ALOE Framework and Tools

Vuk Marojevic
Ismael Gomez
Antoni Gelonch
SDR Execution Environment

SDR Application 2 (Waveform 2)

SDR Application N (Waveform N)

Flexible Low Overhead

Pipelined Execution +
Online Mapping

Simplified Scheduling
Flexible Multiprocessing

ALOE
Outline

1. ALOE Framework
2. Computing Resource Management
3. ALOE Tools
4. Waveform Development
5. Summary
1.1 Lightweight Framework

- How to design a low-overhead framework?

- Language: Standard C
- Memory: Static (or custom pool)
- Scheduling: Static, non-preemptive
1.2 ALOE Layers

Abstract Application Layer

Real Application Layer

ALOE Layer

Hardware Layer

ALOE VIRTUAL PLATFORM

PE: Processing Element
1.3 ALOE Architecture

1.4 ALOE Time Management

- **Time slots** synchronized to ADC/DAC
- Relaxed **synchronization**
- Cooperative, static **scheduling**
- Deterministic **latency**

![Diagram of ALOE Time Management]

- ADC
- Rate Conv.
- Processor 1
- Processor 2
- Internal Link
- External Link
- Mapped modules:
 - Module mapped to processor 1
 - Module mapped to processor 2
 - ALOE daemons

2. Computing Resource Management

Management Algorithm

Mapping Algorithm

Cost Function

SDR Platform Modeling

SDR Application Modeling

Platform Models (Computing resources)

Application Models (Computing requirements)
2.1 SDR Platform Modeling

- Processing resources and requirements
- Inter-processor bandwidth resources and requirements

Example: SDR Platform Model

\[C = (C_1, C_2, C_3) \text{ MOPTS} \]
\[B = \begin{pmatrix} B & B \\ B & \infty & B \\ B & B & \infty \end{pmatrix} \text{ MBPTS} \]

- Abstraction layers provide computing resources & requirements in above units
- Availability of software modules for each processor type

ABSTRACT

- MOPTS: Million operations per time slot
- MBPTS: Mega-bits per time slot
2.2 Waveform: UMTS Downlink Receiver

- DDS Sampling Rate
 - DDS: 130 MOPS
 - DDS Sampling Rate: 492 MOPS
- Matched Filter
 - Matched Filter: 2450 MOPS
- 46 MOPS Interpolator
- 120 MOPS Frequency Adjust
- 160 MOPS 4-Finger RAKE MRC
- DPCH
- Physical Channel De-Mapping
- 2nd Deinter-leaving
- Physical Channel Desegmentation
- 10 MOPS

- Chip Sync
 - Sync1
 - Sync2
 - Sync3
 - Sync4
- 15.36 MOPS
- 1 MOPS Ray Search
- 92 MOPS Channel Estimation
- 7.68 Mbps

- Sampling Rate Adjust
 - Ray Search: 3.84 MHz
 - Freq Adjust: 65 MHz
 - Freq Adjust: 61.44 MHz
 - Sync4: 4·4000 MOPS
- Sync1
- Sync2
- Sync3

- 4·4000 MOPS
- 105 MOPS
- 10 MOPS

- Turbo Decoding
- Rate Matching
- 1st Deinter-leaving
- Radio Frame Desegmentation
- Physical Channel Desegmentation

- TrBk Concat./CodeBk Deseg.
- CRC
- 0.2 MOPS

- 0.384 Mbps

- TrBk Concat./CodeBk Deseg.
- CRC
- 0.2 MOPS

- 1.15 Mbps

- 342 MOPS Turbo Decoding
- 141 MOPS Rate Matching
- 116 MOPS 1st Deinter-leaving
- 62.9 MOPS Radio Frame Desegmentation

- 15.36 MOPS
- 7.68 Mbps

- 10 MOPS

- 15.36 MHz
- 3.84 MHz

- 3.84 MHz
- 7.68 Mbps
2.3 SDR Application Modeling

![Diagram of SDR Application Modeling]

Function model:
\[c = (0.076, 0.289, 0.289, 1.44, 1.44, 2.35, 2.35, \ldots) \text{ MOPTS} \]

Dataflow model:
\[
\begin{bmatrix}
0 & 0.612 & 0.612 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0.578 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0.578 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0.145 & \ldots & \text{MBPTS}
\end{bmatrix}
\]

Stage model:
\[s = (1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) \]
2.4 The t_w-mapping & Cost Function

- Dynamic programming
- Parameter w controls algorithm complexity
- Cost function independent
 - control different resources
 - define different optimization goals

Two-term cost function:

$$\text{Cost} = \frac{\text{processing requirement}}{\text{available processing power}} + \frac{\text{bandwidth requirement}}{\text{available bandwidth}}$$

- balance processing load
- minimize data flows

2.4 The t_w-mapping & Cost Function

$\{P_1, f_i\}$ represents the mapping of waveform component f_i to processor P_1.
2.4 The t_w-mapping & Cost Function

Path costs

Decision

$w = 1$

P_1 0.5 P_1 0.5

P_2 0.6 P_2 0.6

f_1 f_2 f_3 f_4

f_1, f_2, f_4 \rightarrow P_1

f_3 \rightarrow P_2

3. ALOE Tools

- Development and Debugging Tools
 - ALOE lab sessions
 - Source code templates
 - Automatic code generation tools (Simulink Target)
 - Graphical user interface
3.1 Graphical User Interface (I)

- Execution control
- Execution time statistics
- Parameter time evolution

Loaded modules
Schedule
Module Output
Parameter modification
3.1 Graphical User Interface (II)
4. Waveform Development

- LTE-128 points.
- 1 MHz
- 3 bit-streams
4.1 Processing Platforms

DAC/ADC

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

RF

PCIe

GbE

i7 Quad-Core, 2.6 GHz
ADC/DAC board: Innovative Integration X5-400
Sampling Rate: 61.44 MHz
Time-slot: 2 ms. E2E-latency: 40 ms.
4.2 Signal Captures

DA output (time and frequency domain)

Sync module output: Correlation with Zhou sequence

DDC output
5. Summary

ALOE Project

- Open source framework for SDR
- Non-commercial research version
- Tested:
 - GPPs under Linux (x86 and ARM7)
 - DSPs under RTOS-BIOS (TMS C64xx)
 - UMTS bit-level, LTE (1 MHz)

- Documentation and downloads at http://flexnets.upc.edu/