

SOFTWARE COMMUNICATIONS ARCHITECTURE TRADEOFF

CONSIDERATIONS FOR MULTIPLE DEPLOYMENT PLATFORMS

Vincent J. Kovarik Jr.
(Harris Corporation, Melbourne, FL, 32902, United States, vkovarik@harris.com)

ABSTRACT

A specification for a common software architecture for
software defined radios has been Proposed by the Joint
Tactical Radio System (JTRS) Software Communication
Architecture (SCA). While a core set of control and
configuration interfaces provides a good starting point for
interoperability, the SCA does not prescribe any specific
approaches regarding the implementation architecture. This
has resulted in issues regarding the application of the SCA
to different target platforms. In response to some of these
platform issues, exploratory initiatives, such as the Core
Framework (CF) Lite, have begun to focus on framework
implementations that remain SCA compliant but can be
hosted on smaller, resource limited platforms. While the
CF-Lite is focused on the specific problems introduced by
the small platform, it does not address the range of
deployment platform permutations that will eventually host
the SCA. This paper explores implementation architectures
that may be applied to a range of radio systems.

1. INTRODUCTION

Few technologies have been developed that have had as
significant an impact on an industry as the Software Defined
Radio [1,2] (SDR). The Software Communications
Architecture (SCA) has accelerated this impact on radio
systems for the U.S. government by rapidly becoming the
standard architecture required in military radio system
procurements.
 Developed under the Joint Tactical Radio System
(JTRS) program requirements [3], the SCA defines a
common software infrastructure that prescribes how a radio
system shall be implemented. The objective of the SCA is
to reduce the long-term cost of military communications
systems by enabling radios to host new capabilities through
software upgrades rather than requiring expensive hardware
upgrades or, worse, entirely new hardware.
 While the intent of the SCA is to provide a common
framework that insulates the waveform applications from
the underlying hardware implementation. There are,
nevertheless, critical interdependencies between the

implementation of the waveform application and the
underlying radio hardware. Figure 1 illustrates the
conceptual implementation space of a software-defined
radio.
 At the highest level is the definition of the waveform
application. This definition may be specified as a
MATLAB simulation, a set of mathematical specifications,
or some other functional specification method. This
specification.

Figure 1: Software Radio Abstraction Layers

represents the highest level of abstraction of the waveform
 Depending upon the bandwidth and throughput
requirements of the waveform application, the
implementation approach typically follows one of two
paths. The waveform may be implemented in a high-level
programming language such as C or C++, if targeted for
deployment on a General Purpose Processor (GPP) or
Digital Signal Processor (DSP). If the waveform
performance is sufficiently demanding then it will push the
specification towards VHDL. This path leads to an
implementation using a Field Programmable Gate Array
(FPGA) or an Application Specific Integrated Circuit
(ASIC). For the most part, ASIC implementations are not
considered as part of the solution space for software-defined
radios because of their immutability after deployment.
 Between the hardware and the waveform application
sits the operating system for the radio set and the radio

VHDL

Host Platform

GPP DSP

Bandwidth

Ab
st

ra
ct

io
n

Waveform Implementation Paths

FPGA ASIC

Operating System

Framework/Infrastructure

C/C++

Waveform Specification

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

mailto:vkovarik@harris.com

infrastructure, known in the SCA as the Core Framework.
The Core Framework (CF) provides the common view and
interfaces into the radio set resources.

Figure 2: SCA Abstraction Space

 How the SCA decomposes the waveform
implementation and maps it onto a set of hardware devices
is illustrated in figure 2. At the highest level, the
application is the functional entity that the radio system
executes. The waveform application is described as a
collection of components that provide discrete functions and
are logically tied together through the use of the SCA Port
abstraction. The next lower level defines a collection of
resources that describe the capabilities of the underlying
hardware devices. Finally, at the lowest level, the hardware
devices form the physical platform providing the processing
engine required to execute the waveform implementation.

Figure 3: Aspects of an SCA Radio Set

An alternative view of the SCA abstraction space is to
look at the aspects of the software radio. Aspect-oriented

analysis or programming has evolved over the past several
years as a mechanism for providing a larger encapsulation
of the system facets. These aspects are illustrated in Figure
3.
 At the lowest level, as with the SCA abstraction view
of Figure 2, is the hardware aspect. This level defines the
set of hardware components, their capabilities, and
interconnections. The next level up is the Software
Component aspect. At this level the physical hardware is
abstracted into a Logical Device. This Logical Device
implements the SCA Device interface thereby providing a
consistent function protocol into the hardware platform.
The Application aspect provides a consistent encapsulation
of the waveform application and other software that
provides a service running on the system. Finally, the User
aspect reflects the user’s view of the software radio. From
the user’s perspective, the interactions are either controlling
the physical radio elements or, through the radio interface,
controlling the waveform as a logical entity.

2. THE SCA ARCHITECTURE

The SCA architecture is a derivation of the CORBA
Components Model (CCM). The CCM defines a
framework for the specification and assembly of software
components in a dynamic fashion. The key concept is the
ability to connect different, pre-built components in a
dynamic fashion rather than building a monolithic and
inflexible system.

2.1 SCA Components

The SCA Core Framework components consist of a Domain
Manager (which typically includes an implementation of the
Application Factory and Application as well as an instance
of a File Manager), one or more Device Manager instances
(which includes a File System as part of the Device
Manager), one or more Device instances, and one or more
waveforms application instances. Note that these instances
provide the underlying waveform instantiation and control
logic in the form of an Assembly Controller to which the
Application provided in the Domain Manager delegates all
operations.
 Tying these components together is a set of services
including a CORBA Name Service, a Log Service (Note
that there now exists an Object Management Group (OMG)
approved Lightweight Log Service that the SCA will likely
reference in a future release of the specification and drop
the SCA-defined Log Service), and a CORBA event
Service.
 Thus, in a fully SCA-compliant radio system, the above
components and services must be provided. In the current
SCA operational scenario, there is a “boot node” which
provides the initial system boot sequence. This node

Applications

Components

Resources

Devices

Domain
Manager

P h ys ica lE le m e n t

S W Ap p lica tio n

Ap p C o m p o n e n t

E v e n t

L o g ica lD e v ice

SW C om ponen t

W av e fo rm S e rv ice

P o rt

P ro p e r ty

R ad io

A p p lic a tio n a n d S e rv ic e s A s p e c t

S o ftw a re C o m p o n e n t A s p e c t

H a rd w a re A s p e c t

R ad io U se r

C ap ac ity

U s e r A s p e c t

R e so u rce

1 is s ues

0 ..*

« rea liz e»

« rea liz e» « rea liz e»

has D ependenc y

1 ..*

1

is A lloc a tedT o

1..*

requ ires

has D ependenc y

1

p rovides In te rfac e

1

« rea liz e»

has D ependenc y

c onnec ts V ia
0 ..*

0 ..*

ope ra tes

c on tro ls

« rea liz e»

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

powers up, starts the Device Manager for that node and then
initiates additional processes including a File System, a Log
Service, Event Service, and the Domain Manager. In
addition, any devices that are managed by the Device
Manager for the node are started and initialized.
 After the primary node is booted and the components
are started and initialized, additional nodes may be brought
up as well. Each of these nodes may include a Device
Manager and multiples Devices and additional software
components.
 The number of process can vary significantly, based on
the specific implementation approach. Table 1 illustrates a
typical set, based on the SCA specification.

Table 1: SCA Components and Processes

Component Process(es)
Device
Manager

1 per Device Manager instance

Device 1 per device. May be implemented as an
instance within the Device Manager and
accessed via a thread.

Log Service 1 per system. Multiple log services may co-exist
on a radio set.

File System 1 per Device Manager instance. May be
instantiated within a Device Manager and
accessed via a thread.

Domain
Manager

1 per radio system

Event
Service

1 per radio system

Name
Service

1 per radio system

Application 1 per instance. Depending on how components
of the waveform application are implemented,
this could result in many processes.

 As can be seen from Table 1, depending on the
implementation approach and number of devices, the
number of processes required to boot up an SCA-compliant
system can grow to more than a dozen. Depending on the
capabilities of the general-purpose processor, the resources
consumed for basic framework operations can be
significant.

3. THE DEPLOYMENT SPECTRUM

There is a wide range of deployment platforms and options
based on the number and type of waveforms that the radio
system is required to support. This need must be tempered
with the physical constraints introduced by the radio’s
targeted deployment environment.

3.1 SCA Deployment Drivers

There are several key deployment drivers that impinge on
the implementation strategy for an SCA compliant software

radio. The first is the overall bandwidth or throughput
requirements. Depending on the data rate and the
complexity of the waveform, conventional programming
language implementations and the processor type may not
be sufficiently powerful to support the waveform. While
there are certain issues that must be addressed to implement
an SCA-compliant FPGA processing device, it is realizable.
Some approaches for SCA-compliant FPGA-based
implementations are presented in [4].
 The throughput and bandwidth of the waveforms to be
hosted on the software radio must be balanced with the
physical constraints imposed by the target user and
environment. The system must live within the size, weight
and power constraint imposed by the operational
environment, usage scenarios and form factor requirements.

3.2 Deployment Environments

As noted in the introduction, current implementations
typically fall into resource rich or resource-limited systems.
At the upper-end of the deployment range are systems that
have, for all practical consideration, virtually unlimited
power and are not constrained by form factor issues. Such
deployed systems typically are realized in the form of a
chassis such as VME or compact PCI. These systems can
have multiple single board computers, special purpose
signal processing components, and other radio system
components that are realized as a PC board within the
chassis or rack.
 The SCA implementation for systems such as these are
not constrained in terms of how they must manage the
system resources beyond the requirements levied by the
SCA in terms of allocating resources to components of a
radio application. JTRS cluster 1, 3, and 4 in the JTRS
procurement process may be generally placed in this
category, although Clusters 1 and 4 do have some unique
form factor constraints that will limit available resources
and drive several implementation decisions.
 At the lower-end of the deployment spectrum is the
man-pack and hand held radio systems. These systems are
battery powered and carried by personnel. Any reduction in
weight for these systems yields a direct benefit to the radio
user in terms of lessening the total amount of required
weight. Of course, the battery is the primary culprit that
adds weight to the overall unit. Thus, the battery is the
typically driving factor in the engineering of the radio
system. Approaches for SCA implementation on these
platforms have been proposed by [5] and [6].
 In a hand held system, the capabilities of the radio set
are driven by the power resulting in very different design
tradeoffs. Issues such as partial operation, being able to
turn off components when not in use, and still retain content
for fast system start-up, need to be addressed. Clusters 2

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

and 5 of the JTRS procurement process generally fall into
this area.

3.3 Implementation Constraints

 On the surface it would appear that a simple
decomposition of the SCA implementation into two
categories would be adequate and, indeed, that is primarily
the approach to date. However, upon closer inspection of
the radio sets and the finer-grained variations between them,
it becomes apparent that what is present is not a binary
world where each radio set can be simply categorized as
large or small. Instead, the implementation architecture is a
rich set of constraints that are interrelated.
 To understand how deployment constraints are
organized in a more fine-grained ontology, they must be
mapped to the underlying SCA architecture. The following
section discusses specific areas of functional SCA
requirements for which the implementation architecture
choices have a direct bearing on the radio system
architecture.

4. SCA COMPLIANCE

The baseline SCA specification identifies a number of
functional requirements, system components, and radio
services that must be present in order to be considered
compliant with the specification and to receive certification.
In analyzing the specification, several key components
come to the fore. These components are discussed below.

4.1 Name Service

The implementation of a Name Service provides a global
mechanism for locating services within a software system.
In the context of a distributed system, the Name Service
provides a valuable capability in that it eliminates the
necessity to encode the location and/or path to an
application. Services need only to register with the Name
Service.
 Typically, the name service runs as a process in a
networked system. In a resource-rich system with multiple
processors, providing a name service as a process on one of
the GPP nodes doesn’t present an issue. In a resource-
limited environment, however, the use of resources to start
and manage a process that, essentially, simply provides a
lookup service for radio components to locate and connect
to each other is impractical.

4.2 XML Processing

Waveform applications are described in the SCA using
eXtensible Markup Language (XML) files. These files
describe the set of application components, the resources

required for the components, and the connectivity. The set
of XML files describe the Domain Profile for a waveform.
While XML parsing is not a CPU intensive process, is does
entail a significant amount of string processing and
construction of an internal tree structure representing the
XML elements, their attribute, and values. This XML tree
is then traversed and a more efficient internal data structure
is constructed that represents the Domain Profile.
 For example, the implementation of the Domain Profile
in dmTK consists of more than forty C++ classes. The
classes are instantiated based on the content of the XML
specification of the XML files. Once instantiated, it is more
efficient to traverse the semantic relationships of the
Domain Profile following data structure pointers rather than
traversing the XML tree structure because the semantic
interpretation of the dependencies and relationships that
cannot be expressed in the XML files are built into the
instantiated object model.
 The processing of the XML files, however, is not
limited to the definition of waveform applications. XML
files also define the properties of the SCA Devices and
Device Managers. So processing XML files is a common
aspect of an SCA implementation.
 In a resource-limited environment, however, the
processing of textual data as the primary mechanism for
defining the waveform application components and
organization is not a resource efficient approach. In some
cases the XML processing is performed on startup of the
hardware, e.g. Devices and Device Managers, and others it
is performed upon installation of a new waveform
application.

4.3 Waveform Data Transport

Perhaps the most significant performance aspect of a
software-defined radio and an SCA-compliant radio system
specifically is the mechanism used to move waveform data
along the processing chain. In an abstract sense, processing
a waveform can be viewed as a data flow machine.
 As the data is processed in one functional component, it
is moved along to the next. This abstract model holds for
any type of waveform data from baseband samples to
InPhase and Quadrature (I&Q) data.
 As illustrated in Figure 4, the Port merely connects to
endpoints of a communications link. There is no
implication within the connection specification regarding
the communications transport protocol.
 If one takes the SCA requirements literally, CORBA is
the data transport mechanism that must be used in an SCA
radio. However, without too much analysis effort, it is easy
to ascertain that such an absolute interpretation is not only
impractical but unrealistic. Data transport for high-
bandwidth waveform applications require alternative
transports if the performance requirements are to be met.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Figure 4: Port Interface and Requirements

 In the following section alternative interpretations and
approaches to the above components of the SCA
specification are presented.

4. IMPLEMENTATION ADAPTATIONS

This section presents some different perspectives to the
issues identified above and proposes several implementation
alternatives. The objective is to maintain a common and
compliant architecture at the highest level possible while
providing realistic alternatives for different deployment
configurations. These implementation options are intended
to maintain compatibility to the greatest extent possible
which still addressing the platform specific constraints and
limitations of the radio system.

4.1 Name Service

Fundamentally, the Name Service can be viewed of as a
registry of services. Each service and application makes its
capabilities available to other components by registering
with the Name Service. The Name Service then accepts
requests from clients wishing to use a particular service,
looks up the service using the name provided, and provides
a connection endpoint through which the client can connect
and issues requests to the service provided.
 In a multi-process, distributed environment, the Name
Service typically runs as a stand-alone process within the
distributed system. The Name Service runs in a “well
known” location or, as in some ORBs, is located through an
IP-multicast call. Once located, the applications can register
and request services.
 The service name is simply a string name provided
within a hierarchical naming context. So, for example, a
GPS time service might register as /dmTK/GPSTime,

where /dmTK represents the top level context of the name
service and /GPSTime is the string name for the service.
 In a resource-limited environment, it may not be
desirable, or even possible to run the Name Service as a
separate process. However, the same functionally could be
provided if the Name Service ran as a thread within a master
process or, in a more minimalist implementation, it can be
implemented as a service call within the operating system.
 The key aspect is that, in all implementation scenarios,
the function signature used to make the request to register or
locate a service is equivalent. The only difference is the
process model, e.g. a full process, a thread within a master
process, or a service call within the kernel process space.
 Thus, looking at the kernel function call in a bit more
detail, the Name Service can be implemented as an object
module that extends the capabilities of the operating system.
This is much the same as object modules are used to add
device-specific network card interface.

4.2 XML Processing

The processing of XML has several alternative approaches,
again dependent on the resources available. As noted in the
previous section, the SCA specification states that the XML
files form the Domain Profile and are processed during
waveform installation. Some individuals may also interpret
the specification to mean that the XML files are also
processed during waveform instantiation, although most
individuals experienced with the SCA subscribe to the
former interpretation.
 While not computationally intensive, from a processing
standpoint, the processing of text XML files can be resource
intensive from the perspective of significant I/O to open and
read a multitude of XML files and the requisite Document
Type Descriptor (DTD) files that define the legal syntax of
the XML files.
 A common approach is to process the XML files during
waveform installation and construct an internal
representation of the domain profile that is more efficient to
manage and process during waveform instantiation.
 There are two fundamental approaches to improving
the efficiency of XML file processing. One is to perform
the initial processing, using the validating XML parser,
build an internal representation, and then to utilize the
internal representation within the fielded radio set. This
frees the fielded radio from having to host an XML parser
and maintain the XML source files internally on a small
form factor or battery powered unit.
 In this scenario, the SCA compliant radio set consists of
the small, hand held unit and a laptop or other support
processor networked together. The laptop hosts the XML
processor and other support components required for set
configuration and waveform installation but is not part of
the deployed radio set. The deployed set maintains the

«interface»
Port

+ connec tPort(connec tionId :s tring, connection :O bject) : void
+ disconnectPort(connec tionId :s tring) : void

Port

3.1.3.1.1 Port

(from 3.1.3.1 Base Application Interfaces)

SCA052:
connec tPort
O peration

(from Port)

SCA055: disconnec tPort
O peration

(from Port)

«realize»

«realize» «realize»

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

internal domain profile representation resulting from the
parsing process.
 One of the common retorts to such an approach is that
it does not meet the intent of the SCA radio architecture.
While arguments can be offered for either interpretation, the
underlying driver must be the full deployment environment
and operational scenario. This approach allows a small
hand-held to be fully re-configurable according to the SCA
specification but limited to installed waveforms once
configured for a specific mission.
 Another, intermediate approach, that still provides the
dynamic installation of the waveforms in the small form
factor radio set without the overhead of a full XML
validating parser, is to use a byte-code representation.
 Similar to the approach used by programming
languages such as Java, and others to provide platform
transportability and independence, a byte-code specification
of the XML element tags and attributes can be defined.
Similar to the representation of an application in byte-code,
the XML can be validated and parsed using a standard XML
parser. Then the XML data tree can be post-processed to
build a more compact byte-code assignment for the
elements, attributes, and tags within the XML resulting in a
more compact byte-code image.
 The XML byte-code image is then resident on the
deployed platform. An interpreter processes the byte-code
image providing the essential information to the SCA Core
Framework components thereby building the appropriate
internal domain profile representation.
 This approach yields a balance between the overhead of
fielding a full XML parser and the stripped-down model of
fielding only the domain profile built from the XML files.
In this approach, the ability to install new waveforms is still
provided but the textual XML files are pre-parsed,
validated, and the byte-code image is fielded with the radio
system.

4.3 Waveform Data Transport

Implementation of the waveform data transport has typically
been approached using a CORBA-based implementation.
There is a false perception that the underlying transport
must utilize the traditional distributed CORBA
implementation that resides on top of an IP stack when, in
fact, the transport implementation is orthogonal to the
interface specification.
 The SCA currently uses the abstract concept of a Port
to encapsulate the point-to-point connectivity. This
approach provides a common mechanism for identifying
data sources and sinks (The SCA names these uses and
provides ports) and how those data sources and sinks are
logically connected to form a data path.
 Rather than force-fitting the communications between
two connected ports to be a point-to-(multi)point CORBA

connection, the transport mechanism could be abstracted
away from the connection and the Port would simply
provide the connection mechanism to an underlying
data/message transport infrastructure. One could argue, in
fact, that this abstraction is already provided by the Port
abstraction in that the specification merely defines the
minimal requirements to establish communications between
two endpoints.
 Following this approach would start to pave the way for
a radio that is not merely a set of hardware loosely
connected through a common software interface but be
closer to the concept of a set of collaborative services that
can be flexibly constructed in an ad hoc fashion realizing
the specific functionality required at a given point in time.

5. CONCLUSIONS

This paper has identified several implementation tradeoffs
in several key areas of the SCA. It has proposed several
implementation variants that maintain the core intent of the
SCA and compliance with the SCA specification while
allowing a wider range of deployment implementations.
 It is the author’s belief that the SCA must continue to
evolve such that the implementation architectures can be
adapted depending on the deployment domains.
 For this to occur, the definition of SCA compliance
must evolve to encompass more than the current polarized
interpretation for resource-rich and resource-limited
environments. It must include the full spectrum of radio
implementations.

6. REFERENCES

[1] Mitola III, J., Software Radio Architecture: Object-Oriented

Approaches to Wireless Systems Engineering, 2000, John
Wiley and Sons, Inc.

[2] Reed, J.H., Software Radio: A Modern Approach to Radio
Engineering, 2002, Prentice Hall.

 [3] Joint Tactical Radio System (JTRS) Operation Requirements
Document (ORD), Version 32, April 2003,
http://jtrs.army.mil/documents/JROC%20Approved%20ORD
%20v3.2%209Apr03.pdf

[4] Kovarik, Jr., V.J., Next Generation SDR: JTRS Myth, Reality,
and Opportunity, AIA Military Radio Conference,
Washington, D.C., September 2003.

[5] Linn, C.A., Designing Core Frameworks for Battery-Powered
Platforms: 10 Techniques For Success, Proceedings of the
2002 Software Defined Radio Technical Conference,
November 2003.

[6] Cruz, J. W., Davis, T., Mario, M., Rolon, G., An Approach to a
Compact JTRS SCA Core Framework For Handheld Radios,
Proceedings of the 2002 Software Defined Radio Technical
Conference, November 2003.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

