

COMPARISON OF HIGH-LEVEL FPGA DESIGN TOOLS FOR A BPSK SIGNAL

DETECTION APPLICATION

Jan Frigo (Los Alamos National Laboratory, Los Alamos, NM, USA, jfrigo@lanl.gov);
Tom Braun (Los Alamos National Laboratory, Los Alamos, NM, USA, tbraun@lanl.gov);

Joe Arrowood (Los Alamos National Laboratory, Los Alamos, NM, USA, arrowood@lanl.gov);
Maya Gokhale (Los Alamos National Laboratory, Los Alamos, NM, USA, maya@lanl.gov);

ABSTRACT

We investigate two approaches using high-level tools to
map a signal processing algorithm to reconfigurable
hardware. Our application presents the first step of a phase
modulation sorter that locates binary phase shift keying
(BPSK) signals in wide-band data. The first approach uses
the Xilinx System Generator tool to model the system within
Matlab/Simulink. These system modules are synthesized to
hardware as Xilinx IP cores. The second approach uses the
Streams -C language and compiler to write a high-level
program (using mostly C code) consisting of software and
hardware processes. We will discuss our experiences using
these high-level tools in terms of their ease of use, and the
accuracy of their functional simulators, and generated
hardware. The designs utilized two Virtex 1000E FPGAs. The
System Generator version of the application used 80% of the
available area with a placement speed of 70 MHz, compared
to 60% area utilization and a 60 MHz speed for Streams -C.
We estimate a productivity improvement of 2X to 4X over
manual hardware design depending on the complexity of the
modification, and the stage of system development.

1. INTRODUCTION

The motivation for this study comes from the need to have a
compliant hardware development system that allows
developers the flexibility to change portions of the algorithm,
while not impacting the schedule of the project or “shutting
down” the system while these modifications are in-progress.
There are numerous commercially available development
tools for reconfigurable computing (RCC) systems aimed at
reducing design time and making the algorithm-to-hardware
transition less cumbersome. Some tools focus on dataflow
design, have a graphical interface for algorithm development
and target special-purpose hardware boards [1], while others
require the developer to translate their algorithm into a cycle-
by-cycle C-like representation and generate synthesizable
VHDL (or Verilog) or a net list [2]. Still others [3] have
algorithm development in a subset of C or Fortran, include
mapping to specialized hardware boards and allow for high-
level resource allocation on the hardware. We chose to

evaluate Xilinx’s System Generator for DSP [4] and the open
source sc2 Streams -C compiler [5]1 in this study.
 System Generator is a Xilinx software tool for designing,
simulating, and implementing high performance FPGA -based
DSP systems, and exists as a plug-in for Mathwork’s
Simulink. The VHDL output of the tool is a component
similar to a Xilinx Coregen core, and can be instanced in any
design or board model containing Xilinx Virtex or Virtex II
FPGAs. System Generator allows bit-true simulation and
system design to be done in Simulink, without the need for a
HDL simulator.
 The sc2 Streams -C tool targets algorithm mapping to
hardware/software systems. Streams -C provides language-
level support (a subset of C) for stream-oriented
computation. The Streams -C programming model is that of
communicating processes. A system consists of a collection
of processes that communicate using streams and signals.
Processes can run either in software on conventional
processors or in hardware on FPGAs. The sc2 synthesis
compiler compiles hardware processes into RTL VHDL. The
software libraries provide a functional simulator and a
runtime library. The sc2 compiler currently, targets the
Annapolis Micro Systems Firebird board.

2. BPSK APPLICATION

BPSK is a form of Phase Shift Keying (PSK) modulation. In
BPSK modulation, the phase of the RF carrier is shifted 180
degrees in accordance with a digital bit stream. A
generalized representation may be written as

[]0)(cos)(θπω ++= tptAts c

Where p(t) is a binary switching function with possible
states of 0 or 1 that represents the digital modulation. The
term θ 0 dictates the initial phase of the signal. A "one"
causes a phase transition while a "zero" does not.
 One characteristic of BPSK modulation is that squaring
the data will produce a strong peak in the frequency domain,
while the data itself contains no such peak. This is distinct

1 The sc2 Streams-C compiler was developed at LANL.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

from other forms of communication modulation such as
QPSK (Quadrature Phase Shift Keying), QAM (Quadrature
Amplitude Modulation) or FSK (Frequency Shift Keying).
Squaring the above equation produces

[]0
2 2)(22cos

22
)(θπω +++= tpt

AA
ts c

which simplifies to

[]0
2 22cos

22
)(θω ++= t

AA
ts c

The switching function, p(t), is now multiplied by 2π and
thus does not provide a phase shift. Therefore, this
squaring technique removes the digital modulation and the
spectral spreading associated with it in favor of an easily
identifiable spectral peak at double the carrier frequency.
The test application will exploit this characteristic to search
input data for the presence of a BPSK signal. Spectral plots
shown in Figure 1 illustrate this property.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

5

Frequency (MHz)

fc = 3.27 MHz

s(t)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
x 10

8

Frequency (MHz)

2fc = 6.55 MHz

s2(t)

Figure 1. Spectral plots of s(t) and s2(t)

 This application, therefore, consists of four parts: 1)
calculating a FFT on the data and the square of the data.
Only the magnitude of the output is considered, and DC and
Nyquist bands are ignored. 2) Four FFTs are accumulated on
a frequency bin by frequency bin basis to reduce the
probability of false detection due to noise. 3) We threshold
the accumulated FFT output based on its mean to find
frequencies that have strong peaks. 4) Peaks are compared
between the squared and non-squared data to determine if a
peak in the squared data is a result of a BPSK signal or a
continuous wave. The algorithm flow is shown in Figure 2.
 This application was chosen for testing due to its
complexity, as it requires a large amount of processing for
the FFT, immediate data storage and accumulation of the
FFT outputs, and control logic to handle the threshold and
peak detection. For instance, due to aliasing and
quantization, every time a peak is detected in the squared
data, six frequency bins of non-squared data must be
checked. Also, for comparison purposes we have a hand-
coded (VHDL) version of this application.

Figure 2. BPSK algorithm

3. SYSTEM GENERATOR TOOL

3.1. Introduction

System Generator is a Xilinx product that acts as an
additional blockset for Mathwork’s Simulink [6]. Simulink is
a block diagram design tool for Matlab that allows time-
based simulation and graphical design. Models (algorithms)
are constructed via a graphical user interface (GUI) by
dragging different blocks onto the workspace and
connecting them. Most of the Matlab functions are
available for use within Simulink. The system uses the
standard Matlab workspace for file I/O.
 The System Generator blocks closely correspond to
Xilinx IP cores available in their Coregen product. It
generates VHDL for each model by instancing the cores in
automatically generated wrappers. These wrappers are then
connected together. Thus, only blocks in the System
Generator blockset can be converted to VHDL, although the
whole range of Simulink blocks and Matlab functions may be
used for testing and verification inside the Simulink
simulation environment.
 The System Generator blockset includes block
implementation of most low-level and intermediate-level
FPGA functions, such as adders, multipliers, muxes,
registers, and counters. Selected higher-level building
blocks are also available, such as FIR filters (including

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

support for Matlab’s fdatool), FFTs, a CORDIC-based
Cartesian to Polar converter, convolution encoder/decoder,
and a soft microprocessor core.
 For simulation, all Xilinx blocks act like native Simulink
blocks. Simulation of the Xilinx blocks is both bit and cycle
true. For synthesis, project files may be created for a user-
specified (XST, Leonardo, or Synplicity) synthesis tool.
Additionally, project files for HDL simulation (ModelSim
CAD tool) are produced.
 The VHDL produced by System Generator may be
instanced as a component in a larger design. Alternatively,
pin constraints may be specified for each port in the Simulink
model in order to map it directly to the FPGA. Because of
the reliance on Xilinx IP cores, the tool will only generate
code for Xilinx Virtex, Virtex2, and Spartan FPGAs. Many of
the high level blocks require the Virtex2.
 Figure 3 shows the general design flow for using
System Generator for hardware design. An example design-
flow shown in Figure 4 is the mean calculation used in the
BPSK discrimination algorithm.

Figure 3. System Generator Design Flow

Figure 4. Example of System Generator Algorithm

3.2. System Generator: BPSK appl ication mapping to
hardware

The BPSK algorithm described in Section 2 was implemented
with the System Generator blockset, including the FFT. Due
to constraints with the tool (described in Section 3.3), it was
necessary to build all the components from low-level blocks,

such as adders, muxes, and multipliers. Subsystems were
made for each of the components shown in Figure 2, and
these were connected together to produce a design in
Simulink. Emphasis was put on making the design capable
of handling data in real time. Thus, the algorithm is fully
pipelined to run continuously on the hardware (or for a
given number of seconds in simulation), with a continuous
stream of input data.
 The performance results in Table 1. show the placed and
routed design generated by System Generator was split
across two Xilinx Virtex 1000E FPGAs and each chip met the
clock speed constraint of 70 MHz. It used just over 19500
slices, which accounts for approximately 80% of the total
available area. Once the learning curve on the tool was
overcome, the total development time to map our BPSK
algorithm to reconfigurable hardware was approximately 2 to
3 weeks. We estimate that a hand-coded version of this
application in VHDL requires about 4 to 8 weeks of
development time, thus, a productivity speed up of 2X to 4X.

3.3. Evaluation of System Generator

One might view System Generator as a high-level design tool
in which high-level function blocks are connected together
and the tool handles the remaining details. This view is
inconsis tent with our experience. While the design entry
method is high-level, the designs themselves typically are
not. Many of the high-level blocks were too constrained for
use in our application. For example, the existing FFT block
provided with System Generator can only handle 16-bit input
and 16-bit output, and requires a continuous stream of input
data without a data valid indicator. HDL designers must
address these same constraints with respect to the Xilinx
FFT core. Nevertheless, this caused us to build many
designs entirely from the basic building blocks, blocks
similar to the functionality already available in VHDL or
Verilog. In addition, the amount of control logic necessary
to handle delays and clocking often requires low-level
manipulation by the user.
 However, there are definite advantages to using System
Generator instead of conventional HDL languages. Some of
the high-level blocks in System Generator are accurate. The
FIR filter is an appropriate example, which not only allows
input of coefficients or the dynamic design of a filter in
Matlab, but also will automatically analyze the coefficients
for symmetry and optimize accordingly. Even where high-
level blocks are not available, System Generator provides an
efficient GUI for design entry. The design also makes it
trivial to save common pieces of code (blocks) for later use,
and it is a straightforward process to design these blocks to
configure themselves automatically for varying bit widths
and number of iterations. Thus, changes to an algorithm can
be made quickly and easily with System Generator. Testing
and verification is convenient with System Generator, since

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

the data is directly available in the Matlab workspace with all
the Matlab data visualization tools. Finally, using System
Generator inside Simulink for bit and cycle true simulations is
an order of magnitude faster than running the same
simulation through an HDL simulator. It could be argued
that the decrease in time for testing and verification alone is
worth the migration to System Generator. We estimate a 2X
to 4X productivity improvement using System Generator
over conventional HDL language development methods due
to System Generator’s design environment and simulation
speed. We found the tool provides a nice balance between
the amount of control capable in the design processes and
the advanced design entry and data testing properties one
would expect in a high-level tool.

4. STREAMS-C COMPILER

4.1. Introduction

Approaches for reducing design time for RCC applications
have ranged from high-level optimization schemes [7] [8], to
low-level [9], technology-specific, optimized designs. The
Streams -C approach [10] targets algorithm mapping to
hardware/software systems. Streams -C provides language-
level support for stream-oriented computation.
Characteristics of stream-oriented computing include high-
data-rate flow of one or more data sources, fixed size, small
stream payload (one byte to one word), compute-intensive
operations, usually low precision fixed point on the data
stream, access to small local memories holding coefficients
and other constants, and occasional synchronization
between computational phases.

The Streams -C programming model is that of
communicating processes. A system consists of a collection
of processes that communicate using streams and signals.
Processes can run either in software on conventional
processors (SP) or in hardware on FPGA processors (HP).
The sc2 synthesis compiler compiles FPGA processes in
hardware. The compiler translates a subset of C (e.g.
generalized pointers or recursion are not supported) into
Register-Transfer-Level (RTL) VHDL that is synthesizable
on FPGAs. The compiler can pipeline loops, so that the
generated hardware/software is capable of pipelining a
streamed computation across multiple FPGAs and the
conventional processor. In addition, the compiler can unroll
loops.

A software library using POSIX threads provides
concurrent processes and stream support in software. Thus
the software libraries support a dual function: when all
processes are mapped to software, the system provides a
functional simulation environment for the hardware/software
program. The library also provides a convenient, lightweight
mechanism for parallel programming in software. When
processes are mapped to a combination of software and

hardware, the software libraries are used for communication
among software processes and between software and
hardware processes. Hardware libraries for the Annapolis
Micro Systems (AMS) Firebird board, which contains one
Xilinx Virtex-E FPGA on a 64-bit PCI bus, are used for
communication among hardware processes and for the
hardware side of communication to software processes.
Figure 5 shows the software development flow for
applications using the Streams -C compiler.

Figure 5. Streams -C compiler structure

4.2. Streams -C: BPSK application mapping to hardware

The Streams -C version of the BPSK algorithm as shown in
Figure 6, has one software process, host1, and three
hardware processes, fft, data_run, and squared_data_run.
The host1 process fills external on-board memory with input
data and initiates all the hardware processes once the
memory load is complete. Host1 then waits for an input
signal from the data_run process to indicate signal detection
is complete. The fft hardware process reads data from
memory and computes the Fast Fourier Transform (FFT) of
the input and the squared input. The IP core for the FFT
calculation was inserted into a Streams -C hardware process.
The data and squared data outputs for a block (N) of FFTs
are summed and stored in dual-port block ram. A signal
containing the accumulated sum of the data and the squared
data is sent to the data_run process and the
squared_data_run process respectively. These signals
initiate the other hardware processes to threshold the
accumulated output data (in dual port ram). In this step the
data is converted to a “one” if it is above the threshold and a
“zero” if it is below. The squared_data_run process streams
the output of the threshold operation to the data_run

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

process. Here the final stage of peak detection is performed
and a signal is sent to the host1 process in order to read
back signal detection frequencies from external on-board
memory. This process repeats for Q iterations. For this
example, Q = 3 and N = 4. Figure 7 shows the threshold and
peak detection Streams -C code in the data_run hardware
process.

Figure 6. Streams -C mapping to hardware

4.3. Evaluation of Streams -C

The Streams -C compiler has a functional simulator that
allows a software only simulation of the algorithm to check
for correctness. The Streams -C language code is readable
and very similar to C-code. This part of the tool is easy to
use and fairly straightforward. For applications with multiple
hardware and software processes, bit-accurate functional
simulation limits the use of bit-widths to 8, 16, 32, and 64,
however, a simple #ifdef structure allows you to separate
software-only simulation code from hardware-only synthesis
code in the process functions. As well, the design space in
this part of development is flexible, allowing the user to
iteratively interchange hardware and software processes in
order to accommodate modifications in the project
development cycle.

The next part of the compiler is the hardware generator
that produces synthesizable RTL. In this phase of the
process, sections of the peak detection algorithm had to be
rewritten to generate synthesizable VHDL. Verification of the
generated VHDL with ModelTech’s Modelsim HDL
simulator gives a clock-accurate representation of the
design. The sc2 Streams -C compiler does not generate the
VHLD behavioral host simulation code so this portion of the
development is manual and time consuming. Also, the VHDL
module for the FFT IP core had to be manually inserted into
the top-level architecture file. The compiler did allow for
accurate representations of variable data widths in hardware
synthesis. The hardware libraries support Xilinx Virtex
FPGAs, but the conversion to a different technology (such

as Altera) is straightforward through the use of
configuration statements in the hardware library.

The Streams -C generated design (see Table 1) used two
Xilinx Virtex 1000E FPGAs and 14,250 slices, approximately
60% of the total area with a speed of 60 MHz. (The
performance results were generated by Synplicity 7.1 and
Xilinx ISE 5.2i.) The design took approximately 2 weeks to
complete. The productivity improvement using the sc2
Streams -C compiler is approximately 2X to 4X over manual
methods of implementing the application on a RCC system
due to the fact that changes to the algorithm can be easily
accommodated and the compiler provides automatic
mapping to hardware.

#pragma SC memory mem_1 data_out
pragma SC memory mem_1 event_data
pragma SC memory DP_FFT_1 x

for(j=0; j<Q; j++){
// external IP core generates 4 ffts
// fft IP core 'finished' processing return the sum of 4 ffts
 sum = sc_wait(input_signal);

// calculate the threshold
Threshold = (sum/(sc_int24)2048)*(sc_int24)4;

 for(i=0; i<L; i++){
 if (x[i] < Threshold)
 data_out[i] = 0;
 else
 data_out[i] = 1; //strong value
}
// check for BPSK
// if squared_data = 1 check six frequency bins of the
// non squared data for a “1”
 for(j=0; j<L; j++){
 squared_data = sc_stream_read(input_stream);
 if (squared_data == (sc_int2)1){
 tmp0 = data_out[j];
 tmp1 = data_out[j/(sc_int32)2 + (sc_int32)1];
 tmp2 = data_out[j/(sc_int32)2 - (sc_int32)1];
 tmp3 = data_out[(FFTSize-j)/(sc_int32)2];
 tmp4 = data_out[(FFTSize-j)/(sc_int32)2 + (sc_int32)1];
 tmp5 = data_out[(FFTSize-j)/(sc_int32)2 - (sc_int32)1];
 check = sc_catenate(tmp5,tmp4,tmp3,tmp2,tmp1,tmp0);
 if ((sc_int12)check != (sc_int12)0){
 event_data[k] = (sc_int32)j; //peak detection
 k++;
}
 Figure 7. Streams-C example code

5. SUMMARY

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

We investigated two high-level reconfigurable computing
system development tools for mapping our BPSK algorithm
to hardware, the Xilinx System Generator Tool, and the sc2
Streams -C compiler. Each tool has a useful functional
simulator, and generates synthesizable hardware. Streams -C
has an automatic target hardware board and produces the
necessary framework to directly synthesize a design to this
board and additional targets may also be defined. System
Generator on the other hand, does not target a special-
purpose board, thus, requiring manual mapping to a board.
Both tools required “debugging”, as some of the core
components in System Generator did not function
accurately, and some of the generated VHDL from the
Streams -C compiler was not accurate. Clock accurate
hardware simulation was cumbersome in Streams -C because
the HDL host simulation code must be written by hand. In
most cases System Generator clock-accurate simulation was
easy, although it took time to learn which blocks had bugs
(i.e. did not produce accurate hardware). In terms of
performance, System Generator produced a design capable
of running at a faster speed than the design produced by
Streams -C, and therefore a design capable of more
processing in the same amount of time. (This is attributed to
the native use of pre-optimized cores in System Generator,
whereas Streams -C relies on automatically generated VHDL).
The Streams -C design, however, was smaller than the
System Generator design, which would allow for smaller, less
expensive FPGAs to be used.
 An advanced tool requires a certain amount of “learning
curve” and this coupled with the maturity of the tool can
lead to a considerable amount of lost productivity. Over
time, we found productivity is 2X to 4X higher compared to
manual HDL design method. However, the tools have
different trade-offs between placement speed and area,
utilization of specific FPGA technology, and ease of use.
Developers wishing to convert HDL development to a high-
level tool should carefully examine their priorities on these
issues before choosing a tool.

Table 1. Comparison of Performance Results
 Time to

complete
(weeks)

Area
(Slices)

Speed
 (MHz)

System
Generator

2 - 3 80% 70

Streams -C
Compiler

2 60% 60

6. REFERENCES

[1] Star Bridge Systems, Inc., Midvale, Utah, Viva,

http://www.starbridgesystems.com/products4.html

[2] Celoxica, Abingdon, Oxfordshire, UK, DK Design Suite,
http://www.celoxica.com/methodology/c2rtl.asp

[3] SRC Computers, Inc., Colorado Springs, CO, MAP
Processor, http://www.srccomp.com

[4] Xilinx Inc., System Generator for DPS,
http://www.xilinx.com/ipcenter/ipevaluation/sysgen_evaluatio
n.htm

[5] Los Alamos National Laboratory, Los Alamos, NM, sc2
Streams-C compiler, http://www.streams-c.lanl.gov

[6] The Mathworks Inc., Natick, MA, Matlab/Simulink,
http://www.mathworks.com

[7] T. Maruyama and T. Defacto, “A design environment for
adaptive computing technology,” Proceedings of the 6th
Reconfigurable Architectures Workshop (RAW ’99), 1999.

[8] M. Weinhardt and W. Luk, ”Pipeline vectorization for
reconfigurable systems,” FCCM 99, April 1999.

[9] Xilinx, http://www.xilinx.com/xilinxonline/jbits.htm, 1999.
[10] M. Gokhale, J. Stone, J. Frigo and C. Ahrens, "Streams-C:

Stream-Oriented C Programming for FPGAs",
http://rcc.lanl.gov/Tools/Streams-C/, 2003.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

