativeNode;
43 end
44 end
45 else %% no bus access required
46 NodeToSchedule = RunnableNode;
47 end

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

number of general-purpose processors. This minimum run-
time still depends on the realization, but it is easy to
compute during simulation. The ratio of this minimum
runtime to the actual system runtime can be interpreted as
the achievable fraction of the theoretical maximum speedup
when using the co-processor.

7. ARCHITECTURE OPTIONS

Adding the co-processor means introducing a third
processor to the system. However, our partitioning and
scheduling algorithms have only been developed for a two-
processor system. Generalizing the KL Algorithm is
expected to be difficult, and much of the true co-processor
benefit would probably depend on the scheduling policy
which would have to be created for three processors running
on two buses. Therefore, let us rather explore the theoretical
bounds on achievable speedup, operating no more than the
original two-processor system.
 On one hand, a co-processor is only useful if it creates
at least some non-negative speedup over the non-accelerated
two-processor system. This case is readily covered by our
model. On the other hand, no real system can perform better
than a hypothetical system which employs an infinitely fast
co-processor. The remainder of this hypothetical system is
left with two identical processors P1 and P2, and data
transfers over a finite-speed bus system, as before. Figures 5
and 6 show simulation results for the non-accelerated system
and the hypothetical system, respectively. Both the
achievable fraction of maximum speedup (dots, value range
[0;1]) and the observed bus activity (circles, values in
percent) are plotted as a function of the relative bus speed β.
Sample size is 400 per β.
 Experiments with a single bus system (not shown gra-
phically here) yield comparable results, where the speedup is
merely shifted to the right by a factor of about two. We
recognize that the achievable fraction of speedup approaches
1.0 as β increases, but even the fastest co-processor suffers
from a major drawback: a large amount of intermediate
results still needs to be transferred over the dual bus system
at finite speed.

7.1. Pipelined Co-processor Operation

An architectural approach to mitigate the observed bus
transfer problem is to divide the hardware into two sub-
systems: the co-processor plus one bus merge to become the
pipelined co-processor subsystem, while the residual system
includes P1, P2 and the second bus. Pipelining for these
subsystems is realized in much the same way as for inter-
system interaction (see section 3), but now the system-
internal Shared Memory must provide space for both active
and shadow memory.

Fig. 5: Non-accelerated system, two buses

Fig. 6: Hypothetical system, two buses

 The main advantage of this approach is that the residual
subsystem must no longer the large amount of chip samples
to the interface memory, but only the output data of 2nd
interleaving (signal processing stage “E”, see Fig. 2). A
potential drawback consists in using a single bus only,
because it violates the exact design conditions of our
partitioning approach.
 Figure 7 shows the fraction of achievable maximum
speedup (dots), activity of the single bus (circles), and a
realistic upper bound on speedup (triangles) as a function of
relative bus speed β. In contrast to the theoretical maximum,
the realistic upper bound takes into account all strictly serial
bus transfers of the graph which is mapped to the residual
subsystem. We observe that the achievable speedup fraction
is close to the realistic upper bound and quickly approaches
1.0 for reasonable bus speeds. Formally, this advantage
comes at the price of the additional delay of one real-time
period ∆T, induced by the concept of subsystem pipelining.
It is important to notice that the results of Fig. 7 only
remain valid if the pipelined co-processor subsystem meets

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Fig. 7: Residual subsystem, one bus

the same (new) real-time deadline of ∆T, which is produced
by the residual system. Therefore, we have to verify that the
advantage of operating the residual subsystem at a low bus
speed is not annihilated by any excessive clock speed in the
pipelined co-processor subsystem.

8. DYNAMIC POWER DISSIPATION

The major drawback of high clock speed is dynamic power
dissipation Pd [15]:

2~ VCfP ad ⋅⋅ (2)

where fa is the average switching frequency, C is the
effective capacitance and V is the voltage level. We assume
perfect clock gating during idle times, i.e. dynamic power is
only dissipated during the true co-processor and bus activity.
In principle, both the co-processor (C0, f0’) and the bus (C1,
f1‘) may be loaded with different capacitances and clocked
at different speeds. A given deadline ∆T can be reached
using any out of a continuum of clock ratios f0’ / f1’ . Hence
it would be of advantage for Mod-SDR operation to know
the optimum clock ratio, if such one exists.

Fig. 8: Aggregate runtimes of co-processor (T0) and bus (T1)

Let us assume that the sum of aggregate runtime of the

co-processor (T0) and the bus (T1) need to be reduced by an
amount dT to meet the real-time period ∆T. Figure 8
visualizes the situation.

Let us further assume that the constant fraction r, 0 ≤ r ≤ 1,
of the required dT is covered by an increase in bus speed,
and the rest of (1-r)⋅dT is covered by the co-processor. Then
the frequency increase factor k1 over a regular bus operating
at relative speed β can be expressed as:

1

1

1
1 1

1
−









−

⋅−=
⋅−

=
ϕ

γ
r

dTrT
T

k (3)

where γ is the target runtime ratio and ϕ is the co-processor
portion of the sum of aggregate runtimes:

10 TT
dT
+

=γ and
10

0

TT
T
+

=ϕ (4)

Similarly, frequency increase factor k0 for the accelerated
co-processor over one running at the specific runtime α is:

1

0

0
0)1(1

)1(

−









⋅−−=

⋅−−
=

ϕ
γ

r
dTrT

T
k (5)

The dynamic power increase factor kP for the subsystem is:

11,00,

11,00,

CfCf
CfCf

k
aa

aa
P +

′+′
= (6)

where the average frequencies in denominator are fa,0 = ϕ⋅f0
and fa,1 = (1-ϕ)⋅f1, and in the numerator:

dTTT
dTrT

kffa −+
⋅−−

⋅=′

10

0
000,

)1(
 (7)

dTTT
dTrT

kffa −+
⋅−

⋅=′

10

1
111, (8)

Expressing the timing relations of (7) and (8) in terms of (4)
and substituting k0 and k1 by (3) and (5), the power increase
factor kP eventually turns out to be:

[] 11 −−= γPk (9)

We recognize that the increase in dynamic power dissipation
is no function of ϕ, or of the fraction r, or of any effective
capacitances C0 and C1 , but of γ only. The actual γ value of
a Mod-SDR realization depends on the real-time period ∆T
produced by our partitioning and scheduling for the residual
subsystem.

8.1. Simulation Results

Figure 9 shows the power factor as a function of relative bus
speed β of the residual subsystem. Since at low β it mainly
suffers from the bus bottleneck, the pipelined co-processor
subsystem performs sufficiently well with moderate power
factors. As bus speed grows beyond β =10 the spread among
power factors becomes relatively stable, and the majority of
values falls into the range 5 ≤ kp ≤ 25.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Fig. 9: Power factor for the pipelined co-processor subsystem

 Finally, we need to compare these results with the
power demand of the non-pipelined system, which is based
on the same hardware. Therefore, let us set our common
design goal to achieving 90% of the theoretical maximum
speedup.
 On one hand, when operating the Mod-SDR in a non-
pipelined way, relative bus speed must be pushed to around
β=50 (see Fig. 6) to achieve the design goal. Both buses are
active about 10% of the real-time period ∆T. On the other
hand, when using pipelined subsystems, β=10 already
achieves the design goal, while the activity of the residual
system’s bus is about 20%. Under the assumption that two
distinct buses are loaded with twice the effective capacitance
of a single bus it follows that dynamic power dissipation of
is by a factor of 5 lower for the pipelining approach.
 To complete the power budget we also need to discuss
P1, P2 and CO. Given our partitioning approach, P1 and P2
are almost non-stop busy, regardless of how the Mod-SDR is
operated, so they equally add to both sides of the budget.
Now, regarding CO, we have to consider its activity in the
both the non-pipelined and the pipelined case. Our results
indicate a finite demand of 5 to 25 times the dynamic power
dissipated by a pipelined, but non-accelerated co-processor
subsystem. Without pipelining we can invest the same
amount of power into CO alone, but fail to meet the design
target, because Fig. 6 only provides an upper bound. In other
words: The factor of 5 in bus power mentioned above is
certainly conservative. The true factor will indeed be greater
than 5.

9. CONCLUSION

 In terms of power efficiency, the pipelined operation of
two subsystems is always superior to the non-pipelined
variant, although we are using the same hardware. Insight
into this matter is particularly important for signal process-

ing in mobile terminals where battery power is naturally
scarce. Savings in dynamic power dissipation mainly result
from running the pipelined subsystems at different speeds,
just as fast as needed to achieve the design goal.
 The power efficiency potential may even be augmented
by the fact that pipelining requires less bus connections per
processor: The outlined arrows of Fig. 3 can all be left out,
which reduces the hardware design effort and may as well
bring down effective bus capacitances. Concrete values for
the savings depend on the bus portion of the overall dynamic
power dissipation.
 We believe that pipelining, in general, shows great
potential to become one of the major operating guidelines
for Mod-SDR systems. So far, however, the advantages of
pipelined operation have unexceptionally come at the price
of additional memory demand and delay. These aspects have
to be treated in more detail in future work on software
partitioning for Mod-SDR systems.

10. REFERENCES

[1] B.W. Kernighan, S. Lin, “An Efficient Heuristic Procedure

for Partitioning Graphs,” Bell System Technical Journal, vol.
49, pp. 291-307, 1970.

[2] IEEE Communications Magazine, vol. 37, no. 2, Feb. 1999,
special issue on Software Radio

[3] IEEE Journal on Selected Areas in Communications, vol. 17,
no. 4, April 1999, special issue on Software Radio

[4] W. Tuttlebee (Ed.), Software Defined Radio: Enabling Tech-
nologies, John Wiley & Sons Inc., 2002

[5] “Architecture and Elements of SDR Systems as Related to
Standards”, SDR Forum Tech Report, v2.1, Nov 1999, p.5-64

[6] ETSI TS 125 100/200 series, “Radio Transmission and
Reception”/“Physical Layer”, ETSI, v5.5.0 (2002-12)

[7] A.-R. Rhiemeier, F.K. Jondral, “Mathematical Modeling of
the SDR Design Problem,” IEICE Trans. Commun., vol. E-
86B, no. 12, Dec. 2003, special issue on SDR Technology

[8] S. Cho et al., “Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems,” IEICE Trans. Commun., vol. E-
85B, no. 12, Dec. 2002

[9] J. Mitola, “Software Radio Architecture,” IEEE J. Sel. Areas
Commun., vol. 17, no. 4, April 1999, pp. 514-538

[10] F.K. Jondral, “Parameter Controlled Software Defined Ra-
dio” in Proc. SDR’02, SDR Forum Technical Conference,
vol. 2, sec. SY-2-02, Nov. 2002

[11] A.-R. Rhiemeier, “Benefits and Limits of Parameterized
Channel Coding for Software Radio” in Proc.2nd Karlsruhe
Workshop on SDR, ISSN 1616-6019, 2002, pp. 107-112

[12] A.-R. Rhiemeier, F.K. Jondral, “A Software Partitioning
Algorithm for Modular SDR” in Proc. WPMC’03, Int’l Symp.
Wireless Personal Multimedia Commun., Oct. 2003

[13] F.K. Jondral, “Parameterization – a Technique for SDR
Impementation”, in [4], pp. 232-256

[14] T. Hu, “Parallel Sequencing and Assembly Line Problems”,
Operations Research, vol. 9, pp. 841-848, 1961

[15] J.R. Sacha, M.J. Irwin, “Number Representations for Reduc-
ing Data Bus Power Dissipation”, Proc. Asilomar Conf. Sig.
Sys. and Comp., vol. 1, Nov. 1998, pp. 213-21

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

