
SDRF Technical Report 2.1 November 1999

Software Defined Radio Forum
(SDRF)

SDR FORUM

TECHNICAL REPORT 2.1

Architecture and Elements
of

Software Defined Radio Systems
as

Related to Standards

SDR Forum
PO Box 1236

Rome New York 13442-1236

email: info@sdrforum.org

SDRF Technical Report 2.1 November 1999

NOTICE AND WARNING TO MEMBERS REGARDING AREAS OF DISCUSSION
AMONG MEMBERS

The SDR Forum is an organization whose members include direct competitors, Government and private
industry, and suppliers and purchasers of goods and services. Certain communications between and
among such parties could give rise to allegations of anti-competitive conduct under US antitrust laws. A
meeting such as this will present many situations where such contacts or communications could arise, even
if unintentional. Because the opportunity for such anti-competitive conduct is presented, it is important for
all members to avoid even the appearance of such conduct.

Therefore, it is the policy of the SDR Forum to prohibit any discussion of:
 pricing (including discounts or terms and conditions),
 market shares of individual competitors,
 exclusion of any competitors,
 cross licensing,
 marketing policies or practices, particularly restrictions on customers, territories or markets,
 preferential pricing or sales terms,
 contract bidding,
 any particular job, bid, contract, or competitive situation,

or other potentially anti-competitive subject matter, during or in connection with member meetings,
steering committee meetings, or any SDR Forum activities. Do not initiate any such discussion. If
someone does initiate such discussion in your presence, refuse to participate, and stop the discussion.

The following is a description of topics that should not give rise to the foregoing concerns. This is not
intended to be an exhaustive list, but a guide to permissible areas of discussion. It is permissible to
discuss overall market size and conditions; the identity and characteristics of participants in markets;
standards, specifications, and technical matters relating to the industry or the technology; the economic
aspects of standards or technologies, including the effects on the market of adopting a standard or
competitive considerations with respect to other technologies or standards; lobbying and promotion of
the technology; and the business of the SDR Forum.

If you have any questions about the Forum’s policy or about the prohibited topics of discussion, please
contact the SDR Forum Chair who will authorize contact with the Forum’s counsel.

Copyright November 1999 SDR Forum

SDRF Technical Report 2.1 November 1999

i

Page
Table of Contents i

Version Status xi
1.0 Introduction 1
2.0 Wireless Services and Applications Overview 1

2.1 Issues Facing the Wireless Industry 1
2.1.1 User’s Problem 1
2.1.2 Commercial Carrier’s Problem 1
2.1.3 Civil Government’s Problem 2
2.1.4 Military’s Problem 2
2.1.5 Manufacturers’ Problem 2
2.1.6 Regulatory Agency’s Problem 3
2.1.7 Semiconductor Vendor's Problem 4
2.1.8 Context Diagrams 5

2.2 Current Operational Environment 8
2.2.1 Terms Definitions 9
2.2.2 Service Parameter Tables 10
2.2.3 Requirements 16

2.2.3.1 Handheld Requirements 16
2.2.3.2 Mobile System Applications and Requirements 16

3.0 SDRF System Architecture 1
3.1 Architecture Frameworks 2

3.1.1 Functional Model 4
3.1.2 Interaction Diagram 8

3.2 Implementation Models 13
3.2.1 Handheld Models 14
3.2.2 Mobile Models 23
3.2.3 Base Station / Satellite Models 28

3.2.3.1 Candidate high level Use Cases 28
3.2.3.2 Smart Antenna and Base station 28

3.2.4 Switcher Downloader 30
3.2.5 Smart Antenna Definitions 33

3.3 SDRF-Compliant Interface Use 36
3.3.1 Summary 36
3.3.2 Why Do Users Need The SDRF Solution? 36
3.3.3 How to add functionality to an existing system 37

3.3.3.1 Design a whole new system 37
3.3.3.2 Modify an existing system in the laboratory 37
3.3.3.3 Provide field-installable new modules 38

3.3.4 The Compatibility Domain 38
3.3.5 Benefits 41

4.0 Application Program Interface (API) Design Guidelines 1
4.1 Structure for Development 1

4.1.1 Background 1
4.1.1.1 Specifying the system 1
4.1.1.2 Application Program Interface (API): 2
4.1.1.3 Software and Hardware Modules: 2
4.1.1.4 Visual Representation 3

4.1.2 What interfaces are required? 4
4.1.2.1 Tier 0 Architectural 4
4.1.2.2 Tier 1 Functional 7
4.1.2.3 Tier 2 Transport and Communication 8

SDRF Technical Report 2.1 November 1999

ii

4.1.2.4 Tier 3 Physical Factors 8
4.1.2.5 What do the Individual Tiers Offer? 8

4.1.3 What Makes a Good Interface? 9
4.1.3.1 A Functional Level Interface or API 9
4.1.3.2 A Transport Level Interface 9
4.1.3.3 A Physical Level Interface 9
4.1.3.4 What Must an Interface or API Not Do? 9
4.1.3.5 What an API should do? 10

4.1.4 Capability Exchange 14
4.1.4.1 Capability Exchange Implementations 14

4.1.5 Resource Management 16
4.1.5.1 Identifying the Need for Resource Management 17

4.1.6 Managing Multiple I/O 18
4.1.7 API Design Process 21

4.1.7.1 Introduction 21
4.1.7.2 Overview 21
4.1.7.3 The SDRF API Definition Process 22
4.1.7.4. The SDRF API Approval Process 24

4.1.8 References 24
4.2 Relationships to non-compliant Processes 25

4.2.1 API Relationship Diagram 25
4.2.1.1 SDRF APIs 25
4.2.1.2 Legacy APIs 26
4.2.1.3 Product Specifications 26

4.2.2 The wrapper 27
4.2.3 Conversion techniques 27

4.2.3.1 Translate 28
4.2.3.2 Simulate 29
4.2.3.3 Integrate 30

4.2.4 Trade-offs 31
4.2.5 Conclusions 32

4.3 Distributed Processing Environment 33
4.4. Message description for APIs 33

4.4.1 Introduction 33
4.4.2 Background 33
4.4.3.Messages 33

4.4.3.1 Message acknowledgment 35
4.4.4 Message Definitions 36

4.4.4.1 Message format 36
4.4.4.2 Parameter format 36
4.4.4.3 enable (destination) ← (status) 37
4.4.4.4 disable (destination) ← (status) 38
4.4.4.5 reset (destination) ← (status) 39
4.4.4.6 reset_to_default(destination) ← (status) 40
4.4.4.7 start (destination) ← (status) 41
4.4.4.8 stop (destination) ← (status) 42
4.4.4.9 set_config (destination, table_config_id, parametersÖ) ← (status) 43
4.4.4.10 select_config (destination, table_config_id) ← (status) 44
4.4.4.11 get_config (destination, table_config_id)← (status, parameters) 45
4.4.4.12 capability_exchange(destination, max_capability) ← (status, parameters) 46
4.4.4.13 get_status(destination) ← (status) 47
4.4.4.14 place_module (destination, info) ← (status, parameters) 48

4.4.5 Examples 50
4.4.5.1 The relationship between enable/disable and start/stop 50

SDRF Technical Report 2.1 November 1999

iii

4.4.5.2 Module initialization and disabling through the API 52
4.4.5.3 Module replacement through the API 53

5.0 Frameworks and Design Patterns 1
5.1 Handheld Framework Examples 5
5.2 Mobile Framework Examples 6

5.2.1 An Object-Oriented Framework 6
5.2.1.1 Overview 6
5.2.1.2 The SDRF Framework 7
5.2.1.3 Startup 8
5.2.1.4 Mobile System Application of SDRF Framework 9
5.2.1.5 Summary 10

5.2.2 Object Orientation and CORBA Illustration 11
5.2.2.1 Overview 11
5.2.2.2 Legacy Systems 11
5.2.2.3 Object Oriented Software 12
5.2.2.4 Interface Definition Language 15
5.2.2.5 Summary 17

5.2.3 Mobile Framework 19
5.2.3.1 Definitions and Guidelines 19

5.2.4 Software Architecture View 25
5.2.4.1 Introduction 25
5.2.4.2. Software Architecture Rationale 26
5.2.4.3. Middleware Selection Rationale 26
5.2.4.4 CORBA Timing Studies 28
5.2.4.5 Operating Environment Rationale 30
5.2.4.6 Core Framework Rationale 30

5.2.5 Functional View 31
5.2.5.1 SDR Software Reference Model 31
5.2.5.2 Transition from Functional Model to OO Model 31

5.2.6 Structural View 44
5.2.6.1 Open Multi-layered Structural Architecture 44

5.2.7 Logical View 49
5.2.7.1 Core Framework 49

5.2.8 Use Case View 82
5.2.8.1 Boot Up and Initialize Use Case 84
5.2.8.2. Send and Receive Communication Traffic Use Case 85

5.2.9 Summary of Core Framework Operations 89
5.2.10 Core Framework IDL 95

5.2.10.1 Core Framework IDL Listing 96
5.2.11 Other Reference Sources 126

5.3 Base Station Framework Examples 127
5.4 Satellite Framework Examples 128

6.0 Implementation Recommendation 1
6.1 Software Download 1

6.1.1 Introduction 1
6.1.2 Software Download Overview 1

6.1.2.1 Definition of Software Download 1
6.1.2.2 Areas of Application 1
6.1.2.3 Requirements for Software Download 2
6.1.2.4 Methods of Downloading Software 4
6.1.2.5 Download Implementation Issues 4
6.1.2.6 Standardization Issues 4
6.1.2.7 Regulation and Certification Issues 5

6.1.3 Software Download Scenarios 5

SDRF Technical Report 2.1 November 1999

iv

6.1.3.1 Handheld Architecture Download Scenarios 6
6.1.3.2 Mobile Architecture Download Scenarios 17

6.1.4 Preliminary API Messaging Requirements 19
6.1.4.1 Objectives 20
6.1.4.2 Download API Context 20
6.1.4.3 The Download Protocol Framework 21
6.1.4.4 API Framework 23
6.1.4.5 API Implications 35

6.1.4.6 New API Messages for Download 36
6.2 Mode switcher API example specification 37

6.2.1 Introduction 37
6.2.2 Requirements 37
6.2.3 Levels of detail 38

6.2.3.1 Regulatory 38
6.2.3.2 Non-regulatory 38
6.2.3.3 Detailed 39

6.2.4 Describing the configuration 39
6.2.5 API definitions 41
6.2.6 Regulatory capability exchange 42
6.2.7 Regulatory configuration 44

6.2.7.1 Approval coding 44
6.2.8 Non-regulatory capability exchange 46
6.2.9 Non-regulatory configuration 47
6.2.10 Detailed capability exchange 48
6.2.11 Detailed configuration 51
6.2.12 Mode Switcher Scenario Flow Charts 55
6.2.13 Power-on 55

6.2.13.1 Power-on Start 56
6.2.13.2 Is There a Default? 56
6.2.13.3 Standard Mode Switcher Set Up 56
6.2.13.4 Is There a Service? 56
6.2.13.5 Can The Configuration Be Changed? 57
6.2.13.6 Change Configuration 57
6.2.13.7 Choose Another Service? 57
6.2.13.8 Capability Exchange 57
6.2.13.9 Select Service 57

6.2.14 Download and Installation 58
6.2.15 Cross-technology Roaming 59

7.0 Form Factor 1
7.1 Handheld Form Factor 1
7.2 Mobile Form Factor 1
7.3 Interconnect Options 1

8.0 Plan for Future Work 1
8.1 Mobile Working Group Work Plan - 2000 3
8.2 Base Station Working Group Work plan - 2000 3
8.3 Handheld Working Group Work Plan – 2000 4
8.4 Switcher / Download Working Group Work Plan - 2000 4
8.5 Antenna API Task Group 4

9.0 Glossary 1
Appendix A. The SDRF Charter 1
Appendix B. List of Chairs and Co-chairs 1
Appendix C. Other Organizations Contacted by SDR Forum 1
Appendix D. Bus/Interconnect and Form Factor Technologies 1

D.1 EISA 1

SDRF Technical Report 2.1 November 1999

v

D.2 PCI Local Bus 1
D.3 PERSONAL COMPUTER MEMORY CARD INDUSTRY ASSOCIATION (PCMCIA) 6
D.4 The VMEBUS Backplane 6
D.5 VME64 8
D.6 VME64 Extensions 9
D.7 VME320 10
D.8 SEM-E on VME 10
D.9 VMEbus P2 Sub-bus Data Transfer Architectures 11

D.9.1 RACEway 11
D.9.2 VSB 11
D.9.3 Skychannel 12
D.9.4 SCSA 12

D.10 Backbone or System Bus Structures 13
D.10.1 MIL-STD-1553B 13
D.10.2 MIL-STD-1773A 14
D.10.3 FDDI 14
D.10.4 N-ISDN 14
D.10.5 ATM 15
D.10.6 FIBREChannel 16
D.10.7 FireWire 16

Appendix E. Members of the Software Defined Radio Forum 1

SDRF Technical Report 2.1 November 1999

vi

LIST OF FIGURES .. PAGE
FIGURE 1.0-1 SDR FORUM STANDARDS DEVELOPMENT PROCESS FLOW 2
FIGURE 1.0-2 GENERIC REPRESENTATION OF FUNCTIONAL MODULAR LEVEL STANDARDIZATION 3
FIGURE 1.0-3 SOME REPRESENTATIVE SERVICES FOR CONSIDERATION FOR INCLUSION IN SDRF OPEN

ARCHITECTURE 6
FIGURE 2.1-1 NETWORK CONTEXT DIAGRAM: CELLULAR/PCS 5
FIGURE 2.1-2 NETWORK CONTEXT DIAGRAM: CIVIL/AVIATION 6
FIGURE 2.1-3 NETWORK CONTEXT DIAGRAM: DEFENSE APPLICATIONS 7
FIGURE 2.2.2-1 U.S. SPECTRUM ALLOCATION 10
FIGURE 2.2.2-2 JAPAN SPECTRUM ALLOCATION 11
FIGURE 2.2.2-3 SAMPLE EUROPEAN SPECTRUM ALLOCATION 11
FIGURE 3.0-1 SCOPE OF SDRF FORUM ARCHITECTURE WORK 1
FIGURE 3.1.1-1 SDRF HIGH-LEVEL FUNCTION MODEL 4
FIGURE 3.1.1-2 SDRF ARCHITECTURE EVOLUTION PROCESS 6
FIGURE 3.1.1-3 ONE COMMON SDRF FUNCTIONAL ARCHITECTURE MAPS TO HANDHELD, MOBILE, AND

BASESTATION RADIO CONFIGURATIONS 6
FIGURE 3.1.1-4 AN EXAMPLE IMPLEMENTATION OF SDRF SOFTWARE AND HARDWARE OPEN

ARCHITECTURE 7
FIGURE 3.1.1-5 SDRF FUNCTIONAL INTERFACE DIAGRAM 8
FIGURE 3.1.2-1 INTERFACE/INTERACTION DIAGRAM 10
FIGURE 3.2.1-1 SINGLE-BAND, SINGLE-MODE HANDHELD FUNCTIONAL MODEL 14
FIGURE 3.2.1-2 SDRF MAPPING INTO SINGLE-MODE, SINGLE-BAND HANDHELD FUNCTIONAL MODEL 15
FIGURE 3.2.1-3 MULTIMODE, MULTIBAND SOLUTION USING MULTIPLE SINGLE STANDARD DEVICES 16
FIGURE 3.2.1-4 MULTIBAND, MULTIMODE HANDHELD FUNCTIONAL MODEL 16
FIGURE 3.2.1-5 GENERIC PC HARDWARE/SOFTWARE ARCHITECTURE 17
FIGURE 3.2.1-6 HANDHELD MULTIPLE SERVICE MODEL 17
FIGURE 3.2.1-7 HANDHELD MULTIPLE SERVICE MODEL WITH PDA EXTENSION 18
FIGURE 3.2.1-8 WEARABLE MULTIPLE SERVICE MODEL WITH PDA EXTENSIONS 19
FIGURE 3.2.2-1 INFORMATION TRANSFER THREAD 25
FIGURE 3.2.2-2 MOBILE INFORMATION TRANSFER SYSTEM LOGICAL STRUCTURE 26
FIGURE 3.2.2-3 MULTIPLE INSTANTIATIONS OF EACH FUNCTION OF MODULAR, MULTIMODE OPERATION27
FIGURE 3.2.2-4 SDRF FUNCTIONAL MODEL MAPPED INTO A JOINT MARITIME COMMUNICATION

STRATEGY (JMCOMS) APPLICATION 27
FIGURE 3.2.3-1 SIGNALING STRATEGY 32
FIGURE 3.2.3-2 CROSS STANDARDS HANDOFF 33
FIGURE 3.2.5-1. TYPE IA ANTENNA. 34
FIGURE 3.2.5-2. TYPE IB ANTENNA 34
FIGURE 3.2.5-3. TYPE II ANTENNA. 35
FIGURE 3.2.5-4. TYPE III ANTENNA. 35
FIGURE 3.3.4-1 THE COMPATIBILITY DOMAIN 38
FIGURE 3.3.4-2 PAST SYSTEMS 39
FIGURE 3.3.4-3 THE SDRF CONTRIBUTION 40
FIGURE 3.3.4-4 FUTURE SYSTEMS 41
FIGURE 4.1.1-1 THE CORRECT USE OF THE SYMBOLS FOR SOFTWARE INTERFACE AND MODULE IN A

LAYER DIAGRAM 3
FIGURE 4.1.1-2 WRONG USE OF THE SOFTWARE INTERFACE AND MODULE SYMBOLS IN A LAYER DIAGRAM

4
FIGURE 4.1.2-1 SDRF FUNCTIONAL INTERFACE DIAGRAM 5
FIGURE 4.1.2-2 SDRF EXPANDING A TIER 0 MODULE TO CREATE THE TIER 1 FUNCTIONS FOR INFORMATION

AND CONTROL 6
FIGURE 4.1.2.-3 SDRF ARCHITECTURE AND INTERFACE REFINEMENT USING TIERS 7
FIGURE 4.1.3-1 EXPANDING THE API GRANULARITY 11
FIGURE 4.1.3-2 USING INCREASED GRANULARITY TO ACCESS MULTIPLE TECHNOLOGY SOURCES 12

SDRF Technical Report 2.1 November 1999

vii

FIGURE 4.1.3-3 COMBINING MODULES AND REMOVING INTERFACES TO PROVIDE DIFFERENT SOLUTIONS.
THE MESSAGE DIRECTIONS HAVE BEEN OMITTED FOR SIMPLICITY. 13

FIGURE 4.1.4-1 CAPABILITY EXCHANGE AND NEGOTIATION USING SPEC ID NUMBERS 15
FIGURE 4.1.5-1 THE TWO-INTO-ONE CONFLICT SCENARIO. NOTE THAT THE UPWARD FLOW HAS NOT BEEN

SHOWN IN THE DIAGRAM 17
FIGURE 4.1.6-1 THE MULTIPLE CONTROL PATH PROBLEM. NOTE THAT THE UPWARD FLOW HAS NOT BEEN

SHOWN IN THE DIAGRAM 19
FIGURE 4.1.6-2 USING A USER INTERFACE MANAGER. NOTE THAT THE UPWARD FLOW HAS NOT BEEN

SHOWN IN THE DIAGRAM 20
FIGURE 4.1.7.2-1. CONTEXT FOR THE API DEVELOPMENT PROCESS 21
FIGURE 4.1.7.3-1 22
FIGURE 4.2.1-1 THE API RELATIONSHIP DIAGRAM 25
FIGURE 4.2.2-1 THE WRAPPER BETWEEN LEGACY AND SDRF APIS 27
FIGURE 4.2.3.1-1 TRANSLATE 28
FIGURE 4.2.3.2-1 SIMULATE 29
FIGURE 4.2.4-1 WRAPPER TRADE-OFFS 31
FIGURE 4.4.3-1 STATE LADDER DIAGRAMS SHOWING THE RELATIONSHIP BETWEEN STATUS WORDS

RETURNED AS A RESULT OF RECEIVING A MESSAGE 35
FIGURE 4.4.4-1 MESSAGE DEFINITION STRUCTURE 36
FIGURE 4.4.5-1 THE RELATIONSHIP BETWEEN ENABLE/DISABLE/START/STOP MESSAGES 50
FIGURE 4.4.5-2 THE SCOPE OF THE SET_CONFIG AND SELECT_CONFIG MESSAGES 51
FIGURE 4.4.5-3 MODULE INITIALIZATION AND DISABLING THROUGH THE API 52
FIGURE 4.4.5-4 MODULE REPLACEMENT THROUGH THE API 54
FIGURE 5.0-1 USE OF VIEWS TO DESCRIBE A SYSTEM 2
FIGURE 5.0- 2 FRAMEWORK INTERACTION WITH VIEWS 4
FIGURE 5.2.1.2-1. SDRF FRAMEWORK OBJECTS 7
FIGURE 5.2.1.4-1. FRAMEWORK CONTROL AND APPLICATION OBJECTS 9
FIGURE 5.2.1.4-2. SDRF REFERENCE MODEL 10
FIGURE 5.2.2.2-1. MESSAGE PASSING 11
FIGURE 5.2.2.3-1. THE CORBA ENVIRONMENT 12
FIGURE 5.2.2.3-2. REMOTE METHOD INVOCATION 13
FIGURE 5.2.2.3-3. WRAPPER FOR LEGACY CODE 14
FIGURE 5.2.2.3-4. OBJECT RELOCATION 14
FIGURE 5.2.2.4-1 MESSAGE STRUCTURE EXAMPLE 15
FIGURE 5.2.3.1.1-1. THE SDR CORE FRAMEWORK (CF) 21
FIGURE 5.2.3.1.1-2. THE SDR SOFTWARE ARCHITECTURE 22
FIGURE 5.2.3.1.2-1. THE SDR OPERATING ENVIRONMENT (OE) 24
FIGURE 5.2.5.1-1 SDR SOFTWARE REFERENCE MODEL 32
FIGURE 5.2.5.2-1 CONCEPTUAL MODEL OF SDR NON-CORE APPLICATIONS 32
FIGURE 5.2.5.2-2. CONCEPTUAL MODEL OF SDR RESOURCES 34
FIGURE 5.2.5.2.1-1 CONCEPTUAL MODEL OF THE CORE FRAMEWORK (CF) 36
FIGURE 5.2.5.2.2-1 CONCEPTUAL MODEL OF SDR MODEM RESOURCES 37
FIGURE 5.2.5.2.3-1 CONCEPTUAL MODEL OF SDR NETWORKING RESOURCES 39
FIGURE 5.2.5.2.4-1 CONCEPTUAL MODEL OF SDR ACCESS RESOURCES 40
FIGURE 5.2.5.2.5-1 CONCEPTUAL MODEL OF SDR SECURITY RESOURCES 41
FIGURE 5.2.5.2.6-1 CONCEPTUAL MODEL OF SDR UTILITY RESOURCES 43
FIGURE 5.2.6.1-1. SDR SOFTWARE STRUCTURE 45
FIGURE 5.2.7.1-1. SDR CORE FRAMEWORK (CF) RELATIONSHIPS 50
FIGURE 5.2.7.1.1.1-1. LIFECYCLE RELATIONSHIPS 52
FIGURE 5.2.7.1.1.2-1 STATEMANAGEMENT RELATIONSHIPS 54
FIGURE 5.2.7.1.1.3-1 EXAMPLE OF CHAINED RESOURCES 56
FIGURE 5.2.7.1.1.3-2. MESSAGEREGISTRATION RELATIONSHIPS 57
FIGURE 5.2.7.1.1.4-1. MESSAGE RELATIONSHIPS 59
FIGURE 5.2.7.1.1.5-1. RESOURCE RELATIONSHIPS 62

SDRF Technical Report 2.1 November 1999

viii

FIGURE 5.2.7.1.2.1-1. DOMAIN MANAGEMENT 64
FIGURE 5.2.7.1.2.1-2. LAYERED RESOURCE ALLOCATION 64
FIGURE 5.2.7.1.2.1-3. DOMAINMANAGER RELATIONSHIPS 67
FIGURE 5.2.3.3.5-1. RESOURCEMANAGERS REPORT DEVICE PROPERTIES 69
FIGURE 5.2.7.1.2.2-2. RESOURCEMANAGER RELATIONSHIPS 70
FIGURE 5.2.7.1.3.1-1. FILE RELATIONSHIPS 72
FIGURE 5.27.1.3.2-1. CONCEPTUAL FILESYSTEM RELATIONSHIPS 73
FIGURE 5.2.7.1.3.2-2. FILESYSTEM RELATIONSHIPS 73
FIGURE 5.2.7.1.3.3-1. FILE MANAGEMENT 75
FIGURE 5.2.7.1.3.3-2. FILEMANAGER RELATIONSHIPS 76
FIGURE 5.2.7.1.3.5-1. LOGGER RELATIONSHIPS 78
FIGURE 5.2.7.1.4.1-1. FACTORY RELATIONSHIPS 81
FIGURE 5.2.7.1.4.2-1. EXAMPLE MESSAGE FLOWS WITH AND WITHOUT ADAPTERS 83
FIGURE 5.2.8-1. SDR USE CASES 83
FIGURE 5.2.8.1.1-1. CF POWER UP AND INITIALIZATION EXAMPLE SCENARIO 85
FIGURE 5.2.8.2.1-1. RECEIVE COMMUNICATIONS EXAMPLE SCENARIO 87
FIGURE 5.2.8.2.2-1. TRANSMIT COMMUNICATIONS EXAMPLE SCENARIO 88
FIGURE 5.2.10-1. CF CORBA MODULE 95
FIGURE 6.1.3-1: SOFTWARE DOWNLOAD FROM A SMARTCARD 10
FIGURE 6.1.3-2: OVER THE AIR SOFTWARE DOWNLOAD OF A SINGLE MODULE UPDATE 13
FIGURE 6.1.3-3: OVER THE AIR SOFTWARE DOWNLOAD OF A SET OF CONTROL, FUNCTIONAL, AND/OR

PROTOCOL ENTITIES 16
FIGURE 6.1.3-4: OVER THE AIR SOFTWARE DOWNLOAD OF A SINGLE MODULE UPDATE (MOBILE) 19
FIGURE 6.1.4.2-1 LOCATION OF THE DOWNLOAD API 20
FIGURE 6.1.4.3-1: DOWNLOAD PROTOCOL 22
FIGURE 6.1.4.4.1-1: DOWNLOAD FLOWCHART EXAMPLE WITH EXAMPLE API MESSAGE 25
FIGURE 6.1.4.4.2-1: MESSAGING TO INITIATE DOWNLOAD 26
FIGURE 6.1.4.4.3-1 MESSAGING REQUIRED FOR AUTHENTICATION 27
FIGURE 6.1.4.4.4-1 MESSAGING REQUIRED FOR ENCRYPTION 29
FIGURE 6.1.4.4.6-1 DOWNLOAD ACCEPTANCE EXCHANGE MESSAGING 31
FIGURE 6.1.4.4.7-1 DOWNLOAD MESSAGING 33
FIGURE 6.1.4.5.1-1 HIERARCHICAL CAPABILITY TABLES 35
FIGURE 6.2.3-1 LEVELS OF DETAIL FOR SDRF DEVICE CAPABILITY AND CONFIGURATION TABLES 39
FIGURE 6.2.13-1 THE POWER-ON FLOW CHART 55
FIGURE 6.2.14-1 THE DOWNLOAD SCENARIO 58
FIGURE 6.2.15-1 THE ROAMING SCENARIO 59
FIGURE 8.0-1 STANDARDS RECOMMENDATIONS DEVELOPMENT OVERVIEW 1
FIGURE 8.0-2 RELATIONSHIP OF SDRF VERTICAL WORKING GROUPS TO HORIZONTAL TASK GROUPS 2

SDRF Technical Report 2.1 November 1999

ix

LIST OF TABLES ………………………………………………………………………. PAGE
TABLE 1.0-1 AN OVERVIEW OF SDRF ROLE ………………………………………………………………………………. 1-5
TABLE 2.2.1-1 TERMS AND DEFINITIONS ………………………………………………………………………………….. 2-9
TABLE 2.2.2-1 REPRESENTATIVE COMMERCIAL WIRELESS STANDARDS AND PARAMETERS …………… 2-13
TABLE 2.2.2-2 REPRESENTATIVE CIVIL WIRELESS STANDARDS AND PARAMETERS ……………………………. 2-14
TABLE 2.2.2-3 REPRESENTATIVE MILITARY WIRELESS STANDARDS AND PARAMETERS ……………………… 2-15
TABLE 3.1.1-1 SCOPE OF THE SDRF APPROACH TO OPEN SYSTEM STANDARDS RECOMMENDATIONS ……. 3-2
TABLE 3.1.2-1 INTERFACE MATRIX ………………………………………………………………………………………… 3-9
TABLE 3.1.2-2 INTERFACE/INTERACTION DIAGRAM INTERFACES AND EXAMPLE CONTENT ……………… 3-10
TABLE 3.2-1 SDRF DIFFERENCES BETWEEN HANDHELD AND MOBILE/STATIONARY SYSTEMS ……………. 3-13
TABLE 3.2.1-1 EXAMPLE FUNCTIONS IN HANDHELD FUNCTIONAL MODEL SUBSYSTEMS ……………………..3-21
TABLE D-1 SMALL PCI AND CARD BUS COMPARISON …………………………………………………………………D-4
TABLE D-2 COMPARISON OF EXAMPLE PCI OPTIONS …………………………………………………………………. D-5

SDRF Technical Report 2.1 November 1999

x

The SDR Forum, Inc. 1999
All Rights Reserved.

Printed November 1999

DISCLAIMER

This document is published by the SDR Forum, Inc. to provide information to the
industry and to organizations involved in wireless communications and to open dialog
and discussion to solicit information. The SDR Forum reserves the right at its sole
discretion to revise this document for any reason.

The SDR Forum makes no representation or warranty, express or implied, with
respect to the completeness, accuracy, or utility of the document or any information or
opinion contained therein. Any use or reliance on the information or opinion is at the
risk of the user, and the SDR Forum shall not be liable for any damage or injury
incurred by any person arising out of the completeness, accuracy, or utility of any
information or opinion contained in the document.

Nothing contained herein shall be construed to confer any license or right to any
intellectual property, whether or not the use of any information herein necessarily
utilizes such intellectual property.

This document does not constitute an endorsement of any product or company.

SDRF Technical Report 2.1 November 1999

xi

Version Status

TR V1- July 1997

The SDR Forum Technical Report Version 1 was published in July 1997. It contained a description of
the concepts and basic architecture for software defined radio along with a description of the internal
interfaces for such a radio.

TR V1.1- January 1998

Version 1.1 of the technical report includes the following modifications:
• Changes to the original architecture in order to better support security concerns,
• A description of the software download process,
• A definition of the software interfaces between modules—the APIs.

TR V1.2- July 1998

Version 1.2 of the technical report includes the following modifications:
• A description of the messages associates with APIs,
• A definition of the API messages needed for the software download process.

TR V2.0- December 1998

Version 2.0. of the technical report restructures the document to make it easier to navigate and
understand. It adds more detail on API’s, downloads, mobile and handset architecture, as well as
initiating work in Base Station and Satellite areas.

TR V2.1- November 1999

Version 2.1 of the technical report adds sections on the mobile framework, base station architechture
and smart antenna architecture.

SDRF Technical Report 2.1 November 1999

1-1

1.0 Introduction

What is the SDR Forum?

The Software Defined Radio Forum (known as the Modular Multifunction Information Transfer System
Forum prior to December 1998) is an open, non-profit corporation dedicated to supporting the
development, deployment, and use of open architectures for advanced wireless systems.

Primary objectives of the Forum are:

• To enable seamless integration of capabilities across diverse networks, in an environment of
multiple standards and solutions,

• To accelerate proliferation of software-definable radio systems,
• To advance adoption of open architectures for wireless systems,
• To promote “multiple capability and multiple mission” system flexibility, and
• To ensure accommodation of current and future user needs in the areas of voice, data,

messaging, image, multimedia, etc.

Current Forum membership comprises an international mix of business and technical decision makers,
planners, policy makers, and program managers from a broad range of organizations sharing a common
view of advanced wireless networking systems evolution, including:

• Service Providers,
• Equipment Manufacturers,
• Component Manufacturers/Providers,
• Hardware and Software Developers,
• System Integrators,
• Government and Military,
• Standards Development Organizations,
• Industry Associations/Forums, and
• Academic and Research Organizations.

The SDR Forum Charter presented in Appendix A, delineates the vision, definition, and mission of the
organization.

Standards Requirements/Recommendations Approach

The SDR Forum is pursuing its goals through the efforts of two core committees, the Markets Committee
and the Technical Committee. The Markets Committee is chartered with promoting Forum activities and
development of SDR-concept-based market forecast material. The Technical Committee is chartered with

SDRF Technical Report 2.1 November 1999

1-2

specifications development. In addition, a Regulatory Advisory Committee is chartered with tracking and
coordination concerning regulations relevant to SDR-concept-based system and product deployment.

The Forum seeks global harmonization of SDR concepts. Efforts are being coordinated with international
industry associations, forums, and standards development organizations (SDOs). The Forum operates
under a requirements, rather than technology-driven philosophy, although it is understood that the two
areas must be considered jointly. Two broad categories of wireless issues, generally defined as end-user
need and technical concern, are recognized. Software-definable radios (SDRs), which utilize conventional
and innovative approaches to high-speed digital processing, are the underlying technology holding promise
for addressing both issues.

The basic process followed by the Forum is to translate the end-user need into standards
requirements/recommendations for action by SDOs. If the Forum cannot identify an SDO for the issue, the
Forum will develop standards recommendations for release to the industry.

Figure 1.0-1 shows the basic process flow.

SDR
Forum

Seeks SDO
to Accept

Ownership

Does SDO
Exist for

Concern &
Need

SDR Forum
Delivers “Standards
Recommendations

Document

SDO Considers
Input in Standards

Activities

SDR Forum
Develops “Standards

Recommendation”

Identify Technical
Concerns &

Standards Needs

Understand
Impact
Areas

Identify
User

Needs

N

Y

N Y

Dialog

SDO - Standards Development
Organization

Industry
Inputs

Member Inputs

SDO Develops &
Releases Standards
to Industry

SDRF Releases
“Standards Recommendation”
to Industry

Figure 1.0-1 SDR Forum Standards Development Process Flow

SDRF Technical Report 2.1 November 1999

1-3

Structure of this Document

Section 2 (Services and Applications) builds the background, top level conceptual descriptions, and
functional requirements that form the basis for these standards requirements/ recommendations. Key to
this approach is the modularization of the functions that reflect a balance between a coarse division of
functional modularity that may be too general to achieve an open architecture and too granular a
specification where every function is described.

Section 3 (Architecture) develops the general reference model for the SDRF architecture. The primary
functional modules are the RF section, the modem, antenna, infosec, I/O, environment adaptation, and
control. These functional modules may be interconnected to collectively function as a whole wireless
unit. The standards requirements/recommendations that follow, take the form of specific requirements
for the interface between functional modules and a description of the transfer characteristics of each
module.

Module
A

Module
B

Module
C

Module
A

Module
B

Module
C

Common Infrastructure

Std

StdStd

Std

Std

Module - to - Module
 Standard

Module - to - Bus
 Standard

Module D

Figure 1.0-2 Generic Representation of Functional Modular Level Standardization

Figure 1.0-2 is a generic representation of a functional modular level standardization approach. The
solution may either take the form of a module-to-module (hardware or software) interface, or a module-
to-bus standard. The goal is to provide a common interface between modules without restricting and
inhibiting the innovation that can be achieved within them. It is necessary that mandatory functions are
provided and interface requirements met.

SDRF Technical Report 2.1 November 1999

1-4

Section 3 also describes the interfaces for a module, separated into an information interface and a
control interface. In both cases, these interfaces are bi-directional in nature. There is a separate standard
for each of these two interfaces. An interface matrix, developed in a later section of this report identifies
the modules and module-to-module elements that require some level of description or standardization.
The modules themselves require a description of the functionality that must take place within that module
but without specifying what methodology or technology must be used to accomplish it as long as there is
compliance with the interface requirements. The module-to-module interfaces will require a standard
format for the exchange of information as well as a standard format for the exchange of control.

Section 4 (Application Program Interface {API] Design Guidelines) addresses the development of
API’s to define SDRF standard devices and information concerning control messages. It provides a
design guide, defines a set of generic control messages, and provides a generic framework for the
definition of such API’s. It also explores how legacy API’s and SDRF API’s work together.

Additionally, it provides an example of how control messages are used within the SDRF environment
and gives specific examples for currently identified control messages. It also identifies some of the key
problems, proposes some solutions, and describes the control messages that are needed to control and
configure a module via its API.

Section 5 (Frameworks and Design Patterns) provides handheld, mobile, base station and satellite
framework examples. . This section is new and will be further developed with future versions of this
document. It describes the Software Defined Radio Forum architecture implemented with an object
oriented approach, and in the base station section introduces a mechanism for an overall system design
using system views as a basis for the framework.

Section 6 (Implementation Recommendation) addresses standards requirements/recommendations for
software programmable, open architecture wireless hardware modules, and software download. It
presents an overview of software download in the context of SDRF handheld and mobile devices and
provides various download scenarios. It also addresses issues surrounding software download. It
builds on the API design guide and the example APIs to provide more detailed implementation for a
mode switcher function for a multi-function SDRF.

Preparing standards for the individual interfaces shown in Table 1.0-1 is much more complex than it
appears. The intent of the SDRF is to specify an open architecture that will allow and support a wide
range of services and protocols. As part of this effort, existing standards that require some extension to
allow software programmable wireless modules to achieve full multi-band, multi-mode operation will be
identified.

SDRF Technical Report 2.1 November 1999

1-5

Table 1.0-1. An Overview of SDRF Role

Standards Requirement /
Recommendation Type

SDRF Role

Air Interface Support identified standards through common architectural
partitioning

Identify extensions to accommodate new SDRF capabilities
Internetworking Support identified standards through common architectural

partitioning
Identify extensions to accommodate SDRF capabilities

API Define
Software download Define
Physical Interfaces Select from existing open standards
Analog/RF Interconnects Identify applicable standards and approaches and develop standards

recommendations as appropriate
User Interface None

SDRF will develop selected standards requirements/recommendations for software programmable
wireless systems functional modules.

SDRF Technical Report 2.1 November 1999

1-6

Figure 1.0-3 shows domestic and international private services, the mobile military systems, and civil
government and aviation systems. It is the goal of this Forum to specify the module interfaces so they
reflect the ability to be configurable and adaptable to many of these varied services.

C
ha

nn
el

 S
el

ec
tio

n

IS-54/136
IS-136+

SINCGARS

IS-95/IS-95+

AMPS

PCS 1900

GSM

DCS 1800

PHS

IS-661

IMT-2000

3GPACS

EPLRS

VHF AIR
GROUND

MARITIME
VHF

APCO-25

LEO

FCC
PART 90

HAVE
QUICK

SATCOM
DAMA

JTIDSProtocol

Billing

Handoff

Configuration

Fr
eq

ue
nc

y M
odulation

Acc
es

s C
od

in
g

Source Coding

R
o

u
ti

n
g

FramingInfosec

Bridging

SDRF

ESMR

Saturn

OTHER SERVICES
TO BE DEFINED

WIRELESS /
WIRELINE PBX

Figure 1.0-3 Some Representative Services for Consideration for Inclusion in SDRF Open
Architecture

Section 7 addresses form factor.

SDRF Technical Report 2.1 November 1999

2-1

 2.0 Wireless Services and Applications Overview

This section reviews the typical usage application environments that provide the background for the
technical analysis and standards recommendations that follow. In order to understand the scope and
limits of SDR Forum standards recommendations focus, system context diagrams are presented that
depict this information. The type of technical parameters that must be addressed when developing
architectures are presented in the service parameter tables.

To help understand the range of applications that face SDRF, it is useful to look at some examples of
problems faced by the various wireless communications users and suppliers in order to provide the
motivation for a universal, software defined device to allow seamless use of a range of services.

2.1 Issues Facing the Wireless Industry

2.1.1 User’s Problem

The user’s problem is one of connectivity and information filtering. At their desks, users have email,
telephones, personal computers, and wideband connectivity to internal backbones and external services.
As they leave their offices, they have to rely on pagers for notification and cellular or PCS phones for
contact. But both of these devices have limited access areas and specific protocols.

Users also have separate palmtop devices for information storage and display, devices incorporating
substantial computational power. Software programmable radio technology offers an opportunity for
users at home, in their offices, or on the road with an opportunity to have seamless connectivity with
their data sources, and filtering capability so that they receive the information they need but are not
overwhelmed by broadband data when operating in a narrowband environment.

2.1.2 Commercial Carrier’s Problem

The general commercial problem is the need to integrate service portfolios. Carriers with multiple
service types and multiple standards want to be able to integrate their service portfolio. Carriers with a
single service, single technology strategy fear “bet the business technology decisions” and are being
forced into multiple service portfolios by 1) Mergers and acquisitions, 2) International operations, and
3) International roaming. Similar problems exist in the Far East. In addition, in Europe and Japan,
capacity problems are creating the need for multimode, multiband solutions.

North American PCS carriers have a unique historical problem: 1) PCS carriers cannot provide
coverage in their own license areas initially, therefore, they must rely on AMPS for fill-in, 2) to provide
nationwide roaming, PCS must have handsets for a wide range of PCS and cellular standards, and 3)

SDRF Technical Report 2.1 November 1999

2-2

high volume PCS sign-ups depend on the availability of a single device that allows shrink wrap type
distribution.

2.1.3 Civil Government’s Problem

There is a need for emergency service agencies and law enforcement agencies to intercommunicate.
Currently, city, state, and national agencies supporting a national emergency have multiple services and
systems that cannot intercommunicate readily. Interagency communications usually requires an exchange
of assets to support these temporary situations. Likewise, civil aviation requires a wide variety of
communications and information transfer to support safe air travel and airport management. The civil
aviation authorities would like to be able to upgrade systems in the field as new air interfaces, etc. are
developed. This fosters the need for long life cycles of systems as well as “future proofing” to facilitate
the expansion of the systems to take advantage of new technologies as they become available and to
upgrade at a reasonable cost. The need for reducing the number and types of devices by utilizing
adaptive technologies also exists.

2.1.4 Military’s Problem

The different branches of the military, each with its own service, need to intercommunicate in a
transparent way to realize the implementation of the future electronic battlefield. Currently, information
transfer and communication compatibility between services is very limited and more than 200 defense
radio procurement programs exist. Economies can be realized in the reduction of these radio
procurement programs. The integration of information and communication systems could result in
significant increases in battlefield efficiencies, the reduction of unnecessary personnel, and reduced
budgets.

In addition, there is a need to communicate through public service infrastructures given the current
geopolitical situations where the military could be required to operate in any foreign location in a time
efficient way. The ability to mobilize and establish a communication environment requires that existing
public services be utilized in a time expedient manner.

2.1.5 Manufacturers’ Problem

Manufacturers are seeking ways to improve time to market, increase flexibility to add new services and
features, reduce the number of fundamental designs, increase the production volume per design, simplify
testing, and allow for upgradeability in the field. The flexibility associated with software defined radios
and well structured interfaces that anticipate interface features required for new applications overlaid
onto existing services, allow the equipment vendor to support customer feature requests for equipment
that is already fielded. A reduced number of fundamental designs allows the production volume of each
fundamental design to be higher, allows larger component volume purchases, and therefore leads to

SDRF Technical Report 2.1 November 1999

2-3

more cost effective production techniques, and allows insertion of new features during production.
Simplified testing/validation arises with fewer designs, which must be validated.

2.1.6 Regulatory Agency’s Problem

The most pressing regulatory issue is how to meet the demand from the communications industry for
additional spectrum that is currently unavailable. The governments of the industrialized nations in general
have established regulatory agencies to manage the electromagnetic spectrum. They accomplish this task
through rule-making proceedings that classify services, provide RF spectrum for various types of
communications links, and specify technical parameters for operation. Historically, as communications
needs increase, the need for additional spectrum has been met by opening up new bands at higher and
higher frequencies, as technology is developed to utilize these higher bands.

Today, this concept is no longer applicable because rapid industrial growth has generated an
overwhelming demand for new communications services. This demand has resulted in several stopgap
techniques that have been employed by the regulatory community. For example, in the United States,
techniques such as reassignment of government frequencies to the civilian sector, splitting frequency
channels in half (FCC refarming docket), interspersing land mobile channels into unused television
broadcast channels, etc., have been used. Each of these techniques carries a price tag; depleting
government frequencies will likely create future insufficient spectrum capacity for their use, refarming has
resulted in compatibility problems between older equipment and the newer technology used to access
the additional channels, and interspersing has resulted in increased interference to public broadcast
services.

In order to provide for the increasing demand for communications services, current spectrum
management policy has been geared to auction spectrum licenses to the maximum extent possible. Tied
to this policy is the concept of minimal in-band technical requirements. This allows the license holder
complete freedom to utilize the most flexible and best technology available to maximize the
communications links at his disposal. This regulatory policy is designed to generate a favorable climate
for technology development by maximizing the communications link/dollar cost formula and result in
increased efficiency of spectrum utilization.

In summary, due to the lack of available spectrum for communications purposes , the most critical issue
for regulatory agencies in the industrialized nations is to develop policies that increase the efficiency of
spectrum usage while reducing mutual interference and increasing the ease of frequency refarming.. The
only way to meet the ever-increasing demand for communications links is through technology
breakthroughs that can economically increase the efficiency of spectrum utilization. These breakthroughs
are likely to occur through reconfigurable radios that maintain electromagnetic compatibility with existing
systems, permit frequency reuse, and allow flexibility for future technology upgrades.

SDRF Technical Report 2.1 November 1999

2-4

2.1.7 Semiconductor Vendor's Problem

As semiconductor vendors view the silicon chip opportunity space, the one thing evident to all players in
the market is the question, “how will we keep our fabrications facility full.” Coupled with this question is
the subtle paradigm change in the industry. So far, it is claimed that it has been silicon chip development
driven by the requirements of the systems. The silicon chip was viewed as a way to lower cost, to
enhance further integration, and to drive products into new markets. In the current era, as less than 0.25
micron process technologies become commonplace, the paradigm is “systems because of silicon chips.”
Systems that were considered inconceivable two years ago are now commercial, single-chip products
today.

These two issues together are putting tremendous business pressures on semiconductor vendors. To
keep fabrications full, they focus on industries, which require very large silicon chip volumes. For this
reason, the wireless industry is the focus of almost every major semiconductor vendor. . The wireless
industry offers tremendous volumes, and increasing digital CMOS silicon chip content in the forms of
DSP and microprocessor cores coupled with embedded logic. This picture simply whets the appetite of
every silicon chip vendor hungry to move high-margin CMOS silicon wafers. Moreover, the profit
margins per wafer are becoming more and more important. This value is derived from the intellectual
property in the form of hardware and software.

Playing directly against this is the fact that to succeed in the wireless industry, and recognize the full
advantage of the “volumes of silicon chips,” semiconductor vendors must be able to offer silicon chip
solutions that support the multitude of standards across different consumer markets and geographical
regions. These solutions must appear on the market at particular power, performance, and price points
dictated by the end-product market dynamics. This requires the semiconductor vendor to develop
application-specific signal processing solutions for every standard, ranging across IS-136, GSM,
DECT, PHS, PDC, IS-95 CDMA, and ISM-band cordless systems. This is an expensive proposition
today. The cost is dominated by the need to create a customized semiconductor solutions from scratch
for every standard. Moreover, this fixed cost creates a limit on the number of design starts that the
vendor can support, irrespective of fabrication facility capacity.

The availability of a software-defined transceiver can fundamentally change this design problem, and, as
a result, the business equation. The ability to reduce time on the “design start” process, reduce the
number of fundamental designs, significantly reduce silicon manufacturing and test costs, and significantly
increase the wafer production volumes per design start creates a business environment where
semiconductor vendors can address multiple standards in an economically feasible manner. It is
recognized that software-configurability will be a key enabler for this
capability.

SDRF Technical Report 2.1 November 1999

2-5

2.1.8 Context Diagrams

Context diagrams are used here to define the elements of the communication system network that the
SDRF-compliant radio is part of and the interfaces of the SDRF-compliant radio to other elements of
the system. Context diagrams provide a graphical method to define the scope of what communication
system elements that this document addresses. This section will provide context diagrams for
representative systems of the market segments: Commercial, Civil Government, and Defense.

Commercial wireless markets are growing rapidly and include services such as cellular, PCS, paging,
wireless data services (e.g., packet radio), cordless phones, wireless local area networks (LANs),
satellite, etc. Users value integrated operations in combinations such as cellular, paging, wireless data,
and even cordless. Within services, multiple standards exist. The current proliferation of incompatible
digital cellular and PCS standards is creating a market environment that will demand software radio
technology and standards to facilitate roaming. Figure 2.1-1 provides a representative context diagram
for commercial cellular systems.

MSC EIR

MSC

HLR

MC MC VLR

VLR ISDN

PSTN

AC

BSMS

SMESME

AC: Authentication Center
BS: Base Station
EIR: Equipment Identity Register
HLR: Home Loocation Register
ISDN: Integrated Services Digital
. Network
MC: Message Center
MS: Mobile Station
MSC: Mobile Switching Center
PSTN: Public Switched Telephone
. Network
SME: Short Message Entity
VLR: Visitor Location Register

Interface Function

Figure 2.1-1 Network Context Diagram: Cellular/PCS

It is recognized that “software-defined radio” in the SDRF context goes beyond the bounds of a
traditional radio and extends from the radio terminal of the subscriber or user, through and beyond the
network infrastructures and supporting subsystems and systems. The focus of the SDRF activity
summarized in this report addresses the architecture and elements within the shaded area in the context

SDRF Technical Report 2.1 November 1999

2-6

diagrams. Consideration must also be given to impacts on other elements in the network context
diagrams.

Civil wireless encompasses aviation, law enforcement, emergency preparedness, and related
applications. These applications address air traffic control and dispatch operations. They are legacy
wireless services representing years of operation and installed systems infrastructure equipment. The
commercial aviation industry has identified needs for more voice channels and an expansion to include
data capability. The traditional 25 kHz channel spacing in Europe is evolving to 8.33 kHz. An
international standard for a VHF Digital Data Link (VDL) is currently near finalization. The navigation
system is evolving to include the Global Positioning System (GPS). The General Aviation community will
maintain legacy radios and systems for years and must be supported.

The public safety, emergency preparedness, and related applications are evolving from 25/30 kHz
channel spacing to equipment that supports narrow channel spacing and more channels. Digital
operations are envisioned. Interoperation among various agencies and services has usually not been
possible and is an identified priority. Civil wireless users desire wireless equipment that supports
deployed legacy and more capable emerging radio technologies that software radio technologies can
provide. Figure 2.1-2 is a context diagram for a representative civil aviation system.

MS GS GCC

MS GS MSC

CPS

CMA

AHC

ME ATNR

Data

Voice/Data

AHC Airline Host Computer
ATNR Aeronautical Telecommunications Network

Router
CPS Central Processing System
GCC Ground Control Center
GS Ground Station
ME Message Entry
MS Mobile Station
MSC Message Switching Center
CMA Context Management Application (VLR)

CMA

Interface

Function

Figure 2.1-2 Network Context Diagram: Civil/Aviation

Current military wireless communication strategies envision integrated operations of land, sea, and air.
Highly mobile operation is envisioned with integrated wireless communications extending to even the
individual soldiers. Spread spectrum modulation will be employed for multiple access and low probability
of intercept (LPI) or detection (LPD) and jamming immunity and also addresses the multipath fading
impairments. Additionally, the typical fixed network infrastructure may be non-existent, thereby

SDRF Technical Report 2.1 November 1999

2-7

necessitating the deployment of transportable and/or highly mobile networks into the field. Thus adaptive
network (re)configurations will be required. Multimedia data consisting of data, voice, graphics, and video
will be widely available, even in a time varying limited manner to the foot soldier. The goal will be to
provide rapid data collection and dissemination in anticipated limited war scenarios within urban areas,
mountainous areas, and other geographically restricted areas. Integrated operations will be facilitated by
advanced emerging spread spectrum technologies and by flexible software radio that can interoperate with
most varieties of narrowband legacy wireless waveforms and equipment. The context diagram for a
representative military wireless system is presented in Figure 2.1-3.

Peer or
“Base
Station”Handheld

Mobile

Airborne

Surface/Submarine

To Backbone
network or higher
command levels

Figure 2.1-3 Network Context Diagram: Defense Applications

SDRF Technical Report 2.1 November 1999

2-8

2.2 Current Operational Environment

This section provides an overview of the wireless services, supporting standards, critical defining
parameters, and required protocols that the SDRF standards recommendations development activities
will use as a requirements base.

The goal of this section is to provide the data needed to identify wireless services and standards
recommendations according to anticipated capabilities of various classes of software radio platforms.

The Terms and Definition Table defines the different categories and types of applications. These include
terms to be defined within a framework where these guidelines may serve both a current vision of SDRF as
a software radio, as well as for future developments. Targeted future possibilities include devices and
systems which are functionally defined through the digital signal processing and software that these devices
feature within an architecture that allows for multiple standards and information transfer services. Near-
term applications may include combinations of cellular, pagers, cordless telephones, and possibly GPS.
The ability to also include a low earth orbiting satellite (LEO) and International Maritime Satellite
(INMARSAT)-type satellite radio function, along with the cellular and other services, could also be
envisioned. Further growth to include data networking, and the possibility of other services, open up more
applications than can be currently categorized usefully. Thus, the categories of applications provide some
flexibility and abstraction, so that further applications may be defined, while fitting within the same overall
framework.

The terms “applications,” “services,” and “functions” are used here. Their relationship is best seen by
reference to the terms definition table. In order of generality, “applications” is the most general,
“services” refers to what technology provides and a user receives (e.g., cellular), and “standard” to the
specific standards (as defined by standards organizations) provided (e.g., IS-95). Other definitions are
included in the Terms and Definition Table.

Examples of actual applications recommendations are in a set of tables defined by the standards they fit
in Section 2.2. Other items in the Terms and Definition Table (e.g., simultaneity) are of interest for
SDRF applications. Although the SDR Forum does not intend to recommend standards in these areas,
the definitions serve as points of reference for future application descriptions in SDRF. Further, work in
identifying SDRF applications will be carried out as part of the technical working groups.

The recommendations include applications and the functional parameters associated with those
applications. In many cases parameters are included by reference to the standard (or other reference)
they are associated with. The tables are organized around the major categories, and the markets. A set
of tables, for each case, provides the parameters, applicable standards recommendations, and
standards references.

SDRF Technical Report 2.1 November 1999

2-9

2.2.1 Terms Definitions

Table 2.2.1-1 below defines the terms used. Recommendations are defined by class and type.
Examples are shown only to clarify their use, and in no way imply that these are the only types to be
defined, nor necessarily the most important ones. Recommendations are categorized as those pertaining
to applications, interfaces, integration, and form factor. These represent only guidance to the
Architecture Subcommittee for the standards recommendations setting process.

Table 2.2.1-1 Terms and Definitions

Category Type of Recommendations Definition of Term Examples

Applications
Service Information transfer capability

provided
1. Cellular
2. Mobile Satellite Voice

Standard Specific type and protocol of air
and user interface, defined by
standards organizations

1. AMPS,
2. GSM,
3. GPS

Standard Parameters Technical parameters associated
with specific standard

1. AMPS Channel Bandwidth:
30 kHz;

2. GSM Channel Bandwidth:
200 kHz

Application Features
Simultaneity Simultaneous standards 1. GSM and GPS
Reconfigurability Method for changing standards 1. User Selectable,

2. Automatic for Best BER
Environment Specific environment factors such

as RF or Mobility
1. User mobility up to 100

MPH
2. Fading in urban terrain

Interfaces
User Interface Type of user interface 1. Portable voice handset
Service Interface Type of interface with service

provider, often included by
reference to standard air interface

1. RF interface into Base
Station

Applications Program
Interfaces (API's)

API's Allowed or Disallowed; if
blank, none are specifically
Disallowed

1. Optional encryption and/or
authentication API's

Integration
Interworking Type and mode of interface to

other open architecture systems
1. Seamless interface to PC for

email messaging
2. Interoperability with

existing systems

Form Factor
Size length*width*height
Weight weight

SDRF Technical Report 2.1 November 1999

2-10

Category Type of Recommendations Definition of Term Examples
Power -total power consumption,

-type of power supply,
-length of time with power supply
without recharge/service,
-type of recharge/service

Other

2.2.2 Service Parameter Tables

The commercial, Civil Government, and defense spectrum allocations in the US are presented in Figure
2.2.2-1. An overview of multiband requirements is illustrated in the example of the U.S. spectrum
allocations shown in the figure. Similar situations exist in other countries and regions. Figure 2.2.2-2 is
an example of the Japanese spectrum allocation and Figure 2.2.2-3 is a European example.

HF

PCS

ES

VHF FM

CIVIL ATC

VHF-HIGH

PCS

ES MILITARY ATC

DATA

VOICE

ARMY ES ES DATA GPS DATA GPS PCS

PAGERS CELLULARPAGERS

2 30 88
10
8

11
8

13
7

17
4

22
5

40
0

42
3

44
9

50
0

86
9

95
0

96
0

12
15

12
28

13
60

15
40

15
75

18
00

19
00

20
00

FREQ
(MHz)

FREQ
(MHz)

MILITARY

CIVIL (ES=EMERGENCY SERVICES)

COMMERCIAL

SPECTRUM ALLOCATION (U.S. EXAMPLE)

Figure 2.2.2-1 U.S. Spectrum Allocation

SDRF Technical Report 2.1 November 1999

2-11

HF VHF

CIVIL
ATC

FM-TV VOICE

VOICE/
DATA

GPS

DATA PHS

2 30 41 76 10
8

13
8

17
0

22
5

40
0

47
0

77
0

96
0

12
15

14
30

15
00

18
95

19
20

FREQ
(MHz)

FREQ
(MHz)

MILITARY

CIVIL

COMMERCIAL

SPECTRUM ALLOCATION (JAPAN EXAMPLE)

TV UHF
TV

CELL’R
MCA

CELL’R
MCA

Figure 2.2.2-2 Japan Spectrum Allocation

MILITARY

CIVIL (ES=EMERGENCY SERVICES)

COMMERCIAL

SPECTRUM ALLOCATION (Europe EXAMPLE)

2
2

0
0

2
1

1
0

2
0

2
0

1
9

0
0

1
7

1
0

1
6

6
0

1
6

1
0

1
5

5
9

1
5

2
5

1
4

9
2

1
4

5
2

1
2

4
0

1
2

1
5

9
6

0
9

3
5

8
9

0

8
6

2

4
7

0

4
5

0
4

2
0

3
3

5

3
2

8

1
6

9

1
0

8

8
7

.5

FPLMTSPCSGPSPCSBCST

DAB

GPSCIVIL ATCPCSBCST

TV

PMRPMRCIVIL ATCESPagerFMVHFHF

FREQ
(MHz)

FREQ
(MHz)

ES

2
 (

1
.5

)

Cellular Cellular

Figure 2.2.2-3 Sample European Spectrum Allocation

SDRF Technical Report 2.1 November 1999

2-12

Examples of the Service/Standards and the critical parameters are defined in the following tables:

• Table 2.2.2-1, Representative Commercial Wireless Standards and Parameters
• Table 2.2.2-2, Representative Civil Wireless Standards and Parameters
• Table 2.2.2-3, Representative Military Wireless Standards and Parameters

SDRF Technical Report 2.1 November 1999

2-13

Table 2.2.2-1 Representative Commercial Wireless Standards and Parameters

STANDARDS Freq. (MHz) Channel
Bandwidth

Raw Data Rate Modulation
Format

Voice Coding Multiple
Access

Duplex Tx Power

AMPS TX 824 - 849
RX 869 - 894

60/30 kHz Analog FM Analog FDMA FDD Handset: 600
mw

IS-54/136 TX 824 - 849
RX 869 - 894

60/30 kHz 48.6 kbps DQPSK VSELP/8kbps
ACELP/ 9.4kbps

TDMA FDD Handset: 600
mw

GSM Tx 880 - 915
Rx 869 - 894

200 kHz 270.833 kbps GMSK RPE-LTP
13 kbps

TDMA FDD Handset: 2 W

IS-95 TX 824 - 849
RX 869 - 894

1.25 MHz 1.2288 Mcps/1.2-14.4
kbps

OQPSK QCELP
13.2 kbps

CDMA FDD Handset: 200
mw

CT-2 864 - 868 100 kHz 32 kbps GFSK ADPCM
32 kbps

FDMA TDD

POCSAG 929 -932 25 kHz 2.4 kbps FSK TDMA FDD
Reflex

(Narrowband PCS)
TX 901 - 902
Rx 929 - 932
Rx 940 - 941

Rx 25 / 50 kHz
Tx 12.5 kHz

Rx 12 / 24 kbps
Tx 9.6 kbps

4FSK TDMA FDD

RAM Tx 935 - 941
Tx 896 - 901

12.5 kHz 8 kbps GMSK FDM FDD 3 W

ARDIS Tx 851 - 866
Rx 806 -826

30 kHz 4.8 to 19.2 kbps proprietary FDM FDD

ISM Band (U.S.) 902 - 928 MHz
2.4 - 2.485 GHz
5.75-5.85 GHz

wide variety
No Standard

WLAN, WPBX
cordless phone

DS-1 links

FCC Part 15
Spread

Spectrum
DS & FH

Typically
FDMA

Typically
FDD

1 W (USA)

DECT 1880-1900 1.726 MHz 1.152 Mbps GFSK ADPCM
32 kbps

TDMA TDD 250 mW

DCS 1800 Tx 1805 - 1880
Rx 1710 - 1785

200 kHz 270.833 kbps GMSK RPE-LTP
13 kbps

TDMA FDD 1W

PCS 1900 1800 - 1950 200 kHz 270.832 kbps GMSK CELP
13 kbps

TDMA FDD Handset: 600
mw

IS-136+ 1800 - 1950 6030 kHz 48.6 kbps DQPSK ACELP
7.4 kbps

TDMA FDD Handset: 600
mw

IS-95+ 1800 - 1950 1.25 MHz 1.2288 Mbps OQPSK CDMA FDD Handset: 200

SDRF Technical Report 2.1 November 1999

2-14

STANDARDS Freq. (MHz) Channel
Bandwidth

Raw Data Rate Modulation
Format

Voice Coding Multiple
Access

Duplex Tx Power

mw
IS-661

Omnipoint
1800 - 1950 2.5 MHz FDMA/TDM

A/
CDMA

TDD Handset: 600
mW

PACS 1930-1990
1850-1910

300 kHz 64 kbps π/4 OQPSK ADPCM
32 kbps

TDMA FDD

PDC Tx 925-956, 1477-
1501

Rx 810-818, 870-
883, 1429-1453

50/25 kHz 42 kbps π/4 OQPSK PSI-CELP
3.45 kbps

TDMA FDD Handset: 600
mW

PHS 1895-1918 300 kHz 384 kbps π/4 OQPSK ADPCM
32 kbps

TDMA TDD Handset: 10
mW (Avg.)

80 mW (Burst)
IRIDIUM (mobile

user segment)
1616 - 1626.5 3,840 channels

total (48 cells
per satellite, 80
channels per cell

on average)

50 Kbps burst to
provide voice at 4.8
Kbps and data at 2.4

Kbps

QPSK FDMA/
TDMA

FD

Table 2.2.2-2 Representative Civil Wireless Standards and Parameters

Standards Freq. (MHz) Channel Spacing Raw Data Rate Modulation
Format

Multiple
Access

Duplex Tx Power

VHF Digital Link 117.975-137 25 kHz 37.5 kHz D8PSK TDMA HD
VHF Air/Ground 117.975 - 137. 8.33 kHz/25 kHz Analog AM-DSB FDM HD

VHF
Air/Ground

108.0 - 117.975 25 kHz Analog AM-DSB FDM Simplex

Maritime VHF 156-165(US)
174(EU)

5 kHz Analog FM +/-5kHz FDM HD

APCO-25 FCC Part 90 12.5/6.25 kHz 9.6 kbps APSK/C4FM FDM FD

SDRF Technical Report 2.1 November 1999

2-15

Table 2.2.2-3 Representative Military Wireless Standards and Parameters

STANDARDS Freq. (MHz) Channel Spacing Raw Data Rate Modulation
Format

Multiple
Access

Duplex Tx Power

UHF Voice/Data

188-243
225-400 25 kHz 16 kbps AM/FM FDM HD

SATURN 225-400 25 kHz 16 kbps CPFSK FDM HD
Have Quick 225 - 400 25 kHz 16 kbps AM-DSB/ASK FDM HD
SINCGARS 30 - 88 25 kHz 16 kbps CPFSK FDM HD/FD
Satcom/DAMA 225 - 400 25 kHz 19.2 kbps burst various TDMA -

DAMA
HD/FD

HF Analog
188-141A

1.5 - 30 3 kHz Analog SSB, ISB FDM HD

HF Data
Modems 188-
110A

2 -30 3 kHz 9600 bps Various FDM HD

HF ALE 188-141A 2 -30 3kHz 75 bps FSK FDM HD
EPLRS 423 - 449 3 MHz 56kbps MSK/CPSK TDMA HD
JTIDS 960-1215 3 MHz 384 kbps MSK/CCSK TDMA HD
VRC-99 1350 - 1850 5 MHz 10 Mbps QPSK TDMA/FDM HD
NTDR 225 - 450 2.4 MHz 500kbps QBL-MSK/

CQPSK
CSMA/CA/

FDM
HD

DWTS L - Band 2 Mbps Max FDM/ Trunking FD

SDRF Technical Report 2.1 November 1999

2-16

2.2.3 Requirements

2.2.3.1 Handheld Requirements

Handheld system solutions are driven by a set of requirements, which differentiate them from mobile and
fixed systems. The most notable are power, cost, volume, and weight. Handheld solutions have to be in
a form factor that is convenient for a person to hold and carry and to have the longest possible battery
life. They are typically battery powered using transmit power ranging from 1 mW to 3 W (limited by
health concerns). Typical commercial cellular and PCS single-mode single-band handsets today deliver
in the range of from 9 to 150 hours of standby time. A recent solicitation from the US military for special
unit operations sought 48 hours of “use” on a single battery charge. Another factor related to power
management and form factor is heat dissipation. There is no space for cooling devices such as fans and
not enough battery power available to afford solutions that generate large amounts of heat. Another
aspect of handheld systems is the focus on cost. Since the number of units fielded is relatively large in
proportion to other network components, the focus on cost minimization is significant.

Traditional handset form factors are fairly well established. A series of new form/function extensions of
handhelds are appearing. A class of small portable personal devices is emerging. They are variously
described as “organizers”, “Personal Digital Assistants (PDA’s)”, etc. There is work underway in some
quarters to combine the functions of a handset and a PDA. Another class of extensions have to do with
adding multimedia capability to a traditional handsets. Examples include the addition of miniature imaging
devices and cameras to conventional handsets. These two development vectors are coming together
with additional requirements in a class of extensions generically called “wearables”. Wearables may
combine LAN & WAN wireless capabilities with hands free user interfaces and sensors to support
teams working in medical, industrial, and military environments. They may move into general commercial
usage, but the early drivers are military, industrial, and medical.

This handheld architecture is based on these requirements.

2.2.3.2 Mobile System Applications and Requirements

The following sections outline a series of operational requirements and applications for mobile units.
These mobile units are applied in the military, Civil Government, and private land mobile environments.

Applications

Five mobile information transfer system models will be considered:
• Military land vehicle,
• Aeronautical,
• Naval shipboard,
• Manpack, and
• Automotive information transfer systems.

SDRF Technical Report 2.1 November 1999

2-17

Common characteristics

The following common features are often included for mobile information transfer systems deployed in
the five application environments:

• Operation in a frequency range of nominally 2 MHz (1.5 MHz for some European military
service) to 2 GHz,

• Exciter power of 2 watts, into a power amplifier,
• Multi-channel operation,
• Consideration of co-site performance,
• Bridging capability within the system,
• A user interface to control each channel,
• Functionally controlled by software so that the waveform executed by each channel is

determined by the software loaded.

MILITARY LAND VEHICLES

Environment

Implementation of the digital battlespace requires communication between force elements on the move
and in fixed positions. Military land vehicles include tanks and other vehicles participating in the battle
and supporting it. These vehicles need to participate in nets that provide command, control, situational
awareness, sensor data, and processed intelligence to all levels of command. Manpack systems used by
individual warfighters although participants in the same nets, are treated in a separate model due to their
differing form factor characteristics.

Description of the system

The mobile information transfer system will be installed in a vehicle, and will receive power from the
vehicle electrical system or from an auxiliary power system. Antennas will be located either on the
vehicle or a short distance from it.

For operation in a tank, the user interface of the information transfer system will connect into the vehicle
intercommunication system, and will normally be controlled by the tank commander. It will receive
situational data from tanks in the same unit and from central resources for display. It will transmit sensor
data, including GPS position data and vehicle operational data to higher level units. It will transmit
commander’s orders to subordinates as either voice or display data in real time to support unit
maneuvers.

Installed in a High Mobility Multi-purpose Wheeled Vehicle (HMMWV), the information transfer
system will typically support a tactical operations center or other field headquarters. While on the move
personnel can communicate on voice and data channels. At the site, connection will be made to the
headquarters local area network, making radio channels available to the commander and personnel

SDRF Technical Report 2.1 November 1999

2-18

manning the center. In order to provide dispersion, the unit will operate at a distance of 25 to 100
meters from the central facility.

Operation of the system

The mobile radio in a land vehicle operates in a wide variety of ways, each of which includes the
following characteristics:

• The system operates with a variety legacy waveforms that may include the following as
examples:

• Global Positioning System (GPS)
• Joint Tactical Information Distribution System (JTIDS)
• Enhanced Position Location Reporting System (EPLRS)
• Packet Radio (VRC-99)
• Single-Channel Ground and Airborne Radio System (SINCGARS/SIP)
• High Frequency (HF)
• UHF Air-ground voice radio (Have Quick Saturn)
• Trunked radio 10 Mbps
• Near Term Digital Radio (NTDR)
• Cellular, PCS

• Typically the interface to the user is modular and includes provisions for internetworking
functions like the following:

• FDDI
• Ethernet 100 Mbps
• TCP/IP
• RS232
• RS422

• The radio incorporates appropriate INFOSEC and Transient Electromagnetic Pulse Standard
(TEMPEST) controls

• Front panel fill and over the air rekeying integrate with the INFOSEC system

• Participation in and adaptive hand-off between operational clusters

Support for division level networks of up to 5,000 nodes

Functions of the information transfer system

The information transfer system will be the backbone of digital battlespace operations wherever
landlines are not available. Functionality will vary from replicating the capability of a simple radio for
voice contact to acting as a small digital switch.

SDRF Technical Report 2.1 November 1999

2-19

With its multi-mode capability, the information transfer system will act as a repeater so that an individual
equipped with a legacy radio such as SINCGARS can talk directly with support aircraft using UHF
Have Quick through an information transfer system.

Implications of mobility on the information transfer system

Mobility implies the following:
• An ability to move rapidly from one operating location to another while maintaining the full

capability to communicate
• Operate without dependence on a power line
• Mitigate co-site self jamming
• Modular extension and replacement
• A form factor smaller and lighter than the equipment replaced

Important parameters

Key operational parameters are:
• Frequency
• Modulation type
• Timing
• Orderwire
• Power level
• Keys and hopsets

AERONAUTICAL

Environment

As part of the communications, navigation, and IFF (Communication, Navigation, and Identification
[CNI]) system of both military and commercial aircraft, a number of different types of equipment have
been traditionally installed in each tail number. When an aircraft is designated for a specific mission or to
fly a route in a specific portion of the world, there is a planning element to ensure that it can
communicate with other stations as necessary. With a programmable information transfer system, any
aircraft equipped with suitable antennas and external RF equipment could be reprogrammed to
interoperate with designated waveforms and protocols.

Description of the system

Installation of the information transfer system technology into an aircraft is largely a matter of form
factor. If implemented on suitable circuit cards, the system resources can be directly installed in the
necessary ATR of SEM-E package for the aircraft type. The internetworking function will necessarily
need to match with the aircraft CNI system.

SDRF Technical Report 2.1 November 1999

2-20

Operation of the system

The information transfer system will operate in a manner similar to other radio equipment installed on the
aircraft. The operator’s panel will appear as an additional display in the cockpit display, and presets will
appear on the channelized control display.

Functions of the information transfer system

The information display system permits the aircraft crew to communicate on any channel for which
appropriate software has been loaded into the system archive. Over the air software upload is also
possible. Then the crew can talk with ground stations, other aircraft, and satellites. Aircraft sensor data
can be downloaded, and graphic data uploaded to the aircraft.

Implications of mobility on the information transfer system

Use in an aircraft involves conformance with the designed form factor, and the replacement must weigh
less than previously installed equipment. Power is derived from the aircraft power bus.

Important parameters

Key operational parameters include:
• Frequency
• Modulation type
• Timing
• Power level
• Keys and hopsets

NAVAL SHIPBOARD

Environment

The area of shipboard communications includes all information transfer between naval vessels and an
external entity. This includes ship-to-ship communications, ship-to-shore communications, ship-to-
aircraft communications, and ship-to-satellite communications. Both commercial shipping and defense
naval communications are included.

Description of system

The information transfer system installation is in racks in interior compartments of a ship where it
becomes a part of the shipboard communications facilities. The user interface will be used primarily by

SDRF Technical Report 2.1 November 1999

2-21

radiomen to establish presets available from other stations around the ship. Power is from the ship’s
generators.

The nature of shipborne communications requirements places particular strains of the modularity aspects
of a SDRF radio. Some interesting considerations include:
• Extensibility from as few as five channels per platform on a small ship to over 100 channels per

platform on a larger ship.
• Adaptive bandwidth variability from 3 kHz to 3 GHz.
• Multi-media communications for voice, data, video, facsimile, and message signals.
• Security including red and black throughput, a range of crypotographic functions and standards, and

external cryptographic devices.
• Demand-assigned or dedicated communications channels accessible by a single user or user group.
• Guaranteed quality of service describing priority, bandwidth, and reliability.
• Variable ranges from line-of-sight communications to 11,000 km.
• Co-site interference control mechanisms to manage interference between collocated receiver and

transmitters.
• Remotely configurable through a standard network management protocol such as SNMP.
• Adjacent channel interference control.

Operation of system

The system will provide communications channels to support diverse services. Examples of current
services are listed here, primarily emphasizing US Navy communications services.
• Tactical Group Communications circuits for battle group maneuvering, urgent tactical

communications, intelligence information, operations and administrative communications, and
communications with units deployed to join the battle group.

• Anti-Submarine Warfare (ASW) Communications circuits for ship-to-ship and ship-to-air
monitoring of submarine activities.

• Anti-Surface Warfare (ASuW) Communications circuits exchange tactical and air, surface and
sonar information between ships.

• Anti-Air Warfare (AAW) Communications circuits for the dissemination of information for aircraft
control and air raid reporting between ships.

• Electronic Warfare (EW) Communications circuits to control jamming, search and direction finding,
and to exchange information.

• Air Operations Communications circuits for aircraft and helicopter control.
• Tactical Air Communications circuits for control of aircraft engaged in operations.
• Amphibious Communications circuits to communicate between offshore platforms, landing force

elements and beach headquarters.
• Naval Gunfire Communications circuits to conduct, coordinate, and control naval fire activities.
• Submarine Communications circuits to communicate between submarines, submarines and ships,

and submarines and submarine operating authorities.
• Data links to transfer digital signals between ships, ships and aircraft and ships and shore stations.
• Distress Communications circuits for civilian and military search and rescue operations.

SDRF Technical Report 2.1 November 1999

2-22

• Mine Countermeasure (MCM) Communications circuits to exchange mine countermeasure
maneuvering and tactical information.

• Harbor Communications circuits used for civilian and military navigation.
• UHF Fleet Satellite circuits for long-haul communications between ships and shore facilities.
• Long-Haul HF Communications circuits used on many platforms as the primary ship-to-shore

communications medium. Allied forces (NATO) use HF and UHF circuits.
• Strategic Submarine Warfare Communications circuits to meet the special communications needs of

ballistic missile submarines and attack submarines.
• Navigation circuits to give position, velocity, and time information to vessels at sea.
• Telephone circuits from ships at sea to shore via (commercial) satellite communications.

In the case of the US Navy, the system will interface with network management systems such as
Automated Digital Network System (ADNS) to provide automated management of communications
resources and automated dissemination and support of fleet communications planning.

Functions of information transfer system

Functional units of the information transfer system must be consistent with the modular concepts
developed in the SDRF architecture. RF capabilities range from VLF (3 kHz - 30 kHz) to UHF (300
MHz - 3 GHz). RF also will provide adaptive functionality, including Link Quality Analysis and
Automatic Link Establishment and TRANSEC techniques to prevent signal detection and jamming. The
modem converts analog and digital radio traffic into a standard waveform. This includes modulation,
interleaving, forward error correction (FEC) and multiplexing with various access techniques including
frequency division multiple access (FDMA), time division multiple access (TDMA), and code division
multiple access (CDMA). INFOSEC uses various cryptographic techniques and/or interface with
external cryptographic equipment to insure secure voice and data communications. INFOSEC also
supports special cryptographic encoding of DAMA orderwire and other channel control messages to
secure the identity of the channel controller. Message Processing includes functions for LAN
communications, data compression, and vocoder functions.

Implications of mobility on the information transfer system

As with other forms of wireless mobile communications, loss of signal is a problem. Most ships move
relatively slowly. Once communications are established, loss of signal tends to be related more to
atmospheric conditions and time of day than to range of motion. Sea state is an important environmental
factor. Careful placement of antennas is required to insure a continuous signal despite severe pitch and
roll. In addition, external radio modules must be able to withstand harsh environmental conditions and
internal information transfer system modules must be ruggedized and securely mounted.

SDRF Technical Report 2.1 November 1999

2-23

Important parameters/range

The operational parameters include operating frequency, operating time period, data type, security label,
quality of information transfer, and participants. Where possible, these parameters will be negotiated
between systems and will be transparent to the end users.

MANPACK

Environment

The current trend in battlespace doctrine calls for electronic connection to each warfighter. Sensor data
including video and laser ranging information is fed back to intelligence centers where the situation
analysis is kept current. Then the location of friendly and enemy elements can be fed back to individuals
and elements for their tactical use. Command and control information also is fed forward.

DARPA, the US ARMY, and the US Marine Corps are conducting experiments such as Small Unit
Operations, Sea Dragon, and Extended Littoral Battlespace. These experiments will form the basis for
the future doctrine of land forces in the information age.

Description of the system

The manpack communications system will have to be lightweight; have low power consumption; have a
simple, user friendly human interface; possess low probability of intercept and low probability of
detection in order to enhance operator survivability, and be rugged enough to withstand the
environmental rigors of a combat situation.

Operation of the system

The communication system will be multifunctional (voice, data, imagery, and video), multimode (legacy
and new waveforms), provide high-resolution location of the operator; and be capable of secure
operation.

Functions of the information transfer system

In order to communicate with current combat net radios, the system would have a VHF mode and with
current Air Force equipment, would have to have a UHF mode. A cellular capability is envisioned and
could operate with a mobile base station from an airborne platform like an unmanned aerial vehicle
(UAV). Location could be provided by the Global Positioning System or in the case of dense foliage or
inside buildings, could have a Loran or TDOA type capability. The capability to broadcast VHF
(ground) and UHF (air) simultaneously to call for timely artillery, mortar, and rocket fire support and call
for air support would be required for small units to fight and survive. A capability to receive imagery and
video from the global broadcast system is envisioned for map updates, enemy positions, non-
combatants locations, etc. Over-the-air keying of crypto would also be required. A paging capability is

SDRF Technical Report 2.1 November 1999

2-24

envisioned to alert individuals scattered over a large area of events such as impending nuclear,
biological, or chemical attacks.

Implications of mobility on the information transfer system

The most obvious implications are varying propagation effects and non-disruptive handoff as the unit
moves. Waveform and protocol optimizations also become issues.

Important parameters

The frequencies of operation are important and should cover at least 30 MHz to 2 GHz. Receive
frequencies of wideband information could be much higher but schemes such as receiving the GBS
broadcast on a UAV and retransmit a portion of the broadcast in L-Band have been investigated.
Bandwidth estimates are 10 MHz per channel. Data rate estimates are 1.5 Mbps for receiving
wideband but much lower transmit estimates due to power limitations. Range estimates are 10-15 KM
ground-to-ground and many miles ground-to-air.

AUTOMOTIVE INFORMATION TRANSFER SYSTEMS

Environment

The time period from 1980 to 1995 saw the introduction of a large number of microprocessors and
controllers dedicated to such functions as engine control, automatic braking systems, transmission
control, sound system, GPS, cellular, and route display. With the introduction of the Intelligent
Transport System, a number of these functions can be combined with wireless communications. As they
are brought together, the flexibility of an information transfer system offers the opportunity of upgrading
system functionality by adding software to the existing hardware.

Description of the System

A single unit in the vehicle, using the information transfer system architecture, provides RF receive and
transmit channels, audio sound, information display, voice synthesis, and processing. Power is received
from the automobile electrical system.

Operation of the system

An increasing number of services are available to motorists on highways using RF links. The Intelligent
Transfer System provides a capability to utilize these services. It also permits the user to adapt easily to
new services as they become available by loading new communications configurations into the system.

Entertainment is provided by the system through audio amplifiers and loudspeakers. Access to a number
of voice communications facilities is provided through a single handset. By receiving the GPS waveform,

SDRF Technical Report 2.1 November 1999

2-25

vehicle location, direction, speed, and the time are available. That information can be used in conjunction
with stored map and route information to provide guidance to the desired location. As intelligent highway
services are offered, they can be monitored by this system.

Functions of the information transfer system

• AM radio
• FM radio
• CD player
• Stereo amplifier
• GPS position location
• Cellular phone
• PCS services
• Paging
• Amateur radio
• Citizen’s band
• Talk between cars
• Traffic information
• Route display
• Voice announcement
• Vehicle Coordination:

 Congestion rerouting
 Platooning

etc.

Implications of mobility on the information transfer system

As with any cellular or PCS service, the motion of the car introduces problems with Rayleigh and
Ricean fading that will have to be overcome to provide continuity of service. Extreme temperature
excursions must be accommodated.

Important parameters

The system must accommodate the operational parameters of the services to be provided.

SDRF Technical Report 2.1 November 1999

3-1

3.0 SDRF System Architecture

This section focuses upon the Software Defined Radio System (SDRS) architecture. The architecture is
a representation of a SDRF system that rationalizes, arranges, and connects components to produce the
desired functionality. This architecture is intended to form the basis for specific implementations of a
system that meets functional SDRF requirements and also provides upgrade paths for handling
enhanced, evolving, and new requirements. This feature of “future proof” architectures is a fundamental
goal and challenge for the SDR Forum.

Figure 3.0-1 illustrates the scope of SDRF architectural discussions covered within this report. Section
3.1 discusses the SDRF architecture framework. It includes high-level models, functional interface
diagrams, and interface interaction diagrams/tables. Section 3.2 presents specific examples of SDRF
architectural models. Included in this report are models and discussions for handheld, mobile
applications, and cross standards extensions representing the first three specific architectural work items
undertaken by the Forum.

SDRF
High-Level

Functional Model

SDRF
Interface Interaction

Diagram/Table

SDRF
Functional
Interface
Diagram

SDRF
Architecture
Framework

SDRF
Architecture

Models

SDRF
Handheld
Models

SDRF
Basestation /

Satellite

Generic

Specific

Section 3.1

Section 3.2

SDRF
Mobile
Models

Switcher/
Downloader

Smart
Antenna

Figure 3.0-1 Scope of SDRF Forum Architecture Work

SDRF Technical Report 2.1 November 1999

3-2

3.1 Architecture Frameworks

The strategy for meeting the “future proof” goal for a SDRF architecture is to provide high-level
functional models that are capable of being mapped into specific software-defined information transfer
devices such as handheld, mobile, and base station applications. Articulating the high-level architecture
is key to establishing consistency among the specific architecture models to follow. The SDRF
architecture framework addresses the higher level architectural aspects for software defined information
transfer devices allowing latitude for a variety of specific implementations.

The SDRF open architecture is based upon a high-level generic functional model with functional blocks
connected via open interface standards recommendations. The goal of the SDRF functional partitioning
is to define an architectural framework that can be applied to specific implementation domains.
Examples of these implementation domains are handheld, mobile, and fixed site or base station. The
SDRF approach to standards recommendations is outlined in Table 3.1.1-1.

Table 3.1.1-1 Scope of the SDRF Approach to Open System Standards Recommendations

Standard Type SDRF Role SDRF Approach
Air Interface Support identified standards

through common architectural
partitioning

Identify extensions to
accommodate new SDRF
capabilities

SDRF will identify and recommend
extensions to the appropriate
standards body

Internetworking Support identified standards
through common architectural
partitioning

Identify extensions to
accommodate new SDRF
capabilities

SDRF will identify and recommend
extensions to the appropriate
standards body

API Define Definition based on SDRF functional
model partitioning

Physical Interfaces Select from existing open
standards

Selections based on SDRF functional
model partitioning and existing
interconnect, backplane, and form
factor standards

Analog/RF Interconnects Identify applicable standards and
approaches

SDRF will recommend where
standards are lacking

User interface None Product dependent

SDRF Technical Report 2.1 November 1999

3-3

Realization of SDRF architecture has several characteristics:

Flexible - the ability, through band and mode selection, to access a desired part of the electromagnetic
spectrum and to construct and decode desired waveforms or protocols through readily achievable
reconfiguration.

Upgradeable - the ability to get more or better performance from the SDRF device through the insertion
of improved hardware and software technologies. The architecture should provide for this in such a way
as to localize the impact to the affected modules or components.

Scaleable - the ability to extend the functionality and capacity of the SDRF device to include multiple
channels and networking, additional local connectivity and processing, or new evolving wireless
services. Scalability relates to the ability to support the addition of existing functions − quantitative
growth.

Extensible - the ability to readily permit an addition of a new element, function, control, or capability
within the existing framework. Extensibility pertains to the ability to support new functions − qualitative
growth.

Development of a system architecture requires the establishment of three viewpoints of a system; the
user/owner, the designer, and the developer. The user/owner is concerned with the operational and
business attributes of the system, the system architecture designer concentrates upon identification of
interconnection and communication of specific building blocks or functional modules, and the developer
focuses upon specific implementation of the chosen functional modules, the technical architecture.

Standards recommendations arise from two sources. De facto standards are the result of wide
acceptance and use in the marketplace. These standards recommendations typically emerge from
proprietary work and are the intellectual property of the developer. If they are made available to third
parties for development then they can be considered “open.” These standards recommendations
frequently evolve rapidly as the developer makes enhancements and adapts to emerging technological
developments.

De jure standards are those established by a central body, and are issued in accordance with the
guidelines established by that body for standardization. Although this process is inherently slower than
de facto standardization, it has the advantage that original acceptance and subsequent changes take
place through an established process. They are slower to become accepted, changes are well publicized
in advance, and implement negotiated specifications. Implementers can develop products or systems to
the specification with assurance that it will be stable.

SDRF will use both of these types of standards. De facto standards, such as bus architectures, permit
access to a wide range of commercially available hardware and software items that can lead to
convenient interaction and economies of scale. But the purpose of the SDR Forum is to establish

SDRF Technical Report 2.1 November 1999

3-4

standards recommendations for key elements of target systems as a basis for standardization where
open COTS resources are not available.

The SDR Forum provides a mechanism whereby issues specific to software programmable radios can
be resolved with an expedited standardization process. This approach permits systems using advanced
technology to be fielded expeditiously with competition based on value added for customers and users
rather than unproductive battles between essentially equivalent but different implementations.

Modularity is the key to successful implementation of open systems. Between modules are defined
interfaces that are subject to standardization. Within a module the developer is free to implement
functionality in the most effective way.

3.1.1 Functional Model

Open systems are those that contain open and standard internal interfaces between modules and open
and standard external interfaces with other information systems. Open systems are defined by employing
commercially successful non-proprietary interfaces, communications protocols, and application program
interfaces.

CONTROL

CONTROL

INFORMATION TRANSFER THREAD

INFORMATION PROCESSING & I/OINFOSECFRONT END PROCESSING

RF MODEM OPTIONAL LINK
PROCESSOR
(INC. TRANSEC)

COMSEC
CODING INTERNETWORKING

ETE
SECURITY

SIGNALING PROTOCOL I/O

Figure 3.1.1-1 SDRF High-Level Function Model

Figure 3.1.1-1 is a high-level hierarchical functional model for a software defined radio system (SDR).
Three views of increasing complexity are presented. The top level view is a simple representation of an
entire information transfer thread. The left side interface is the air interface. The right side interface is the
wire side and user interface. The next level view identifies a fundamental ordered functional flow of four
significant and necessary functional areas; (1) front end processing, (2) information security, (3)
information processing, and (4) control. It is noted that diagrams and processes discussed within this
document, unless otherwise specified, are two-way devices (send and receive). Note that the functional
model as shown in this figure is not intended to show data or signal flow.

SDRF Technical Report 2.1 November 1999

3-5

Front end processing is that functional area of the end user device that consists generically of the
physical air (or propagation medium) interface, the front-end radio frequency processing, and any
frequency up and down conversion that is necessary. Also, modulation/demodulation processing is
contained in this functional block area.

Information security (INFOSEC) is employed for the purpose of providing user privacy, authentication,
and information protection. INFOSEC, within the SDRF model, consists of two fundamental processes:
transmission security (TRANSEC) and communications security (COMSEC). TRANSEC includes
those processes such as frequency hopping or direct spread spectrum or other signal variation coding;
and communications security. COMSEC is the algorithmic encryption and decryption of the digital or
digitized analog information. Another primary function is the management of INFOSEC, key
management. In the commercial environment, this protection is specified by the underlying service
standard while in the defense environment, this protection is of a nature that must be consistent with the
various Governmental doctrines and policies in effect.

Content or information processing is for the purpose of decomposing or recovering the imbedded
information containing data, control, and timing. Content processing and I/O functions map into path
selection (including bridging, routing, and gateway), multiplexing, source coding (including vocoding, and
video compression/expansion), signaling protocol, and I/O functions.

Figure 3.1.1-2 demonstrates that the SDRF Architecture features two important attributes: scalability
and extensibility. The advantage of this architectural approach is that development can proceed
asynchronously in different parts of the system. In other words it supports an evolving design process.
The high-level architecture presented in Figure 3.1.1-1 is scaled in one part of the figure to show a
“better modem” and “better TRANSEC.” These improved features could mean increased processing
capability, lower power operation, smaller size, etc. The importance of the scalability attribute is that the
SDRF architecture accepts modular improvements in a seamless and transparent fashion. The figure
also demonstrates how the architecture may be extended to show a multiple channel configuration.

SDRF Technical Report 2.1 November 1999

3-6

• Starts with a functional breakout
that is scaleable and extensible

• Challenge is to map functional
breakout to a HW and SW
architecture that retains these
characteristics

Control

Control

Coding Internetworking

Front End Processing InfoSec Information Processing & I/O

Information Transfer Thread

RF1

SP1 I/OSP2RF2

Modem1

Modem2

ComSec1
Data

Proc 2ComSec2

Data
Proc 1

Control

Better
RF

Better
Modem

Better
Data
Proc

Better
ComSec

Information Transfer Thread

Control

Coding Internetworking

Signaling Protocol I/O

Front End ProcessingInfoSec Information Processing & I/O

Informatioan TTransfer Thread

Control

Control

RF Modem Link
Proc ComSec

Coding Internetworking

Signaling Protocol I/O

Front End ProcessingInfoSec Message Processing & I/O

Scaleable
Extensible

Figure 3.1.1-2 SDRF Architecture Evolution Process

Figure 3.1.1-3 illustrates that the SDRF functional model maps to three specific applications: a handheld
unit, a mobile system, and a basestation. The SDRF functional model is common to each of the
implementations with more detailed descriptions provided in Section 3.2.1 for the handheld model and
Section 3.2.2 for the mobile model. The basestation model is similar to the mobile model.

SDR Functional Architecture

CONTROL

RF MODEM COMSEC
CODING Internetworking

I/OSIGNALING PROTOCOL

OPT. LINK
Processor

(Inc Transec)

Handheld
Radio

Application

Mobile
Radio

Application

Basestation
Radio

Application

Figure 3.1.1-3 One Common SDRF Functional Architecture Maps to Handheld, Mobile, and
Basestation Radio Configurations

SDRF Technical Report 2.1 November 1999

3-7

The SDRF architecture consists of functions connected through open interfaces, and procedures for
adding software specific tasks to each of the functional areas. The software necessary to operate is
referred to as a software application. Figure 3.1.1-4 is a diagram of the SDRF open architecture
showing six independent subsystems interconnected by open interfaces. In this view the generalized
SDRF functional architecture has been particularized by equating a subsystem definition to each
functional area. In general this is not the case; subsystems will be determined by implementation
considerations. Interfaces exist for linking software application specific modules into each subsystem.
Each subsystem contains hardware, firmware, an operating system, and software modules that may be
common to more than one application. The application layer is modular, flexible, and software specific.
The common software API layer, inferred in Figure 3.1.1-4, is standardized with common functions
having open and published interfaces. Peer-to-peer interfaces are neither required nor proscribed.

Common
Software

OS

Firmware

Common
Software

OS

Firmware

Common
Software

OS

Firmware

Common
Software

OS

Firmware

Common
Software

OS

Firmware

Common
Software

Antenna
Hardware

RF
Hardware

Modem
Hardware

INFOSEC
Hardware

Msg Proc
& I/O HW

User
I/O

Hardware

Antenna
Specific
Modules

RF
Specific
Modules

Modem
Specific
Modules

INFOSEC
Specific
Modules

Msg & I/O
Specific
Modules

User I/O
Specific
Modules

Software Application

Open Interface

Common
Software

OS

Firmware

Opt. Link Proc
Specific
Modules

Link Proc
Hardware

Figure 3.1.1-4 An Example Implementation of SDRF Software and Hardware Open
Architecture

Figure 3.1.1.5 presents the SDRF functional interface diagram and demonstrates how the SDRF
Architecture extends to the definition of functional interfaces. A representative information flow format is
provided at the top of the diagram. Actual representations will be implementation dependent. Interfaces
are identified for information and control. For example, information transfer is effected throughout the
functional flow within the SDRF architecture to/from antenna-RF, RF-modem, modem-INFOSEC, and
INFOSEC-Message Processing interfaces. Control and status is effected between the same interfaces
as information and, in addition, control is effected between each functional module and one or more
control points and interfaces. Auxiliary interfaces are also allowed, as shown on the diagram.

SDRF Technical Report 2.1 November 1999

3-8

RF

BB / IF
Real/

Complex
Digital/
Analog

RF
Bits

CypherText
Flow Contol

Bits
PlainText
Flow ContolAux Aux Aux

Key
Fill

Representative
Information
Flow
Formats

AIR

I/O

C

RF

C C C C

I I II

CONTROL

MSG
PROCESS

& I/O

C

Routing

Common
System

Equipment

Clock/Strobe
Ref, Power

Multimedia

Voice

Data

Flow

Control
Network

Ext. Ref
Remote Control/

Display
User Control

(MMI)

Aux: Special Purpose
I/O forAntenna Diversity,
Co-site Mitigation, etc.

I: Information
BB: Baseband
C: Control/Status

SEC I/O

C

Optional
 Link

PROC

I/O

C

INFOSEC

I/O

C

MODEM

I/O

C

ANTENNA

C

I

Bits
CypherText
Flow ContolAux

Figure 3.1.1-5 SDRF Functional Interface Diagram

3.1.2 Interaction Diagram

Table 3.1.2-1 supports the functional interface diagrams by employing a matrix which plots information;
[I] and control/status; [C] as a function of the appropriate SDRF interface. For example, the RF-
Antenna interface contains information as well as control/status whereas the Air-Antenna interface
contains information only. The matrix also identifies specific auxiliary interfaces for the purpose of
transferring information among multichannels of a particular system or between systems in support of
multichannel processing algorithms. Typical external interfaces are also identified within the matrix. The
keys for the interaction diagram are:

• I: Information Flow Interface, i.e., information to be transferred over the communication link and
information embedded in the signal-in-space waveform (e.g., training symbols, spread spectrum
symbols).

• C: Control/Status Interface, i.e., information transferred for the purpose of controlling other
functional blocks or for generic radio control functions.

• Aux: External interface to a similar block (e.g., antenna to antenna interface for co-site mitigation) on
the same or other radio channel.

SDRF Technical Report 2.1 November 1999

3-9

Table 3.1.2-1 Interface Matrix

N2

INTERFACE
AIR ANT RF MODEM INFOSEC I/O SEC. I/O CONTROL USER

(MMI)
AIR I

ANT I I
C C C

RF I
C

I
C

I
C C

MODEM
C

I
C

I
C

I
C

I
C

INFOSEC I
C

I
C

I
C

I
C

I
C

SEC. I/O I
C

I
C

I/O I
C

I
C

I
C

I
C

I
C

CONTROL
C C

I
C

I
C

I
C

I
C

USER
(MMI)

I
C

I
C

I
C

AUX YES YES YES YES YES

WIRE SIDE I/O YES
FILL DEVICE YES

REMOTE
CONTROL

YES

This table gives the general view of the candidate interfaces under consideration for SDRF standards
recommendations. Note that each module in the first column will require a detailed functional description
to classify the functions that must be accomplished within that module but without specifying how those
functions will be implemented. The internal requirements of the modules are only limited by the
compliance with the input and output standardized characteristics as prescribed by SDRF.

Figure 3.1.2-1 is a graphical depiction of the interface matrix in the form of an NxN interface/interaction
diagram. In Figure 3.1.2-1, each of the interfaces shown on each of the modules represent a potential
for standards recommendations to establish an open architecture.

Table 3.1.2-2 describes the interface/interaction diagram interfaces with representative example
information and/or control and status content. Table 3.1.2-2 offers a finer decomposition of those
interfaces and examples of the content that are associated with each. The content of each information
and control interface will necessarily need to be further developed, described, and bounded.

SDRF Technical Report 2.1 November 1999

3-10

ANT

USER

(MMI)

RF

MODEM

INFO

SEC

I/O

SEC.

I/O

CONT-
ROL

AIR

Auxiliary Devices

Fill Device

Wire Side
I/O

Remote
Control

Figure 3.1.2-1 Interface/Interaction Diagram

Table 3.1.2-2 Interface/Interaction Diagram Interfaces and Example Content

Interface Transfer
Type

Example Content

Air to Antenna I Information flow is defined by the air interface standard
Antenna to RF I Information flow in the RF signal
Antenna to RF C RF/Antenna status interfaces (beam steering, etc.)
Antenna to Modem C Status information interface for beam steering, etc.
Antenna to Control C Control status interface
Antenna to Environment Adaptation C Antenna status information for the purpose of adaptation

algorithms
RF to Antenna I Information flow in the RF signal
RF to Antenna C RF/Antenna control interfaces (beam steering, etc.)
RF to Modem I Information flow in the RF/IF/Baseband signal
RF to Modem C Status interface for AGC, etc.
RF to Control C Control status interface
RF to Environment Adaptation C RF status information for the purpose of adaptation

algorithms
Modem to Antenna C Modem control of antenna for beam steering, etc.
Modem to RF I Information flow in the RF/IF/Baseband signal
Modem to RF C RF control such as frequency control and AGC
Modem to INFOSEC I Information (cipher text) flow within the received bits
Modem to INFOSEC C Modem status used by the INFOSEC function

SDRF Technical Report 2.1 November 1999

3-11

Interface Transfer
Type

Example Content

(transmit/receive, etc.)
Modem to Control I Information retrieved from the communication link data

stream by the modem for control purposes.
Modem to Control C Modem status information
Modem to Environment Adaptation C Modem status information for the purpose of adaptation

algorithms
INFOSEC to RF I TRANSEC information for waveform parameter variation
INFOSEC to RF C Mode control information such as disabling an RF

function due to another mode being performed by
another RF function such as an LPI channel

INFOSEC to Modem I Information such as mode, preambles, key transfers
INFOSEC to Modem C TRANSEC information for waveform parameter variation,

encrypted digital bits, flow control
INFOSEC to IO I Unencrypted bits
INFOSEC to IO C Mode switches, flow control
INFOSEC to Secure IO I Keys
INFOSEC to Secure IO C Key status, parity, alarms
INFOSEC to Control I Recovered information used in radio control algorithms
INFOSEC to Control C Status
INFOSEC to Environment Adaptation C COMSEC acquisition status
Secure IO to INFOSEC I Keys
Secure IO to INFOSEC C Control parameters
Secure IO to User I Front panel display, key status
Secure IO to User C Front panel keypad
IO to Modem I Bits when INFOSEC function not present
IO to Modem C IO derived modem control information, flow control
IO to INFOSEC I Bits
IO to INFOSEC C IO derived control information, flow control
IO to Control I Information parsed from the received bit stream
IO to Control C IO derived control information
IO to Environment Adaptation C Receive statistics
IO to User I Multimedia information
IO to User C Flow control
Control to Antenna C Antenna control parameters
Control to RF C RF control parameters
Control to Modem I Control information for the Modem to insert into the

information flow
Control to Modem C Modem control parameters
Control to INFOSEC I Information for the INFOSEC function to insert into the

information flow
Control to INFOSEC C INFOSEC control parameters
Control to IO I Control information for the IO function to insert into the

information flow
Control to IO C IO control parameters
Control to Environment Adaptation I Control status, statistics
Control to Environment Adaptation C Environment adaptation control parameters
Control to User I Information parsed from the received information stream
Control to User C Display of operating status
Control to Remote Control C Status

SDRF Technical Report 2.1 November 1999

3-12

Interface Transfer
Type

Example Content

Environment Adaptation to Antenna C Antenna control parameters
Environment Adaptation to RF C RF control parameters
Environment Adaptation to Modem C Modem control parameters
Environment Adaptation to INFOSEC C INFOSEC control parameters
Environment Adaptation to IO C IO control parameters
Environment Adaptation to Control I Information for the Control function to pass along to

other functions to insert into the information stream
Environment Adaptation to Control C Control parameter inputs
Environment Adaptation to User I Statistics
Environment Adaptation to User C Status
User to IO I Multimedia information
User to IO C Flow control
User to Secure IO I Keys
User to Secure IO C Secure control parameters, front panel keyboard
User to Control I Information to insert into the information stream
User to Control C Keypad, Radio control parameters
User to Environment Adaptation I Information to insert into the information stream
User to Environment Adaptation C Environment adaptation parameters
Antenna Au Interface to share information between antenna functions

for co-site interference mitigation, etc.
RF Au Interface to share information between RF functions for

coordination of multi-channel operation
Modem Au Interface to share information between Modem functions

for coordination of multi-channel operation
Control Au Interface to share information between Control functions

for coordination of multiple radio system operation
Environment Adaptation Au Interface to share information between environment

adaptation functions for coordination of multi-channel
operation

User Au Interface to accommodate multiple user control (local,
remote)

Wireside to IO Standard wire side interfaces for data, voice, LAN, and
multimedia

Fill Device to Secure IO Standard fill device interface
Remote Control to Control C Control parameters

SDRF Technical Report 2.1 November 1999

3-13

3.2 Implementation Models

An architecture is the basis for the design, construction, modification, and operation of a product. It is
derived from the design principles and it affects the physical configuration, functional organization,
operational procedures, and data formats. This section is divided into three separate subsections. It will
develop the mapping and modeling from the generalized SDRF architecture to the next level of definition
for handheld and mobile units, identify the existing standards that would be affected by the SDRF
approach, and offer suggested extensions to the existing standards for accommodating the operation
within those environments.

Table 3.2-1 displays the differences between “Handheld” and “Mobile” systems. Besides form factor
and power/performance constraint differences, the most striking difference is that, with
minor exceptions, handheld systems support a single standard, single session at a time, while mobile
systems tend to have requirements for supporting multiple sessions and sometimes multiple standards
simultaneously. An exception in the single service/standard scenario for a handheld is the combination of
a discrete paging standard and a voice standard in a single handheld.

Table 3.2-1 SDRF Differences between Handheld and Mobile/Stationary Systems

CRITERIA

APPLICATIONS

Handheld
Single standard
environment

Mobile/ Stationary *

Multiple standard
environment

Prerequisites:
Power Consumption Minimum Moderate
Weight Minimum Moderate
Volume Minimum Moderate
Price Minimum Moderate

Resulting in:
Receive Elements

receiver dynamic range Moderate Maximum
noise level Moderate Minimum
sensitivity Moderate Maximum
out-of-band undesired signal behavior Moderate Minimum
in-band undesired signal behavior Moderate Minimum

Transmit Elements:
amplifier nonlinearities Moderate Minimum
backdoor intermodulation Moderate Minimum

* Definition of Mobile/Stationary: Any multiple standard/terminal installation in a transportable mobile or stationary
application, e.g., van, ship, aircraft, shelters, ground station, and headquarters.

SDRF Technical Report 2.1 November 1999

3-14

3.2.1 Handheld Models

Figure 3.2.1-1 is one model that can be used to describe the functional units in a handheld unit. This
model has evolved from early-dedicated analog baseband implementations to today’s digital
implementations and reflected common practice in dividing functions into subsystems. In single-mode,
single-band implementations those subsystems are dedicated to support single modulation techniques,
protocols, data representations, etc. For an example of functions typically found in the different
subsystems, please refer to Table 3.2.1-1 later in this section.

ANT

RF

Baseband Processing

MODEM
Source
Coding

USER
I/O

Controller

Figure 3.2.1-1 Single-Band, Single-Mode Handheld Functional Model

Figure 3.2.1-2 is an example of mapping the SDRF high-level functional model described in Section 3.1
to a typical single-mode, single-band handheld functional model. A subscriber identification module
(SIM), derived from the GSM, may be included for security or privacy functionality.

The example maps a SDRF reference model into a grouping of functions. The top level view provides a
handset context diagram. The bottom view shows how functionality may be hosted by the use of
personality modules. Data is uploaded or downloaded through control interfaces.

SDRF Technical Report 2.1 November 1999

3-15

RF

CONTROL

I/O

COMSECMODEM

SIGNALING PROTOCOL

CODING Internetworking

OPT. LINK
PROC

Inc. TRANSEC

CONTROLCONTROL

SIM
ANT

RF

MODEM

BASEBAND

USER
I/O

SOURCE
CODING

Figure 3.2.1-2 SDRF Mapping into Single-Mode, Single-Band Handheld Functional Model

Figure 3.2.1-3 shows a first iteration of how a typical single band, single standard model can be
extended to cover multiple standards and bands using multiple devices. This view is burdened by the
dedicated function approach typical of previous single standard single band implementations. An
evolutionary view is shown in Figure 3.2.1-4 where the multiple standards and bands are integrated.
The user interface, in this figure, is shown as two types, a human input interface and machine interface,
typically a data terminal.

In looking for a more helpful model of a software defined radio used in handheld applications, it is useful
to look at a generic computer model. Figure 3.2.1-5 shows a generic computer hardware/software
model.

Applying this hardware/software model to the multimode, multiband extension model yields Figure
3.2.1-6. The handheld multiple service model, Figure 3.1.2-6, takes the generic handset mapping
diagram, adds another level of detail, and converts it into a representation that is more computer-centric;
at the bottom is a hardware layer, then a system software layer, and finally a service software layer.

SDRF Technical Report 2.1 November 1999

3-16

A
n
t
e
n
n
a

RF fN BB SN

Controller SN

U
s
e
r

A
n
t
e
n
n
a

RF f2 BB S2

Controller S2

U
s
e
r

A
n
t
e
n
n
a

RF f1 BB S1

Controller S1

U
s
e
r Standard 1

Standard 2

Standard N

Figure 3.2.1-3 Multimode, Multiband Solution Using Multiple Single Standard Devices

UTILITIES

CTRL S N

CTRL S2

CTRL S1

RTOS

DRIVER

BB SN

BB S2

BB S1

A
n
t
e
n
n
a

U
s
e
r

I
/

O

H
u
m
a
n

M
a
c
h

S
I

M

RF f1

RF f2

RF fn

Figure 3.2.1-4 Multiband, Multimode Handheld Functional Model

SDRF Technical Report 2.1 November 1999

3-17

BIOS

Hardware

A
p

p
lic

at
io

n
 1

A
p

p
lic

at
io

n
 2

A
p

p
lic

at
io

n
 3

A
p

p
lic

at
io

n
 N

Operating System

Application SW

System SW

HW

Figure 3.2.1-5 Generic PC Hardware/Software Architecture

ControllerAnt RF Baseband User I/O

Drivers

Controller

C
o

n
tr

o
lle

r
S

td
 1

C
o

n
tr

o
lle

r
S

td
 ..

C
o

n
tr

o
lle

r
S

td
 N

S
ec

u
ri

ty
 S

td

S
w

it
ch

er
 (

B
et

w
ee

n
 S

td
s)

HW

Application SW

System SW
Real Time Kernel

B
as

eb
an

d
 S

td
 ..

B
as

eb
an

d
 S

td
 N

B
as

eb
an

d
 S

td
 1

SIM

Figure 3.2.1-6 Handheld Multiple Service Model

SDRF Technical Report 2.1 November 1999

3-18

The baseband implementations for each service are shown as cutting through the system software layer
and directly interfacing the hardware layer because of the stringent performance constraints on execution
speed and power consumption. A variety of technology approaches are being pursued depending on
the constraints of the particular application. Battery power, size, weight, and cost requirements typically
push the state-of-the-art in handheld units. In order to achieve processing speed and efficiency, the
majority of baseband implementation are programmed very close to the underlying hardware or logic,
using low-level languages such as microcode or assembly code. The task of switching between multiple
bands using the same or different RF hardware is managed by a combination of the service switcher and
the controller services for each individual operational mode.

Executing on the real time kernel (RTK) are two special service software modules: the service switcher
and security services. The service switcher coordinates the selection and execution of the appropriate
baseband service and controller service. It is both a peer and a master of the baseband service and
controller service modules. As a master it supervises their execution. As a peer, it depends on them for
support and for providing control. The security services module monitors and manages the COMSEC
and TRANSEC security resources of the system. Security services use security configuration
information contained in the SIM to enable or disable various security services. COMSEC security
processing would require a routing of the data path between the source coding and channel coding
functions in the baseband module through a COMSEC processing function, as pictured in Figure 3.2.1-
2.

If the basic wireless communications system is combined with machine intelligence to make a portable
information appliance, it is sometimes called a PDA (Personal Digital Assistant) or HPC (Handheld
PC). It may be desired to combine some of the communications processing requirements with some of
the information processing requirements and execute them on the shared system resources. Figure
3.2.1-7 shows how this can be accommodated in the handheld multiple service model.

C o n t r o l l e rAnt R F B a s e b a n d User I /O

D r i v e r s

C o n t r o l l e r

C
o

n
tr

o
ll

e
r

S
td

 1

S
w

it
c

h
e

r
(b

e
tw

e
e

n
 S

td
s

)

H W

A p p l i c a t i o n S W

S y s t e m S W

A
p

p
le

t
1

N O S /
O S S

N e t w o r k O / S
O p e r a t i o n S u p p o r t
S y s t e m (O S S)

A
p

p
le

t N

R e a l T i m e K e r n e l

B
a

s
e

b
a

n
d

 S
td

 1

SIM

B
a

s
e

b
a

n
d

 S
td

 .
.

B
a

s
e

b
a

n
d

 S
td

N

C
o

n
tr

o
ll

e
r

S
td

 .
.

C
o

n
tr

o
ll

e
r

S
td

N

S
e

c
u

ri
ty

 S
td

Figure 3.2.1-7 Handheld Multiple Service Model With PDA Extension

NOS/OSS (network operating system/operating support system) is a ‘shell’ that executes on top of the
RTK. It has different service requirements than the controllers. For example, it may allow more liberal
interrupt policies, etc. The NOS/OSS must have a SDK (software development kit) that allows users,
carriers and manufacturers as well as software developers to easily develop, field, and support

SDRF Technical Report 2.1 November 1999

3-19

applications. At this time there are two notable models for this element: Netscape/Java and Microsoft
Exchange/“Active X.” There is a high rate of innovation in this area in the industry at this time and there
may be other possible solutions for this element.

Applets provide functionality that can be resident on the handheld device, in the network, at a remote
site or some combination of the above. Applets provide the user with such functionality as computer
applications, computer assisted communications, intelligent agents, etc.

Multimedia handhelds and wearables can be supported by adding a resource manager for the user
interface as shown in Figure 3.2.1-8. This resource manager mediates between the basic
communications functionality and two types of interfaces. The first is an array of physically attached
(‘Local’) interfaces that support both human users and attachment to other machine intelligence. The
second is an array of interfaces distributed around the user’s body and connected to the basic
communications functionality by a Personal Area Network (PAN).

Controller
ControllerAnt RF Baseband User I/O

Drivers

C
o

n
tr

o
lle

r
S

td
 1

C
o

n
tr

o
lle

r
S

td
 ..

C
o

n
tr

o
lle

r
S

td
 N

S
ec

u
ri

ty
 S

td

S
w

it
ch

er
 (

B
et

w
ee

n
 S

td
s)

Local MMI

Personal Area
Network

Real Time Kernel

B
as

eb
an

d
S

td
 ..

B
as

eb
an

d
 S

td
 N

B
as

eb
an

d
 S

td
 1

SIM

User I/O
Resource

Mgr.

Other

MMI
Sensors

NOS/
OSS

A
p

p
le

t
1

A
p

p
le

t N

PAN I/O

 Local I/O

Local Machine I/O

Figure 3.2.1-8 Wearable Multiple Service Model With PDA Extensions

The handheld multiple service model can be considered a combination of logical and physical
architecture representations. Due to continuous innovation, technology evolution and the small
form factor driven by the various applications for handheld units, the number of stable physical interfaces
are very limited. Most of the interfaces are only stable on a logical or API level.

Potential API’s could be
• RTK/Service Switch
• RTK/Security Service
• Service Switch/Baseband
• Service Switch/Controller
• RTK/Driver
• Controller/RTK

SDRF Technical Report 2.1 November 1999

3-20

Potential physical interfaces identified:
• Antenna (passive & active) to RF
• RF to baseband
• User I/O to local machine
• Battery
• SIM

Software Download
A major requirement of a software-defined/adaptable handset or terminal will be the ability to
reprogram the device, via download of new software and/or parameter data to the terminal. This will
permit for example:

• Download of a new user application;
• Download of a new graphical user interface (GUI) to change or improve the ‘look and feel’;
• Download of a protocol stack, physical-layer configuration software, and control software to

implement a different air-interface standard;
• Incremental download of new software and/or parameters to improve performance (for

example, a modified source codec);
• Download of software bug-fixes (both applications and physical-layer/control software)

This feature is a key differentiator of software defined handsets from traditional single-standard
implementations, and offers significant advantages of flexibility to manufacturers, service providers, and
users.

Methods by which software may be downloaded include:
• Installation of new software from a new SIM card;
• From another computer, via for example a PC-card (PCMCIA) link;
• From a networked terminal;
• Software download over-the-air.

Each download method raises issues to be addressed in compiling standardization recommendations.
For example:

• Security of downloaded code;
• Integrity of downloaded code;
• Standard API for establishing a download link to the handheld terminal;
• Billing.

More general standards issues relating to ‘application and configuration’ software download might be:
• Choice of terminal-independent language for ‘programming’ the terminal (e.g., A language such

as JAVA may be used for higher-level applications which are sufficiently abstracted from

SDRF Technical Report 2.1 November 1999

3-21

specific hardware features, but would be less suited to re-configuring the radio link, which may
employ specific proprietary hardware features);

• Ownership and licensing of downloaded software;
• Type approval of both terminals and associated software applications making use of operators’

resources;
• Matching new features and applications to the ‘capabilities’ of the terminal at which they are

targeted. This could lead to classification of handheld terminals and applications, such that an
application may be downloaded and executed only if the underlying terminal capabilities can
guarantee that the application can be supported (e.g., processing power, memory, and
deterministic task execution).

Software-defined reconfigurable terminals can potentially reduce the requirements for de jure
standardization within the terminal, allowing functionality to develop in unison with terminal technology
developments. This can be the case only if the means of programming the terminal and of ensuring its
compliance subsequent to programming, can be precisely defined and managed: this will be a major
work area for SDRF in producing standardization recommendations.

Table 3.2.1-1 provides examples of the decomposition of each of the modules in the handheld
architecture. The breakdown is intended to provide a reasonable, comprehensive list of functions and
subfunctions that are typically associated with each of the modules.

Table 3.2.1-1 Example Functions in Handheld Functional Model Subsystems
Category Function Sub Function Notes

Antenna

Transducer
RF

Frequency conversion
Linearization Predistortion
Amplification/Attenuation
Frequency selection
Frequency de/spreading
Pulse shaping Equalizer, Filter
Diversity processing Rake receiver
Modulator/Demodulator
Energy measurement
Antenna control
Spur management

Baseband
Frequency conversion
Frequency selection
Frequency de/spreading
Pulse shaping Equalizer, Filter
Diversity processing
Modulation/Demodulation
Energy measurement
Antenna control

SDRF Technical Report 2.1 November 1999

3-22

Category Function Sub Function Notes
Spur management
Media Access Coding Walsh Coding
Channel coding

Forward Error Correction
Framing
Multiplexing
Interleaving

Channel estimation
Acquisition
Tracking Freq./Phase/Code, Time
Linearization Predistortion
Source Coding

Speech
Baseband Voice Activity Detection

Data in Voice
Still Image slow & full motion
Video
Data
Audio
Telephony Signaling

Controller
Network Adaptation

Bridging
Routing
Repeating

Network Control
Spectrum Sharing
Management
Registration
Mobility Management
Media Access Control
Link Control
Service Switcher Service Detection, Service

Selection, Cross Service
Handoff

Information Security
User Authentication
Traffic Encryption payload
Network Encryption preamble, …
Transmission Security Transec
Key Management
Node Authentication

User I/O
MMI

Speech Recognition
Handwriting Recognition
Image recognition
Biometric recognition
(Speech, eyeball,
handwriting, keyboard,

SDRF Technical Report 2.1 November 1999

3-23

Category Function Sub Function Notes
pointer)
Image scanning
Speech synthesis
Display management
Audio management

3.2.2 Mobile Models

Information Transfer System

Historically, mobile systems have been called “radios,” and have been used primarily for voice
communication. With increasing need for both voice and data, and with the greatly increased capability
brought about by the use of digital data services the term radio has become overly limited. In this
context, we refer to them as “information transfer systems” to reflect this additional capability.

The essence of mobile information transfer systems is their use of radio frequency circuits to permit
operation from other than a fixed location, independent of a ground-based infrastructure. They may be
capable of being transported from one operational site to another, or they may be capable of operation
while in motion. They do not have permanent connections to land line networks or power grids, but may
take advantage of those support resources when the resources are available.

Mobile information transfer systems are differentiated from fixed systems by their ability to move. They
are differentiated from subscriber handheld units by their scale. They are physically larger and heavier,
and function with more extensive capability, approaching that of permanent sites. Typical requirements
have more extensive network interconnection than handheld units, and may offer more RF channels. For
example, a typical cellular PCS handset supports one standard at a time where a mobile unit will
encompass supporting multiple simultaneous services.

Critical Factors for Mobile Radios

This section describes factors that are especially important for mobile radio systems but which are not
particularly important for hand-held radios. Many of these factors also apply to fixed base station
implementations.

Scalability. Mobile implementations will span a wide array of possible platforms. Maritime
requirements range from one or two circuits per platform to as many as tens of circuits per platform;
cargo ships require one or two simultaneous channels, passenger ships require support of multiple
simultaneous telephone calls, and aircraft carriers or other naval command ships require several tens of
simultaneous circuits or services. Extensibility implies modular software implementations that allow
replication of functionality to support multiple simultaneous instantiations of services; to at least a few
hundred replicas, and perhaps to numbers limited only by word lengths, memory size, or other hardware
factors. It implies hardware modules that can be replicated as needed on a supporting bus structure. It

SDRF Technical Report 2.1 November 1999

3-24

implies chassis design that can be flexible—designed for few modules where few are needed, but
capable of implementation in larger configurations for more demanding applications. It implies an I/O
structure that can be sized to meet platform needs without modifying the basic architecture or
implementation concept.

Upgradeable. It should be possible to upgrade the mobile radio without replacing the entire radio. This
of course includes software upgrades, which are a central feature of “software” radios. For mobile
units, it applies to the hardware as well. This means the potential to replace modules with new, more
capable modules. It may mean in some way expanding the chassis to accommodate additional modules.
Hardware upgrade for the mobile radio is in contrast to highly integrated and compact hand-held units
where hardware upgrades are largely a matter of 100 percent replacement.

Higher-level Control Interface. In larger installations, control of the radio system may not be self-
contained. That is, radios may be considered part of a larger electromagnetic systems suite, with control
of the entire suite residing outside the confines or domain of the “radio” system. In a military shipboard
environment, radio systems must co-exist with radar systems, electronic countermeasures systems,
identification systems, and others. In the US Navy, these systems are under cognizance of a Command
Control Warfare Commander, who has his own set of management tools. The modular software radio
must provide an interface to allow control interaction (control acceptance, status reporting) with some
higher-level control system.

Co-site Operation. The mobile radio system must be able to support multiple services, ranging from a
few to a few hundred simultaneous circuits, very many of which may be physically distinct (as opposed
to virtual) circuits. Naval ship installations often include one hundred or more antennas, with perhaps a
dozen or more individual channels (frequencies) multicoupled onto a single antenna. Radio systems must
operate in proximity to very high power radars, with instrument landing systems and TACAN, with IFF
systems, with navigation receivers, and numerous other electronic systems. Aircraft and land vehicles
may have fewer simultaneous operating electromagnetic requirements but also have much less space for
antennas and other equipment. The modular software radio must be able to operate in, and in fact be
designed to mitigate, difficult co-site interference environments.

Form Factor (Affordability). The form factor selected for the mobile modular software radio must
balance performance and cost. Production volume is a major cost factor. Is it possible to identify a form
factor that is suitable for high-volume, minimum cost commercial applications, while being adaptable to
the more environmentally stressing and lower volume military applications? Can the adaptation also be
accomplished without dramatically increasing costs?

Backfittable. In some cases, particularly for aircraft radios, the space available for a new radio is the
space occupied by the old radio. This constrains the selection of physical module form factors. The
selected implementation for the mobile modular software radio should be implementable within the
constraints of existing overall aircraft radio sizes.

SDRF Technical Report 2.1 November 1999

3-25

Distributed Implementation. Radios for mobile applications will frequently be implemented in a
distributed fashion. User interfaces will be conveniently placed for the user(s). The antenna(s) will be
located on the outside surface of a vehicle. And other parts of the radio will be located to meet other
criteria such as available space, environmental conditions, or transmission line losses. Modules, chassis
design, and other form factor issues will need to accommodate desired distributed implementation
flexibility.

Figure 3.2.2-1 shows a generalized information transfer thread. It shows how an information transfer
system connects an information source to an information sink with a transformation in the center. The
normal functionality is an RF channel on the left side and either a handset or a network connection on
the right side.

T r a n s f o r m a t i o n

T r a n s f o r m a t i o n

A t t a c h e d
N e t w o r k

A i r
I n t e r f a c e

I n f o r m a t i o n
S o u r c e

I n f o r m a t i o n
S i n k

Figure 3.2.2-1 Information Transfer Thread

Anticipated future SDRF mobile systems tend to be differentiated from handheld systems by their
availability to support multiple simultaneous information transfer threads. These simultaneous information
threads may be multiple functional instantiations on a single physical platform or with multiple physical
platforms for each function.

Figure 3.2.2-2 shows the configuration of information transfer threads in a typical mobile information
transfer system.

The left side has one or more air standards, each utilizing resources assigned to that standard. Each
channel has an independent operation and each standard may have more than one instantiation. The
right side has one or more internetworking connections that serve to deliver voice, data, video, or
facsimile to a local or remote information user. The internal processing and transfer function provides the
detailed actions of baseband, RF, and control services. The control services set up connections
between these elements, and operate under direction from the user interface. Bridging and routing is
accomplished by connecting two or more left side or right side elements to each other.

SDRF Technical Report 2.1 November 1999

3-26

Interconnect

&

Security

Air Standard

Air Standard

Air Standard

Air Standard

Internetworking m

Internetworking C

Internetworking B

Internetworking A

In
te

rn
e

tw
o

rk
in

g
 C

o
n

n
e

ct
io

n
s

A
ir

 I
nt

er
fa

ce
s

. . .

. . .

Control
User

Interface

Note: Each Air Standard may be multiple instances

Figure 3.2.2-2 Mobile Information Transfer System Logical Structure

Mobile systems typically require modular, multimode, and simultaneous operation. As shown in Figure
3.2.2-3, this implies multiple instantiations of each function within the context of a multiple input, multiple
output system. These multiple functions may occur as physical replications of the function or simply as
multiple software instantiations operating on a single processing platform. The information flow among
the functional modules is under the control of the distributed control environment.

The modular nature of a mobile SDRF radio allows individual functions to be accomplished internal or
external to the SDRF structure. For example, routing and COMSEC functions can be performed
external to the SDRF without loss of generality. In other cases functions may be replicated, such as
information security which may be included as part of the message process flow between routing and a
user interface. The intention of the SDR Forum standards recommendations is that all modules have
defined interfaces and control processes so that “plug and play” of the employed modules operates
effectively.

Figure 3.2.2-4 relates the US Navy’s Joint Maritime Communications Strategy (JMCOMS)
architecture to the SDRF high-level functional model as an example of a mobile information transfer
system structure with external functional access.

SDRF Technical Report 2.1 November 1999

3-27

AIR

I/O

C

RF

C C C C

I I II

CONTROL

MSG
PROCESS

& I/O

C

Routing

Common
System

Equipment

Clock/Strobe
Ref, Power

Multimedia

Voice

Data

Flow

Control
Network

Ext. Ref
Remote Control/

Display
User Control

(MMI)

Aux: Special Purpose
I/O forAntenna Diversity,
Co-site Mitigation, etc.

I: Information
BB: Baseband
C: Control/Status

I/O

C

OPTIONAL
 LINK

PROCESSOR

I/O

C

INFOSEC

I/O

C

MODEM

I/O

C

ANTENNA

C

I

Figure 3.2.2-3 Multiple Instantiations of Each Function of Modular, Multimode Operation

RF
I/O

COMSECMODEM
SIGNALING PROTOCOL

CODINGLINK
PROC

(Black)

CONTROL

Local Control + Control I/O

MM
Mgmt

ROUTINGBRIDGING

Advanced
Digital
Network
System

COMMS
Management

Control

Slice Communications System

A
n

te
n

n
a

S
ys

te
m

s

R
ec

ei
ve

A
n

t C
o

u
p

le
r

P
o

w
er

 A
m

p
/

A
n

t C
o

u
p

le
r

R
F

 D
is

tr
ib

u
io

n

R
ec

ei
ve

/r
an

sm
it

 f
u

n
ct

io
n

M
o

d
em

 F
u

n
ct

io
n

s

C
ry

p
to

 fu
n

ct
io

n
s

I/O
 I

n
te

rf
ac

e/
B

u
tl

er

Figure 3.2.2-4 SDRF Functional Model Mapped into a Joint Maritime Communication
Strategy (JMCOMS) Application

SDRF Technical Report 2.1 November 1999

3-28

3.2.3 Base Station / Satellite Models

3.2.3.1 Candidate high level Use Cases

3.2.3.1.1 Base Station application

3.2.3.1.1.1 Base Station arbitration. The Base Station System and user or network control
processor conduct arbitration to determine the capabilities available to each prior to the initiation of a
change in service or level of functionality.
Some examples of the subjects to be arbitrated include:
• supported air interface standard, the supported minimum and maximum data rates
• capability to transition between service types (voice/data)
• capability to download or upload different service options
• capability to perform interference cancellation
• capability to perform modulation type changes
• level of hardware and software complexity among other thing

3.2.3.1.1.2 Time sensitive services. The Base Station co-ordinates the offering of time sensitive
services that are offered to the mobile only during a specified time window.
Some examples of time sensitive services include: the offering of certain capabilities for trial use for
reduced or no fee during a special promotional period, or the offering of these same services during the
specified user session.

3.2.3.2 Smart Antenna and Base station

3.2.3.2.1 Base Station service change voice/data. The Base Station converts from one type of
communication service to another, this function is valid for all air interface standards.
Some examples of the service change include; conversion from IS-136 voice service to IS-136 low rate
data service, conversion from high rate data services (video) back to voice service only among other
things.

3.2.3.2.2 Quality of service management. The Base Station co-ordinates the reconfiguration of the
receive function, the transmit function, or both receive and transmit functions, to maintain service at
current data rates under adverse conditions without service deterioration.
Some examples of the reconfiguration include:
• upgrade from non-adaptive to adaptive signal processing to enable continued quality of service (e.g.

BER) in the presence of co-channel interference
• upgrade in the modulation scheme chosen to enable higher transmission data rates in the same

channel bandwidth among other things.

SDRF Technical Report 2.1 November 1999

3-29

3.2.3.2.3 The Base Station co-ordinates service offerings to mobiles. The base station would
offer a service, or combination of services, to the mobile, which the mobile would accept or reject
based on the mobile’s capability to accept the service and the mobile’s desire for the service.
An example of the co-ordination shows the base station offering video based services at a certain cost
per megabit to a mobile that is capable of receiving video data, perhaps in a stationary mode, but
accepting that the mobile refuses the service based on the cost offered.

3.2.3.2.4 The Base Station co-ordinates a system upgrade. The base station is upgraded to a new
level of performance on the supported standards.
Some examples of a new level of performance on the supported standards include:
• download of new software to repair deficiencies
• installation of a new vocoder
• installation of adaptive signal processing to include Multiple Access Interference cancellation, the

addition of antenna elements among other things.

3.2.3.2.5 The Base Station co-ordinates a service change. The modification of base station
software and/or hardware to support operation for a new service standard not previously available.
An example of this co-ordination includes the addition of GSM service support to a base station that
could previously support only IS-136.

3.2.3.2.6 Base Station reconfiguration. The Base Station co-ordinates the adaptability and
reconfigure-ability of the base station to modify any aspect of the system (including both an upgrade
and/or downgrade of system performance).
Some examples of this co-ordination include: a change in system bandwidth, a change in space-time
processing, a change in software programmability, a deletion of or addition to system hardware
configuration, and the addition of more processing elements in either S/W or H/W, among others.

3.2.3.2.7 Base Station repartition. The Base Station co-ordinates the repartitioning of system H/W
to support either different standards or new functionality.
An example of this repartitioning might be the reconfiguration of certain processing nodes
(microprocessors or gate arrays etc.) or hardware components to support alternate programming or
hardware functionality.

SDRF Technical Report 2.1 November 1999

3-30

3.2.4 Switcher Downloader

Modular, multimode terminals can be fielded in a totally terminal-centric fashion in which the network
has no knowledge of the fact that the terminal can change from one configuration to another. The
terminal can initiate a session with network type A. When it comes to the border of that network
technology, the handset can take down the session with network A and initiate a session with network
B. It is also possible to have some intelligence outside the terminal to help coordinate this process. But
to achieve the full functional advantages inherent in SDRF mechanisms, facilities are needed for
cooperation and hand-off between terminals and networks using different modes and different bands.
These mechanisms should support terminal directed hand-offs, network directed hand-offs, and
combinations of the two.

Other standards bodies are responsible for maintaining the standards that govern each specific service
(single mode/band). It is SDRF’s intention to work with these other bodies to develop an umbrella
model and recommendations for message types and protocol extensions. Then these other bodies can
use, each in their own domain, the model and recommendations to develop terminals and networks that
cooperate across modes and bands. This section will present some examples of the requirements from
several perspectives and an approach to meeting them.

Commercial cellular/ PCS users need hand-offs between service types and service providers. This
requirement is derived from a combination of economic factors, limited spectral resources, legacy
systems, geopolitical forces, etc. Examples include CDMA/TDMA/AMPS hand-offs as well as
cordless, wireless LANs, CSMA, etc.

Military users require interoperability among systems. Both within a sovereign service branch and within
multinational, multiservice branch operations, peacekeeping policy, and direct assistance type
operations, there is a requirement for secure use of commercial infrastructures. Interworking and
translation are required, especially for legacy systems. Defense users typically are confronted with many
different radio systems.

Civilian/aviation needs simultaneous operation across several modes/bands. For example,
interoperability requirements among different branches/standards include the provision of different
aviation services for an analog voice, MSK, TDMA, CSMA, etc. Today, hand-offs are often done by
voice command.

Emergency service coordination requires the support of many standards with significant
interworking/translation requirements.

An example of one approach to addressing these requirements to support handoffs between CDMA
cellular/PCS and TDMA cellular/PCS in a US standards environment is using AMPS as a bridge. In US
cellular standards environments, CDMA and TDMA handsets are required to also support AMPS

SDRF Technical Report 2.1 November 1999

3-31

mode. Figure 3.2.3-1 shows how AMPS can be used to carry signaling information between the mobile
unit and the infrastructure.

Another approach is to provide extensions to the message formats in both environments that allow the
mobile unit and the infrastructure to negotiate the desired service type to use for the session or session
continuation. Figures 3.2.3-1 and 3.2.3-2 illustrate this approach.

For a fully capable SDRF implementation, there should also be message formats to trigger and deliver
from the infrastructure, if necessary, software modules to allow the mobile unit to configure itself to
support the negotiated service.

Similar scenarios can be constructed for GSM/DECT, PDC/PHS, terrestrial cellular/LEOs, etc.
Furthermore, third generation standards that are emerging are pointing to multiple, non-compatible
services with similar handoff requirements. There is also consideration of support for legacy services
within third generation systems, which also would encompass similar handoff requirements.

In general, consideration for extensions to each of the other services standards need to take into
account the following protocol groups, as applicable:

• Handoff protocol extensions,
• Signaling protocol extensions,
• Key distribution protocol extensions,
• Channel selection protocol extensions,
• Routing protocol extensions,
• Configuration protocol extensions,
• Timing protocol extensions,
• Billing protocol extensions, and
• Administration protocol extensions

This list will necessarily be expanded as each service type is analyzed in light of the SDRF open
architecture.

SDRF Technical Report 2.1 November 1999

3-32

CDMA
System

TDMA
System

Signaling Strategy:
 CDMA DS/MSC notify TDMA MSC of hand-off
 CDMA and TDMA MSCs notify HLR
 CDMA BS notifies MS of change in mode after hand-off
Alternately: MS switches to AMPS after crossing, then negotiate for TDMA

MSC: Mobile Switching Center HLR: Home Location Register
BS: Base Station AMPS: Advanced Mobile Phone System

Figure 3.2.3-1 Signaling Strategy

MS CDMA BS TDMA MSC TDMA BS HLRCDMA MSC

Channel Measurement Channel Measurement

IAM

Channel Alloc Req

Assignment

Channel Alloc Rsp .
Handoff-to-TDMA Order

MS ACK

Mobile On Channel

Mobile On Channel

Mobile On Channel

Clear

Update

Update

Almost identical to inter-MSC TDMA to TDMA handoff
Hand-off will be “hard” hand-off
Requires new signals
May have interference problems at boundary

SDRF Technical Report 2.1 November 1999

3-33

Figure 3.2.3-2 Cross Standards Handoff

3.2.5 Smart Antenna Definitions

A sub-System which includes the antenna (and possibly other classes) that uses the spatial domain in
combination with decision based signal processing to improve link performance and enable other value
added services. It consists of both the software and the hardware objects associated with the additional
processing capability.*

*Smart Antenna processing can be thought of as a basic capability that can be broadly applied to any
time division, frequency division, or code division multiple access air interface standard in a similar, but
not necessarily identical, way.

The Working Group will consider several classes of antennas, which may include adaptive processing.
Figure 3.2.5-1 shows Type Ia, the simplest of these classes. The Type Ia antenna consists of a single
antenna with a single feed, which may be diplexed for transmission and reception. This type of antenna
may be rotateable, and may include yagi, log periodic, loop, or other designs. The Type Ia antenna
interfaces with the RF and control functions.

The Type Ib antenna system (Figure 3.2.5-2) also interfaces with the RF and control functions. The
Type Ib extends the Type Ia class by adding multiple antenna elements, which may include RF
combining within the antenna.

The Type II antenna system (Figure 3.2.5-3) extends the Type I antenna system by means of
processing within the RF function, which may include RF or IF combining.

The Type III antenna system (Figure 3.2.5-4) further extends the Type II antenna system by means of
processing within the baseband processing (modem) function, which may include baseband combining.

SDRF Technical Report 2.1 November 1999

3-34

Type Ia Antenna System

ANT ANTRF
Type I

S

C

•Single antenna
–May be LPA, yagi
•May have rotator, antenna tuner, diplexer
•Single feed

CONTROL

Figure 3.2.5-1. Type Ia Antenna.

Type Ib Antenna System

• Multiple element antenna
• May have rotators, antenna tuner, diplexer
• May have RF combiner (e.g. Butler matrix)
• May have single or multiple feeds

ANT ANTRF
Type I

S

C

CONTROL

Figure 3.2.5-2. Type Ib Antenna

SDRF Technical Report 2.1 November 1999

3-35

Type II Antenna System

•Type I antenna system plus:
•One or more RF
•RF may have RF combiner (e.g. beamformer)

ANT ANTRF ANTBaseband

Type I

Type II
S

C

CONTROL

Figure 3.2.5-3. Type II Antenna.

Type III Antenna System

ANT ANTRF ANTBaseband

Type I

Type II

Type III

• Type II antenna system plus:
• One or more baseband processors (e.g. modems)
• May have baseband combiner (e.g. beamformer)

CONTROL

Figure 3.2.5-4. Type III Antenna.

SDRF Technical Report 2.1 November 1999

3-36

3.3 SDRF-Compliant Interface Use

3.3.1 Summary

Users, operators, and vendors want to improve the flexibility and capability of their wireless
communications systems. Software programmable radio system technology offers the potential of
substantially improved operational capability at a lower cost then a collection of point solutions.

Development of technical standards by the SDR Forum opens the way for open standards that
encourage development of new functionality for existing equipment, aid in introduction of new
applications, and facilitate introduction of new technology as it emerges. Substantial life cycle cost
reduction is made possible by the combined impact of lower non-recurring expense (NRE) and
economies of scale due to common hardware.

To provide new functionality to the field is accomplished by one of the following means:

• Design a whole new system
• Modify an existing system in the laboratory
• Provide field-installable new modules

The SDR Forum technical work enhances each of these approaches. A product life cycle time domain
is presented to assist in understanding how the SDRF work fits into the application environment.

3.3.2 Why Do Users Need The SDRF Solution?

The users of wireless communication environment need communications capability to support execution
of their responsibilities and attainment of their objectives. The users we refer to span a wide range of
endeavors, including individuals in business, the military, public safety, civil government, and consumers.
Their communication equipment may be cellular telephones, radios installed in vehicles, ships, or aircraft,
or equipment for portable or fixed site operations.

Users want to add new features to existing equipment, implement new applications, roam or use the
same hardware in different areas or with different systems, or take advantage of new technology. Often
they want to expand the existing capability, but hesitate to invest further in equipment implemented with
old technology.

The SDRF technical work is striving to provide solutions to these problems by defining open
architectures that can be used to provide a common structure across many product implementations, to
provide new capability by incremental upgrades of fielded equipment, and to reduce both product cost
and NRE.

SDRF Technical Report 2.1 November 1999

3-37

3.3.3 How to add functionality to an existing system

The following options are available to users that need to improve their existing capability.

3.3.3.1 Design a whole new system

This is the historical way of approaching the problem. Combining the experience from previous systems
with the currently available technology, a completely new system was devised. In many cases,
particularly military radios, the new products did not interface with the currently fielded equipment. The
current hodgepodge of point solutions restricts operational flexibility and incurs excessive life cycle cost
for maintenance. In the cellular market the result is that a single phone cannot operate with all of the
fielded cellular and PCS systems.

Although it involves substantial NRE, designing a whole new system does optimize performance and use
of technology. It can minimize unit production cost, and if production volume is high, result in low life-
cycle cost.

A contribution is made by the SDRF technical work if the new system design is SDRF compliant. That
is because the software granularity of the SDRF approach permits substantial reuse of software modules
in future reworks of the newly designed system. Further, if the architecture is so structured, the new
system will be able to incorporate field upgrades through download of new software. Provision may be
made for hardware modules such as PCMCIA cards to introduce new hardware or software
functionality.

3.3.3.2 Modify an existing system in the laboratory

When we bring an existing system back into the development environment we open up a number of
possibilities for improvement. The system architecture is laid out on the table, and the development
team can revisit most of the design tradeoff that were originally made. The approach can range from
almost designing a new system to making minor adjustments to incorporate some new software or
hardware module.

In the development environment all of the product documentation should be available, and much of the
expertise that designed the system in the first place. Existing components can be revised or rebuilt.
Software wrappers can be built to interface legacy modules with new ones. Performance enhancements
can be developed. Development, test, and debug facilities are available. So much flexibility is available
that restraint is often needed to avoid changing more than is absolutely needed.

Of course all of this capability comes at a cost in engineering resources. It should be far less costly than
building a whole new system, but more expensive than a capability that can be loaded in the field.

If the project has a requirement to become SDRF compliant during the project then future
enhancements will be much easier. Many future enhancements can be inserted in the field. Those that
cannot will necessitate another development project, but the SDR imposed granularity and compatibility
will work to reduce the amount of work required.

SDRF Technical Report 2.1 November 1999

3-38

3.3.3.3 Provide field-installable new modules

The most efficient way to provide new capability to an existing system is to do a software download
over-the-air (OTA). Close behind an OTA download is a software insertion from a smart card or a PC
connection. A description of these capabilities is an important part of the SDRF technical work.

In order for these capabilities to be realized, the original system architecture must have made provision
for it. The appropriate APIs must be available for integration of the new modules. And the hardware
must be capable of supporting the new capability. Distribution channels must support delivery of the
new modules to existing system.

Given that these provisions have been made, field-installable upgrades have substantial potential for
flexibility and cost reduction. It can, in fact, provide true “plug and play” capability.

3.3.4 The Compatibility Domain

Architect Design Implement Install Instantiate Run

Monolithic

Modular

Federated

Independent

Software
Modularity

Lifecycle Phase when Software is Fully Integrated

Development Environment Use Environment

Multiple
Address
Spaces

Single
Address
Space

Figure 3.3.4-1 The Compatibility Domain

Figure 3.3.4-1, The Compatibility Domain has two axes. One is Software Modularity, the degree of
independence of the modules in the system. Software Modularity is the degree of independence of the
software modules in the system.

Monolithic code is typical of legacy systems where a need for efficiency was deemed
paramount. It uses branches and local function calls, and is difficult to reuse.

SDRF Technical Report 2.1 November 1999

3-39

Modular systems have source code arranged in files that can be compiled separately. Within
those files the modules refer to each other by function calls, and provide a degree of information
hiding. As installed in the system it is typically one large load with function references resolved.

Federated software consists of sets of software that function in separate processing units, but
that were intended to work together. They have some coordination and communication
mechanism.

Independent software units are developed independently. Any commonality is derived from
the architectural level, with facilities to permit them to go through a communication process to
exchange capabilities and interact.

The other axis is a representation of most of the product’s life cycle. It represents the time in the life of
the product when the software for an application is fully in place, loaded, and ready to run. A major
break point exists at the point when the product is released from development, put into production, and
replicated many times in the use environment.

Architect Design Implement Install Instantiate Run

Monolithic

Modular

Federated

Independent

Software
Modularity

Lifecycle Phase when Software is Fully Integrated

Development Environment Use Environment

Multiple
Address
Spaces

Single
Address
Space

Traditional Cellular

Legacy Mobile

Figure 3.3.4-2 Past Systems

As shown in Figure 3.3.4-2, Past Systems, legacy equipment has often been implemented with a low
degree of granularity, and with little provision for adding capability in the field. The analog cellular
handset is a good example of such a closed system. When more capability (or just a smaller unit) is
desired it is completely replaced. Legacy mobile products have been more modular, but making
changes has required redesign. Changes to individual units are occasionally possible with maintenance
at depot or factory level.

SDRF Technical Report 2.1 November 1999

3-40

Architect Design Implement Install Instantiate Run

Monolithic

Modular

Federated

Independent

Software
Modularity

Lifecycle Phase when Software is Fully Integrated

Development Environment Use Environment

Multiple
Address
Spaces

Single
Address
Space

Traditional Cellular

Legacy Mobile

SDRF
Model

APIs

Formal
Interface
Definition

Mess-
ages

Download

Wrappers
and
Adapters

Figure 3.3.4-3 The SDRF Contribution

Figure 3.3.4-3 indicates where the SDRF technical work fits. The SDRF Model is at the architectural
level to describe interfaces between major subsystems in the unit. The SDRF APIs are used at design
time to establish the details of communication between system components. Then, if needed, wrappers
and adapters can be developed to provide interface with legacy systems.

With these facilities in place, the opportunity for future enhancements by the use of the SDRF download
capability is available.

SDRF Technical Report 2.1 November 1999

3-41

Architect Design Implement Install Instantiate Run

Monolithic

Modular

Federated

Independent

Software
Modularity

Lifecycle Phase when Software is Fully Integrated

Development Environment Use Environment

Multiple
Address
Spaces

Single
Address
Space

Traditional Cellular

Legacy Mobile

SDRF
Model

APIs

Formal
Interface
Definition

Mess-
ages Download

Wrappers
and
Adapters

Future Mobile

Future Cellular

Figure 3.3.4-4 Future Systems

As shown Figure 3.3.4-4 future mobile and cellular systems will provide greatly increased capability for
new functionality and flexibility through SDRF compliant download in the field. This approach is the
most likely to provide us with universal roaming capability.

3.3.5 Benefits

Software programmability provides a capability to change the functionality of a radio system by
activating alternative software applications archived in the equipment. When it is necessary to add new
software to that already installed in the system, it can be done in either the development or use
environment.

Bringing the system back into a shop or laboratory environment provides many options for modifying or
even redesigning the equipment. It is, however, costly.

Software download in the field provides flexibility and convenience, but it is possible only if the original
design has provided that capability. Such facilities will become increasingly common in the future.

The SDRF open system definition will assist in changing system functionality under either scenario. By
opening up the architecture, application developers in a wide range of fields will be able to take
advantage of the advantages of software programmable radio systems.

SDRF Technical Report 2.1 November 1999

4-1

4.0 Application Program Interface (API) Design Guidelines

4.1 Structure for Development

This section is concerned with the development of APIs to define SDRF standard devices. Section
4.1.1 is a design guide that defines and explains the process that is used to create the APIs that form the
core of the standards definition. Section 4.2.2 defines a set of generic control messages that can be used
as a template to create specific functions by adding functional specific information. It is envisaged that
this template and the functional APIs will create a catalog of functions that SDRF architectures can
utilize.

4.1.1 Background

Earlier parts of this document provide high-level descriptions of the SDRF architecture, provides for
alternative views of that architecture, and recognizes that the information known about the system may
vary over time or that differing perspectives may be needed. The term architecture is defined as the
organizational structure of a system, identifying its components, their interfaces, and a concept of
execution among them.

• Components are the named “pieces” of design and/or actual entities of the system and are
composed of one or more modules of software (SW), firmware (FW), and/or hardware (HW).

• Interfaces are the relationships among component modules in which the modules share, provide, or
exchange data.

• Concept of execution represents the dynamic relationships of the modules. It can include such
descriptions as flow of execution control, information flow, dynamically controlled sequencing, state
transition diagrams, timing diagrams, priorities among units, handling of interrupts, etc.

This section provides a generic framework for the definition of such APIs. The objective is to provide a
common set of rules, guidelines, and definitions, which will form the basis for defining software
interfaces. The term Application Program Interface (API) is used in this section to mean the interface
definition. It provides levels of abstraction to capture and refine the interface design information from
general concepts to implementation-specific details.

4.1.1.1 Specifying the system

One of the classic problems faced with any complex project or design is the failure to scope out and
understand the complete amount of work that is involved. Too often, there is a gross underestimation of
the amount of effort involved − especially in the area of software- and the time taken to specify and
integrate the system together. Similar problems can also be encountered when extending or enhancing
existing systems

SDRF Technical Report 2.1 November 1999

4-2

The difficulty facing the industry today is that there is a change-over occurring within radio design that is
blurring the system in terms of whether software or hardware is used for the implementation. Although
the term API is used to describe these interfaces, it has come from a purely software background and
on first inspection is not applicable to other interfaces such as hardware busses and form factors. The
problem is that technology that is implemented using programmable devices and software today may be
implemented tomorrow in hardware. To allow the successful replacement of modules by different
solutions i.e., replacing a software based module by a hardware version, the interfaces which define the
boundary of the module must be designed in such a way so that the interface does not imply or exclude
a potential implementation. If it does, then its appeal and thus its ability to attract products that conform
and thus be reused will be limited.

This means that the development of APIs actually is the development of interfaces, which may or may
not be software or hardware only. The term API within this discussion should be interpreted as simply
an interface document and therefore can be applied to any part of a system such as a bus, form factor,
and so on. It is not simply restricted to software.

The chocolate chip cookie approach1 to system specification must be avoided. A good way to do this
in the initial stages is to create an interface layer diagram that defines the components and how they
interface together. It should be remembered that this type of diagram is not a replacement for other
modeling techniques such as data flow diagrams or structured analysis but does provide an excellent
starting point on which to build. This type of diagram identifies not only the components but the interface
mechanisms and definitions that are often overlooked. The model uses only two fundamental terms to
explain all the various layers of software and their interfaces.

4.1.1.2 Application Program Interface (API):

As defined earlier, an API is the interface definition, which is a description of the relationships among
related software and/or hardware modules, such as the bi-directional flow of data and control
information. It is not a lump of code or a program or an application. An API describes the relationships
of modules, not the implementation of those relationships. In many ways, this causes a slight problem
because an API is an abstraction and not a physical entity.

4.1.1.3 Software and Hardware Modules:

In general a module is the actual implementation that uses the interfaces to receive information, process
it and output it. As far as the interfaces go, they should be independent of the implementation, i.e., the
module that is sandwiched between them.

1 This is where individual modules -- the chocolate chips -- are identified and are assumed to make up the complete system without taking into account the amount of integration and other
system components -- the cookie mixture-- that is needed to complete the system.

SDRF Technical Report 2.1 November 1999

4-3

A software module is the piece of code that does the work. It uses the interface(s) to communicate with
other modules and performs the tasks, the conversions, and so on. Applications, operating systems,
device drivers are all software modules.

A hardware module is a piece of hardware that also uses the interfaces to communicate and process
information. It should be interchangeable with a software module that uses the same interfaces.

These definitions lead to the essential golden rule: as modules and interfaces are layered together to
create the overall system structure, they must alternate. Two adjacent module or interface layers are not
allowed.

To use a car analogy, the driver and the car are both software modules and they can only work if there
is a software interface layered between them. With a car, the interface is the knowledge that the middle
pedal is the brake for cars with manual gear boxes, and moving the steering wheel to the right will make
the car go to the right. The knowledge or interface does not turn the wheel or move the wheels, that is
done by the driver and the car.

It is important that the interfaces are understood and adhered to. If they are not, then the system will not
work correctly and it will be difficult to change individual components. Returning to the car analogy,
imagine the chaos if the brake and gas pedals were swapped around!

4.1.1.4 Visual Representation

A good way of seeing the interaction between modules and interfaces is through layer diagrams where
the various layers are depicted as either interfaces or modules. To be consistent throughout this
document, the following symbols are allocated to both interfaces and modules. The first diagram shows
the use of the design symbols for module and interface.

Software module

Software
interface

Software module

Figure 4.1.1-1 The Correct use of the Symbols for Software Interface and Module in a Layer
Diagram

SDRF Technical Report 2.1 November 1999

4-4

Software
interface

Software module

Software
interface

Software
module

Software module

Software
interface

Figure 4.1.1-2 Wrong Use of the Software Interface and Module Symbols in a Layer Diagram

Figure 4.1.1-2 shows two incorrect uses of design symbols where two modules and two interfaces are
improperly layered.

4.1.2 What interfaces are required?

It is virtually impossible to define a set of APIs that cover all aspects without causing confusion or
precluding new ideas. In practice, a complete set of interfaces needs to define several tiers to provide
different levels of compatibility:

4.1.2.1 Tier 0 Architectural

The tier 0 set of interfaces is the highest abstraction level of the API structure and defines the radio
architecture that is to be used. This is the starting point for API definitions.

Section 3 of the SDRF Tech Report presents the SDRF function interface diagram and demonstrates
how the SDRF Architecture extends to the definition of functional interfaces. This interface diagram is
shown here in Figure 4.1.2-1. The interfaces for a module are separated into an information interface
and a control interface. These interfaces are bi-directional in nature. A representative information flow
format is provided at the top of the diagram. Actual representations will be implementation dependent
and specify the control or information that flows in and out of the modules on both sides of the
interface. An information transfer is effected throughout the functional flow within the SDRF architecture
to/from antenna-RF, RF-modem, modem-INFOSEC, and INFOSEC-Message Processing interfaces.

SDRF Technical Report 2.1 November 1999

4-5

RF

BB / IF
Real/

Complex
Digital/
Analog

RF
Bits

CypherText
Flow Contol

Bits
PlainText
Flow ContolAux Aux Aux

Key
Fill

Representative
Information
Flow
Formats

AIR

I/O

C

RF

C C C C

I I II

CONTROL

MSG
PROCESS

& I/O

C

Routing

Common
System

Equipment

Clock/Strobe
Ref, Power

Multimedia

Voice

Data

Flow

Control
Network

Ext. Ref
Remote Control/

Display
User Control

(MMI)

Aux: Special Purpose
I/O forAntenna Diversity,
Co-site Mitigation, etc.

I: Information
BB: Baseband
C: Control/Status

SEC I/O

C

Optional
 Link

PROC

I/O

C

INFOSEC

I/O

C

MODEM

I/O

C

ANTENNA

C

I

Bits
CypherText
Flow ContolAux

Figure 4.1.2-1 SDRF Functional Interface Diagram

Separate interfaces for information [I] and control/status [C] are shown in the diagram. For example,
the RF-Antenna interface contains information as well as control/status whereas the Air-Antenna
interface contains information only. The key terms used for the interaction diagram are:

• I: Information Flow Interface, i.e., information to be transferred over the communication link and
information embedded in the signal-in-space waveform (e.g., training symbols, spread spectrum
symbols).

• C: Control/Status Interface, i.e., information transferred for the purpose of controlling other
functional blocks or for generic radio control functions.

• Aux: External interface to a similar block (e.g., antenna-to-antenna interface for co-site
mitigation) on the same or other radio channel.

Using Tier 0 as the base, additional tiers, or layers, are added to refine the architecture to represent
a specific implementation. These are shown in Figures 4.1.2-2 and 4.1.2-33 and described below in
Tiers 1-3.

Each module that is defined in Tier 0 can be expanded to create a Tier 1 model for both control and
information flows. This process is expected to be iterative with functions in the Tier 1 model also being
expanded until sufficient detail has been identified. These subsequent iterations are also Tier 1 models
but with more detail. Figure 4.1.2-2 shows this principle by taking the modem component from the
SDRF architecture (Figure 4.1.2-1), the Tier 0 model, and showing how it can be expanded to create
the Tier 1 information and control functions. As Tier 0 effectively defines the boundary for the model, all
Tier 1 APIs and modules should be related back to the Tier 0 model. In addition to the Tier 1 models,
there are additional Tier 2 and 3 models that provide additional information about the transportation of
the messages and the physical attributes of the system (Figure 4.1.2-3)

SDRF Technical Report 2.1 November 1999

4-6

Channel I/F

Channel
Module

Equal I/F

Equal-
isation

FEC

RF I/F

Modem I/F

RF I/F

Modem I/F

Modem
Module

Channel I/F

Channel
Module

Equal I/F

Equal-
isation

FEC

RF I/F

Modem I/F

Tier 0 Tier 1
Information Control

Figure 4.1.2-2 SDRF Expanding a Tier 0 Module to Create the Tier 1 Functions for
Information and Control

SDRF Technical Report 2.1 November 1999

4-7

RF

Modem

Data

RF

Modem

Data

RF

Modem

Data

Function A

Function B

Memory

Analogue

VMEbus

Co-AX

Tier 1
Functional

Tier 2
Transport

Tier 3
Physical

Increased interoperability and modularity

Increased flexibility and portability

Figure 4.1.2.-3 SDRF Architecture and Interface Refinement Using Tiers

4.1.2.2 Tier 1 Functional

These interfaces describe the various functions that the system has to perform. They describe the
boundaries of the various modules that need to be present within the system. They describe the
messaging and interpretation. They do not specify how the message is transported. It is at this stage that
the separation of the control flow from the information flow is explicitly defined. In most functional
specifications, the information flow is treated separately from control. This will be explained in more
detail later.

SDRF Technical Report 2.1 November 1999

4-8

4.1.2.3 Tier 2 Transport and Communication

At this level, the transportation and communication is specified. This tier defines the methods and
procedures used by the modules to exchange information. Here, the information content is of no interest
because the real focus is in how the messages specified in the functional specifications are transferred.

With some implementations of APIs, the transportation is usually through function calls using common or
shared memory e.g., C function calls. This usually assumes that there is a single processor. The same
messages could be transferred across a LAN to another processor or via a serial link and so on. In this
way, the implementation can use either single or multiple processors as required. It should not be
assumed that this approach is restricted to a single processor.

4.1.2.4 Tier 3 Physical Factors

At this level, other factors can be defined such as the physical form factor, plug connectors, and so on.
These are not necessarily important for commercial systems where silicon integration may radically
change the form factors. However, for military or commercial public or aviation mobile systems that
require standard plug in modules, this is essential.

Please note that when the term commercial system is used in this document, it refers only to consumer
and other products such as mobile phones and not to aviation and public service radio systems. These
latter systems have more similarities with military systems and therefore the term military should be
interpreted as including these systems, unless otherwise specified.

4.1.2.5 What do the Individual Tiers Offer?

Essentially they all offer different levels of component reuse. The term component should be interpreted
to include hardware, software, or hybrid implementations. By adhering to Tier 1 functional interfaces,
components can only be reused if the transportation (Tier 2) and physical form factors (Tier 3) are
addressed and re-engineered, as necessary. An example of this would be a software-based channel
modem. The functionality would mean that the code would not need to be redesigned but the
transportation may require some rework. It may use a memory-to-memory interface in the original
design but with the new implementation, this interface is replaced by a serial connection. The level of
reuse is still high, but some additional work is needed. For commercial systems such as mobile phones
and other consumer products where implementations and form factors change rapidly, this is probably
the best that could be hoped for.

With a Tier 1 and Tier 2 compatible module, the functionality and transportation are defined and
therefore the only variable is a form factor. Again, for commercial systems, this is not a problem
because of the rapid change in search for the smallest/lightest terminal. However, for military mobile
systems, the fact that a module is functionally compatible and uses memory-to-memory transportation is
not enough if it is based on a PCI card while the rest of the system is based on a VMEbus. This is
where the third tier comes into play.

SDRF Technical Report 2.1 November 1999

4-9

With all three tiers specified, we have true modularity and interoperability where modules can be
physically removed and replaced by others that meet all three sets of interfaces without causing any
additional re-work with the rest of the system.

It is important to realize that no one tier on its own can address all the software radio market. Different
market segments will require different levels but all these levels can fit within a generic API architecture.

4.1.3 What Makes a Good Interface?

Before answering this question, it is important to reinforce the definition of an API or interface.
Previously we have defined three tiers of interfaces and these have the following generic requirements:

4.1.3.1 A Functional Level Interface or API

• Describes the message and its contents.

• It does not describe how the message is transported.

• It is only a document!

• It must be unambiguous and have only one interpretation.

4.1.3.2 A Transport Level Interface

• Describes how messages are passed and does not describe the content.

ment!

• Again, it must be unambiguous and have only one interpretation.

4.1.3.3 A Physical Level Interface

• Describes how physical components fit together e.g., form factor, connectors, power supplies,
and so on.

• Again it is only a document!

• Again, it must be unambiguous and have only one interpretation.

4.1.3.4 What Must an Interface or API Not Do?

The starting point in answering the question is to define what an interface should not do.

• It should NOT combine information and control flows.

They often need different interfaces and requirements, and combining them can cause conflict
and compromise. For example, a RF module may provide a digital control interface but require
analogue transmit and receive signals. It is clear in this case that these interfaces should be kept
separate. However, if the analogue interface is replaced by a digital one, then the boundary is less clear.
The case for keeping them separate is clear: although both interfaces are digital, the control interface is
less time critical than for the RX/TX information one and therefore does not need the high-bandwidth
interface that the RX/TX information does. Control data is frequently asynchronous in nature and
imposing this on the RX/TX information bus can cause the RX/TX information to also become slightly
asynchronous. This can be overcome by buffering but this then introduces delay. Then there is the

SDRF Technical Report 2.1 November 1999

4-10

question of how to route the two signals down the same bus. The end result is a compromised design,
which can be avoided by keeping things simple and separate.

In addition to these practical reasons, the explicit separation of control and information flow is normally
required for a proper security design.

• It should NOT have two or more APIs or interfaces controlling a single resource without
resource management.

This is often a major challenge for any programmable device where a resource such as processing,
memory, or an I/O device can be controlled or shared between two independent controls. While not
necessarily a problem, this structure should be carefully examined to see if a form of resource
management is needed to resolve conflicts.

• It should NOT allow applications to bypass intermediate level APIs directly to lower levels.

The API should be independent of any other APIs below it so that its integrity is not compromised.
Preventing the combination of simultaneous upper and lower level access also prevents potential
compatibility problems. This is not intended to prevent the successful concatenating of modules together.

• It should NOT be under-specified.

APIs and interfaces need to be designed so that they can support future developments. This can be
helped by the provision of extension mechanisms, which allow the orderly expansion of an interface
while maintaining compatibility with previous versions.

• It should NOT have knowledge of the implementation or any APIs below it.

The definition of one API should not be dependent on the definition of another API. This is needed to
provide a true black-box level of independence below an API or interface.

4.1.3.5 What an API should do?

A good interface will have the following characteristics:

• An API must be written so that it is understandable and testable.

Multiple descriptions or views may be necessary to adequately define an API. For example, graphs,
figures, diagrams, and text may be combined to present a complete picture of the API. The API must
be testable so that compliance can be verified.

• It will have reasonable granularity within the system partitioning.

This is important when considering re-use and providing an attractive environment for suppliers. The
SDRF architectures described in this report provide high-level descriptions of SDR functions, such as
modem and RF. However, when these functions are examined in detail, it is clear that they consist of
several key technology components. For example, if the API is defined for a modem function as a
whole, then the supplier of modem subfunctions such as channel equalization or echo cancellation
software cannot supply products to meet the requirements because there is no intermediate API that
allows their technology to be treated as a modular component of a modem. As a result, the potential to
attract technology is greatly diminished, as the supplier will have to define their own interface. Without a

SDRF Technical Report 2.1 November 1999

4-11

low enough level of granularity, the opportunities for multiple sources of components that can easily
work together will be lost. Therefore, SDRF functions should be expanded and refined to the lowest
feasible level of granularity as illustrated in Figure 4.1.3-1. This will support a broader market of module
suppliers as shown in Figure 4.1.3-2.

RF I/F

RF
Module

Modem I/F

Modem
Module

IW I/F

Interwork
Module

Channel I/F

Channel
Module

Equal I/F

Equal-
isation

FEC

RF I/F

Modem I/F

Figure 4.1.3-1 Expanding the API Granularity

SDRF Technical Report 2.1 November 1999

4-12

RF I/F

RF
Module

Modem I/F

Modem
Module

IW I/F

Interwork
Module

Channel I/F

Channel
Module

Equal I/F

Equal-
isation

FEC

RF I/F

Modem I/F

Supplier A

Supplier B or C

Supplier B or D

Figure 4.1.3-2 Using Increased Granularity to Access Multiple Technology Sources

This fine-grained approach provides developers with the freedom to mix, match, and combine modules
like building blocks. Interfaces can be combined to create a composite of several functions to form a
modem block that encompasses internally several APIs. In practice, it does not matter how the internals
of the block are designed provided they meet the external interfaces, as shown in Figure 4.2.3-3 below.

SDRF Technical Report 2.1 November 1999

4-13

RF I/F

RF
Module

Modem I/F

Modem
Module

IW I/F

Interwork
Module

Channel I/F

Channel
Module

Equal I/F

Equal-
isation

FEC

RF I/F

Modem I/F

Channel I/F

Channel
Module

FEC &
Equalisation

RF I/F

Modem I/F

Solution 1 Solution 2

Figure 4.1.3-3 Combining Modules and Removing Interfaces to Provide Different Solutions.
The Message Directions Have Been Omitted for Simplicity.

• It can be logically expanded while maintaining capability.

This is necessary to respond to new (and unforeseen) developments within the market place.

• It must address resource management.

This is needed to resolve any conflicts caused by resource sharing.

• It must address security concerns.

Any security constraints must be addressed when an API is developed because it affects design
considerations.

• It must address timing requirements.

For proper operation of time-critical systems, information must flow in the correct sequence at
defined time intervals. Timing information that must be exchanged between modules must be explicitly
defined.

• It will identify and support capability exchange.

This is needed to allow modules to establish a common set of facilities that they can use. It is
often incorporated with resource management to declare a capability (and reserve it) as part of the initial
communication between two modules via an API or interface.

SDRF Technical Report 2.1 November 1999

4-14

4.1.4 Capability Exchange

Capability exchange is a well-known technique and is used to allow two modules of differing capabilities
to communicate successfully using a single API. It is used by Microsoft in its Telephone API (TAPI)
specification [3] and in the H.320 video conferencing standards [4]- It is very closely related to
resource management as the declaration of a particular capability, by default, will assume that resources
are available.

The first question that typically arises when capability exchange is mentioned is why do you need it if
you have a defined interface? There are usually three scenarios that can provide good reasons why an
interface should be expandable and therefore require some way of declaring exactly the capabilities of
module(s) on either side of an interface.

• Coping with interface revisions and enhancements.

While it is the intention of all concerned to define a single standard, the reality is that this is rarely
the case. As new technology becomes available or as errors appear, standards will need revision or
enhancement. If this happens, there is a normal requisite for backward compatibility to allow the
maximum reuse of legacy components. The problem facing new components is in identifying which
revision the component on the other side of the interface is using? This is where the capability exchange
is important.

• Allowing the use of proprietary extensions.

It is very common in the PC world for various companies to offer combinations of interfaces or
APIs to their products. This allows a user to choose between an open standard or proprietary
implementation depending on the differing attributes that the interfaces have. For example, a PC
graphics card may reproduce the VGA register set as well as offer a special Windows driver that
accesses the hardware differently and gives improved performance.

The proprietary additions may range from simple extensions to a standard interface to a completely
different interface. Obviously, using these proprietary additions locks in the owner to a specific
implementation but this may be acceptable, and even preferable to the owner. In many cases, especially
in the PC world, proprietary standards have quickly become de facto industry standards. It is
important, however to provide a standardized way of adding these extensions and recognizing when
they can successfully be used between two modules using a common API.

• Adjusting support to match the available resources.

In this case, the capability exchange is used to restrict an interface to support those functions for
which resources are available. This is necessary when the module that uses the interface shares
resources with other modules such as processing time and power, memory, peripherals, and so on.

4.1.4.1 Capability Exchange Implementations

There are typically two types of generic implementations for capability exchanges: at a command level
and at an API level. With a command level, the API is designed such that any command which is not
supported or not understood either due to the nature of the command or any associated parameters

SDRF Technical Report 2.1 November 1999

4-15

must be rejected by a unique message that identifies exactly why the rejection has occurred. It is not
acceptable to simply state that a command error has occurred because this is too vague to allow the
sending module to determine exactly what has gone wrong.

The problem with this mechanism is that it can quickly become quite difficult to determine exactly what
is supported and what is not. It becomes difficult to design and test state machines when several
different versions need to be supported. As a result, the second approach is more often used.

SDR API 1

SDR API 2

SDR API 3

SDR API 4

SDR API 1

SDR API 2

SDR API 3

SDR API 4

SDR API 4 option A

SDR API 4 option B

No of APIs: 6 No of APIs: 8

Manufacturer Z

Manufacturer X

Module A Module B

Non-SDR
standards or
extensions

SDR API 1

SDR API 2

SDR API 3

SDR API 4

No of APIs: 4

Negotiated set of capabilities

SDR API 5

SDR API 6

Figure 4.1.4-1 Capability Exchange and Negotiation Using Spec ID Numbers

This provides revision numbers or other system level information to be used to determine at the
beginning of any API use, the common standards that can be used. In this way, separate state machines
can be used for each standard and/or option without having to make such decisions in mid-protocol.

SDRF Technical Report 2.1 November 1999

4-16

The diagram shows how this might work: the two modules A and B exchange through their common
API a table with the number of API revisions they support. Module A lists six SDRF standards while
module B supports six SDRF standards and two non-SDRF standards, Manufacturer Z and
Manufacturer X. As part of the negotiation, a common set is derived and returned to both modules. This
happens to be the four versions from Module A. This negotiated capability now defines the actual
subset of the API that will be used to ensure communication between the two modules.

If module A supported one or more of module B’s non-SDRF standards, the negotiation could have
resulted in the non-SDRF mode being used without any further use of the standard versions. In this way,
both SDRF and other standardized and proprietary modules and interfaces can be supported
simultaneously. In practice however, both approaches can be used in combination to determine the
common capabilities and the first approach can be used to monitor for any errors or inconsistencies.

4.1.5 Resource Management

Resource management is required to resolve problems caused by the re-use of resources without
declaring any potential change in capabilities. In reality, many wireless systems hide the resource
management issue because the resource management is handled when the system is designed,
integrated, and tested. This static resource management effectively dispenses with any need for its
inclusion within an API because the resources are always reserved for the appropriate use.

A good example of this is the GSM handset. It can often support a range of different speech encoders
with differing DSP MIPs and memory requirements. When the simplest encoder is used, the additional
resources that the most complex encoder needs are not used but are available for use at a moment’s
notice. If the handset is more sophisticated, the unused resources can be allocated to a different task
such as a video decode. However, this reallocation then creates a dilemma: the handset has declared a
capability to support a more complex speech encoder but is using the other resources to support
another function. Since both parties have declared that they can use Ñ, if the other party decides to
change to the complex encoder Ñ the resources required to support the new encoder are not available
without stopping the video decoding.

A simple and effective albeit inefficient way of addressing this problem is to adopt a “declare it and
reserve it” policy where any declared capability automatically reserves the resources necessary to
support it, even though they may not necessarily be used at the time and stand idle.

A more efficient method is to expand the policy to a “declare it, reserve it, negotiate, and re-declare
it”policy. In this scheme, unused resources that have been declared and reserved, can be negotiated
away to another use providing that the current capabilities are re-exchanged and downgraded to reflect
the change in available resources.

Both these techniques are used in the H.320 videoconference [4] standards and the capability exchange
mechanism that is described in these documents could form the basis of a key component for the SDRF
APIs. They basically work by exchanging tables of information describing spec revisions, options, and

SDRF Technical Report 2.1 November 1999

4-17

any proprietary extensions that might be available. One party then determines a common subset and this
is used to restrict the possible API calls to those that both parties understand.

4.1.5.1 Identifying the Need for Resource Management

Resource management is also needed in other areas apart from the obvious one to determine the exact
level of communication through an API. Another common use of the technique is when two modules
communicate with a single module in a two-into-one configuration as shown in the diagram. Here the
resource management is implicit and not immediately obvious. Modules A and B have independent
control flows but both of them interface to the same module C through API C. There is a potential risk
of conflict with API C. If this has been designed assuming a single input in, then it cannot cope with two
separate flows as shown. It may receive conflicting commands or information. If so, which one does it
respond to and when?

API A API B

Module A Module B

API C

Module C

Control
flow A

Control
flow B

 CONFLICT!

Figure 4.1.5-1 The Two-Into-One Conflict Scenario. Note that the upward flow has not been
shown in the diagram

SDRF Technical Report 2.1 November 1999

4-18

If API C is designed with resource management in mind, this problem can be resolved in several ways:

• Module B could be locked out until module A has completed using module C.

In this case, API C must include some arbitration calls to allow any module to ask for its sole attention.
Modules A and B, and their associated APIs A and B, must be designed to cope with delays caused by
the arbitration process and the cases when access is denied.

• API C could support multiple access via the use of channels to identify where any data or
messaging should be sent.

This now introduces a higher level of complexity into both the API C and module C.

• Simultaneous access could be allowed at this level, but the system design relies on discipline at
a higher level to ensure that this never happens.

This is a solution but not a reliable one!

In practice this downward two-into-one architecture is allowable but it should sound alarm bells
whenever it appears because of the potential problem with shared resources. There is a reverse
condition with the upward data flow case where messages can be sent to multiple locations from a single
API. This is less of a problem and in some cases can be quite advantageous. Care must be taken though
to ensure that the same information is not sent to the same module via different routes, unless this is
actually required and catered for in the design. Message duplication can cause problems that are not
often apparent until the system integration phase. In general, the upward two-into-one scenarios can be
used with care. If the messages and data are independent then there is no problem. If they are not, care
must be exercised to prevent a duplicated message arriving via different routes and being treated as a
separate message. This may mean that some form of resource management is needed to remove the
conflict by either filtering or re-routing the messages.

4.1.6 Managing Multiple I/O

With many radio systems, particularly with mobile systems, there may be several user interfaces that can
have different levels of control over a single radio system. This creates a problem similar to the two-
into-one scenario previously mentioned. The diagram in Figure 5.2.6-1 shows such a system with three
interfaces providing three separate control paths into the radio. For this system to have any chance to
work, the radio system must contain some resource management to reconcile which control path takes
command.

SDRF Technical Report 2.1 November 1999

4-19

Local interface
API

Network
interface 1 API

Network
interface 2 API

Local interface
Network

interface 1
Network

interface 2

Local interface
Radio user

interface API

The radio system

Control path 1 Control path 2 Control path 3

Figure 4.1.6-1 The Multiple Control Path Problem. Note that the upward flow has not been
shown in the diagram

This poses a problem for anyone defining an API for the radio system as the user interfaces and control
paths are extremely varied. The solution is to bring out the resource management as a separate layer as
shown in the following diagram (Figure 4.2.6-2). The three control interfaces are still present and pass
commands via the radio user interface almost as before. Almost, because there are also resource
management commands associated with the interface as well. These commands use capability
exchanges and other information to determine who has actual control of the radio. This could be fixed
and hard coded or dynamic and vary with circumstances. By using a common command interface and a
capability exchange to restrict each interface to a particular subset, different categories of access can be
quickly defined and changed if needed. For example, the network interfaces 1 and 2 could be
restricted to receiving and transmitting information while the local interface is the only one allowed to
define the communication wavelength, modulation, and encoding.

By being generic in how these interfaces are defined, and allowing extensions to cope with non-generic
requirements, it is possible to create a user interface and resource management API that supports
almost any variation possible while still retaining and reusing the radio system.

SDRF Technical Report 2.1 November 1999

4-20

Local interface
User interface manager

Local interface
API

Network
interface 1 API

Network
interface 2 API

Local interface
Network

interface 1
Network

interface 2

Local interface

The radio system

Control path 1 Control path 2 Control path 3

Local interface
Radio user

interface API

Single c ontrol path

Radio user interface + Resource management API

Figure 4.1.6-2 Using a User Interface Manager. Note that the upward flow has not been
shown in the diagram

The user interface manager takes the different radio user interface commands from the various external
sources and based on capability tables, including priority and a hierarchy of command information,
decides how the commands should be combined to create a single user interface control and information
flow for the radio. The radio is blissfully unaware that several sources are using the radio simultaneously.

One further aspect is also important. At the radio interface and resource management API level, the
interfaces are defined not by their location or communication path but by their capability. This gives far
more flexibility because the capabilities can be dynamically changed and overridden. A remote resource
could take over local access capabilities and then disable the local control. This could be used in cases
where there is unauthorized local access or if the local access is malfunctioning. For sensitive
installations, this can be an advantageous feature.
excluding any particular part. The rules, guidelines, and definitions provided in this document should
facilitate discussion and development of APIs to support SDRF API’s.

SDRF Technical Report 2.1 November 1999

4-21

4.1.7 API Design Process

4.1.7.1 Introduction

Any design process is cyclical in nature and involves testing a design to identify and remove any errors.
The SDRF APIs are no different and are subject to the same constant refinement. This process is
important when the SDRF APIs are incorporated into products, especially when they are combined
with existing APIs and extensions.

This document describes the process and its elements as used in the development of the APIs and also
provides an example process for use in product developments.

4.1.7.2 Overview

The SDRF API Definition process describes how new APIs are proposed, defined, and accepted by
the SDR Forum. Figure 4.1.7.2-1. is an overview of the procedure.

Architecture

Need
New
API
?

MAD Process
SDRF

Approval
Process

Publish
No

Yes

Accept

Refer Back
to

Originator Originator

Reject

Figure 4.1.7.2-1. Context for the API Development Process

SDRF Technical Report 2.1 November 1999

4-22

The originator is the person or organization that proposes to add an API to the SDR Forum defined
APIs. Two hurdles must be crossed: technical definition and evaluation of the API, and then
acceptance for publication by the Forum.

Architecture of an application intended to operate with the SDRF model and claim to be SDRF
Conformant is the responsibility of the originator. In the course of defining that architecture, the
originator may find that a new API is required. (See Section 4.2, API Relationships.)

The API definition process is the mechanism to define such an API, and the SDRF approval process a
means of publishing it, and adding it to the body of SDRF conformant APIs.

4.1.7.3 The SDRF API Definition Process

The API Development process is depicted in Figure 4.1.7.3-1. The need for a new API arises as the
result of an application.

Simulation
Results

Human
API

Definition

OK
?

Formal Language
API Definition

Simulate

Process

Enter MAD
Process

Proceed to
SDRF Acceptance

No /Problems

Yes

Figure 4.1.7.3-1

SDRF Technical Report 2.1 November 1999

4-23

4.1.7.3.1 Product architecture

The architecture is based on application requirements and will contain sufficient interface and behavioral
information to allow the all API definitions — including any extensions to the SDRF APIs or proprietary

4.1.7.3.2 Human API definition

This is the textual description of the APIs needed to support the product architecture. It is a manual
process but can be facilitated in several ways. The SDRF documentation through its API design guide
and examples provides detailed guidance on how to define and create APIs.

4.1.7.3.3 Process

This is a manual process but it should only focus on new APIs or extensions. Formal models of existing
SDRF APIs can be accessed and re-used in the same way that software libraries are utilized. This
reduces the work and focuses it on unsupported APIs and extensions.

4.1.7.3.4 Formal language definition

The output of the previous process will be a formal definition of the interfaces and sufficient behavioral
information to define the APIs unambiguously. The current thinking within SDRF is to use SDL and IDL
but this does not necessarily preclude the use of other languages. Their use may increase the work
required through the lack of re-useable definitions.

4.1.7.3.5 Simulation

The simulation will use tools that can accept the formal definitions. These are used to exercise the
elements to confirm consistency.

4.1.7.3.6 Simulation results

The results should identify problems such as signal mismatches, orphan and widow signals and
behavioral inconstancies. This information can be also be used to create test patterns sequences for use
later in the product integration and test phase(s).

4.1.7.3.7 Results comparison

The simulation results are then compared to the original product architecture and checked to see if there
are any problems. This is likely to involve a combination of a design review approach coupled with the
use of automated tools to highlight problems.

SDRF Technical Report 2.1 November 1999

4-24

If the results are acceptable, then the API can proceed to the SDRF acceptance process.

If the errors are caused by implementation issues e.g. a missing signal or message, then the human API
definition is then refined to remove the error and the API DEVELOPMENT process repeated.

If the errors are fundamental to the design, then either the requirements or product architecture must be
updated before repeating the process. As these are the responsibility of the Originator, the issue is out
of the scope of the API DEVELOPMENT Process, and is referred back for resolution.

4.1.7.4. The SDRF API Approval Process

The SDRF API Approval Process has not yet been defined.

4.1.8 References

1. Programmable Modular Communication System Guidance Document, Revision 2, 31 July
97. (http://www.dtic.mil/c3i/pmcs/pmcspage.htm)

2. Microsoft Telephony API specification. Microsoft Windows software development kit.

3. H.320 P.64 narrow band visual telephone systems and terminal equipment specification. ETSI.

SDRF Technical Report 2.1 November 1999

4-25

4.2 Relationships to non-compliant Processes
A primary objective of the SDR Forum is to establish a set of APIs that will provide an open interface
into SDRF-compliant systems. This section explores how legacy APIs and the SDRF APIs work
together to define the specific APIs to be included in a new development project.

4.2.1 API Relationship Diagram

It is important to realize that the SDRF APIs for a software definable or configurable radio are not being
developed in isolation. Therefore it is also important to include facilities to support both internal and
external existing APIs and to provide support for additional facilities necessary to meet the required
product specifications. As a result, it is conceivable that there will be many SDRF compliant radios that
will have varying proportions of APIs depending on the end requirement. This can range from a radio
that is completely SDRF based to one that may have a high level SDRF interface but relies on existing
and/or proprietary interfaces. Figure 5.4.1-1 displays these relationships as a Venn diagram.

SDRF
APIs

Legacy
APIs

Product
specifications Product

requirements

Figure 4.2.1-1 The API Relationship Diagram

4.2.1.1 SDRF APIs

These are the APIs that are defined by SDRF and are used to create a framework. In a complete
SDRF system, all the published APIs would be used. In a reduced system, some of the APIs may not
be used or required. In a hybrid system, some of the APIs may be replaced by legacy or proprietary
APIs. This replacement will require some form of conversion between the two environments. This is
performed by the wrapper layer, which is located between the respective SDRF and legacy APIs.

SDRF Technical Report 2.1 November 1999

4-26

4.2.1.2 Legacy APIs

In an ideal world, there is a strong argument that there is no need to support existing or legacy APIs
providing alternatives are available. In a practical world, this may not be achievable and the desire to
use or re-use existing sub-systems may have great importance in reducing the design costs. However,
this does rely on there being some form of conversion to allow the legacy APIs to communicate with the
SDRF environment. It is this conversion that the wrapper performs. Providing the wrapper design and
implementation is not prohibitive. It allows SDRF based systems to be developed using existing
components.

Supporting legacy APIs also has other benefits in that it can provide an additional source of design
knowledge based on practical experience which can be used to test the SDRF APIs and identify
omissions and discrepancies.

For all these reasons, legacy API support is an essential and important component of the SDRF
environment.

4.2.1.3 Product Specifications

The third input into the relationship is product specifications. These will define requirements that may be
beyond the SDRF APIs on first inspection but may still require support from SDRF APIs. The
specifications may require software download, Therefore this immediately requires the inclusion of the
SDRF software download API . It may also require a sophisticated GUI front end for the end user.
This is not directly specified in the SDRF APIs but does rely on SDRF messages and information to
allow the connection status and so on to be displayed. In this example, SDRF APIs will be needed to
provide the foundations but the designer has the freedom to build whatever support is needed on top of
them.

As a result, the proportions of the three rings may and will vary depending on the final product
requirements. Where the three rings overlap defines the subset of the requirements for the product.
These final proportions when defined effectively create product requirements that can be inputted into
the API DEVELOPMENT process to create and test the API design. The technical report provides
sufficient detail to allow an initial set of requirements to be inputted into the process.

SDRF Technical Report 2.1 November 1999

4-27

4.2.2 The wrapper

The idea of the wrapper is to provide a conversion process to allow bi-directional communication
between two different APIs. It is a piece of software or hardware that allows modules on either side of
it to communicate through their own APIs without knowing that any conversion or modification has
taken place.

The wrapper uses the two APIs that it is bridging between as its boundary definitions and then
processes the information internally from each API to allow them to work together.

Legacy
APIs

Product
specifications Product

requirements

SDRF
APIs

Wrapper

Figure 4.2.2-1 the wrapper between legacy and SDRF APIs

4.2.3 Conversion techniques

The wrapper shown in the diagram uses three basic techniques to provide the communication between
the two APIs. These techniques are translate, simulate and integrate.

SDRF Technical Report 2.1 November 1999

4-28

4.2.3.1 Translate

Dictionary

Translate

Legacy APIs

SDRF APIs

Wrapper

Figure 4.2.3.1-1 Translate

This technique exploits content and/or syntax commonality between the two APIs. It essentially takes
each message, looks it up in a dictionary and translates it so that the other API can understand it. The
translation process may include some state machine behavior, in which case the technique really falls into
the third category – integrate. In general, it should be a one-to-one process and to achieve this requires
some commonality between the two APIs.

This in itself is not a problem providing the two APIs are performing similar functions and thus require
similar information. In this case, the content is compatible and therefore only the syntax needs to be
changed. Examples of this include parameter re-ordering, bit and byte swapping for little and big-endian
data organizations.

SDRF Technical Report 2.1 November 1999

4-29

4.2.3.2 Simulate

Simulate

Simulate

Legacy APIs

SDRF APIs

Figure 4.2.3.2-1 Simulate

This technique will simulate messages or behavior to support one API without involving the other API.
This can be used where there are messages or behavior that is unique to one API.

SDRF Technical Report 2.1 November 1999

4-30

4.2.3.3 Integrate

Dictionary

Integrate

Integrate

Legacy APIs

SDRF APIs

Wrapper

Figure 4.2.3.3-1 Integrate
This technique is a hybrid between the previous two techniques and integrates both simulation and
translation to provide a communication path between the two APIs. It combines translation and
simulation to allow very dissimilar APIs to be bridged and thereby to communicate.

SDRF Technical Report 2.1 November 1999

4-31

4.2.4 Trade-offs

Dictionary

Simulate

Simulate

Integrate

Integrate
Translate

Legacy APIs

SDRF APIs

Wrapper

No or little
behavour
content

behavourLots of
content

Simple and
less complex

Very complex

Very similar
APIs

Dissimilar
APIs

Thin
Wraper

Thick
Wraper

Figure 4.2.4-1 Wrapper Trade-offs

The wrapper diagram also shows some of the trade-offs associated with the various techniques. The
translate technique is the simplest to implement because it has little or no behavioral content. It does
require that the two APIs are very similar in content and philosophy so that only translation techniques
are needed. Typically thin wrappers will predominately use translation techniques, and are simple and
easy to create.

At the other extreme, the integrate technique will have a high behavioral content and thus will be far
more complex to implement and test. However it will work with very dissimilar APIs. These wrappers
are often referred to as thick because of this level of complexity that is needed.

The simulation technique typically sits in the middle in terms of behavioral and complexity.

SDRF Technical Report 2.1 November 1999

4-32

4.2.5 Conclusions

The SDRF APIs will form a standard that can be used in the design of new systems. They do, in fact,
overlap significantly with other API sets serving similar applications. The API definitions for a new
system can utilize both legacy and SDRF API sets. In some cases it may be desirable to use wrapper
techniques when integrating legacy APIs.

SDRF Technical Report 2.1 November 1999

4-33

4.3 Distributed Processing Environment
Left blank in this edition.

4.4. Message description for APIs

 4.4.1 Introduction

SDRF modules use messages as the primary means of exercising control and exchanging information.
Messages are of two types: control messages and information messages. Messages flow in accordance
with the guidance of the API design guide in section 4.1. This section provides an example of how
control messages are used within the SDRF environment and gives specific examples for currently
identified control messages.

Through the set of examples, this section also identifies some of the key problems and proposes some
solutions to these issues. These examples reflect a functional perspective but alternatives will be
considered. It is anticipated that where ever possible, the final API specifications will utilize current
technologies and standards.

4.4.2 Background

For each API in a system, there is a requirement for a set of messages that allow the module associated
with the API(s) to be configured and set up correctly. This set of messages are reasonably generic in
that all APIs will require them and will only differ in terms of API specific information and parameters.

By using these messages, modules can be initialized, started and stopped, enabled and disabled,
capabilities exchanged, configurations adapted and so on. In addition, support for the replacement,
augmentation or switching of facilities is also included to provide the foundation support for software
download and hot swappable hardware.

The messages can be used in one of two ways:

• To provide the basic control and set-up as previously described.

• To provide support for a switcher module that can intelligently enable/disable
modules to radically change the functionality of the overall system. This can be used in
multi-band and/or multi-mode systems to select a particular service or waveband and
so on.

The intelligence is contained within the switcher function but it can use the same APIs
without having the need to change them.

4.4.3.Messages

This section describes the control messages that are needed to control and configure a module via its
API. It is envisaged that these messages will appear in all API definitions along with additional messages

SDRF Technical Report 2.1 November 1999

4-34

to control the functionality of the API. These messages can be used by a module to implement service
switching functions within a multi-band and/or multi-mode phone.

SDRF Technical Report 2.1 November 1999

4-35

4.4.3.1 Message acknowledgment

Each message is acknowledged by a status word(s) which confirm that the destination has correctly
received the message, acted on its contents and replying with the current status. This provides detailed
information to not only allow the traditional ack/nack protocol but also for debugging and system
integration where a deeper insight is needed. Status words sent in direct reply to a message are referred
to as solicited status information (SSI).

In addition, status information can be returned without any initiating message if the module status has
changed. For example, if an error is detected this can be reported by sending a suitable status word.
These messages are unsolicited and it should not be assumed that they will automatically result in any
action from the higher modules and/or APIs. This information is known as unsolicited status information
(USI). Indeed, it is recommended that some form of filtering is supported to reduce or expand the
reporting back that can be accomplished. Again, this is primarily to help debugging and system
integration.

 enable(destination)

 status word(s)

 get_config(destination)

 status words
config ID, config table

 status words (USI)

Figure 4.4.3-1 State ladder diagrams showing the relationship between status words returned
as a result of receiving a message

These examples assume that all messages come from a single source. Where this is not the case e.g. a
multiprocessor system, the message must include data to identify the message source as well as the
destination, so that the message flow within the system can be tracked.

SDRF Technical Report 2.1 November 1999

4-36

4.4.4 Message Definitions

This section describes the message format and the message definitions for the control messages.

4.4.4.1 Message format

The message definitions have three components that define the message name, associated parameters
and the solicited status information. The nomenclature used is shown in the diagram. The message name
is the first component followed by a list of parameters bounded by a set of brackets. The returned SSI
is denoted by an arrow (←).

select_config (destination, table_config_id) ←← (status)

Message name Message
response (SSI)

Message
parameters

Figure 4.4.4-1 Message definition structure

The SSI will contain an updated version of the status word(s) to reflect the success or otherwise of the
originating message. In addition, there may be optional parameters that are returned.
It should be remembered that this document specifies the tier 1 messages and not how the are
transported or any other physical parameters or attributes.

These formats could also be used for the tier 2 and tier 3 APIs but this is not obligatory and is optional.

4.4.4.2 Parameter format

Some of the messages have parameters associated with them. The format of how these messages are
passed e.g. by using a pointer, mailbox, or as a data structure is not defined in the Tier 1 API but is
covered within the associated Tier 2 API for transportation and communication.

SDRF Technical Report 2.1 November 1999

4-37

4.4.4.3 enable (destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to confirm
that it was sent to the correct location.

4.4.4.3.1 Description

This message will enable the module and does not actually start its functionality. To use
the VCR analogy, Enable is the equivalent of powering up the VCR. It does not mean
that the VCR should automatically start playing a tape or recording a transmission.

It can be used to trigger several actions within the module that uses the API, such as
self test, internal resource allocation and initialization and so on.

4.4.4.3.2 Dependencies

This command should only be sent if the module is currently disabled.

4.4.4.3.3 Action

The module should treat this signal as a request to activate and be ready to receive and
act on further messages. This may include reserving resources in preparation for this.

4.4.4.3.4 Results

If the module is currently
disabled and the message
sent:

• The message should be acted upon.
• The status SSI should indicate that the module is

enabled.
• The module should be able to receive further

messages but should not process incoming data.
If the module is currently
enabled and the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should continue executing

SDRF Technical Report 2.1 November 1999

4-38

4.4.4.4 disable (destination) ←← (status)

Destination
Status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to confirm
that it was sent to the correct location.

4.4.4.4.1 Description

This message will disable the module and is the equivalent of a “power off” command.
It signals that the intention to use the API has gone and that its functionality is not
required. To use VCR analogy, Enable is the equivalent of powering off the VCR.

It can be used to trigger several actions within the module that uses the API, such as
internal resource de-allocation.

4.4.4.4.2 Dependencies

This command should only be sent if the module is currently enabled and stopped.

4.4.4.4.3 Action

The module should treat this signal as a request to deactivate but still be ready to
receive and act on an enable messages. This may include releasing resources.

4.4.4.4.4 Results

If the module is currently
enabled and the message sent:

• The message shuld be acted upon.
• The status SSI should indicate that the module is

disabled.
• The module should be able to receive selected

further messages.
If the module is currently
enabled but not stopped and
the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status maessage should indicate that this is an

error.
• The module should continue executing.

If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-39

4.4.4.5 reset (destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to confirm
that it was sent to the correct location.

The configuration table ID will be returned in the status word unchanged i.e. it will have
the same value as before the message was sent.

4.4.4.5.1 Description

This message will reset the module using the current configuration. It is the equivalent
of a “warm boot” in a PC where the software will reset itself and start again. It can be
used to trigger several actions within the module that uses the API, such as self test,
internal resource allocation and initialization and so on.

4.4.4.5.2 Dependencies

This command should only be sent if the module is currently enabled and stopped.

4.4.4.5.3 Action

The module should treat this signal as a request to reset itself using the current
configuration. This may include initializing and/or flushing resources.

4.4.4.5.4 Results

If the module is currently
enabled and the message sent:

• The message should be acted upon.
• The staus SSI should indicate that the module is

reset.
• The module shuld be able to receive selected

further messages.
If the module is currently
enabled but not stopped and
the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate the this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-40

4.4.4.6 reset_to_default(destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status work will be the API module ID to confirm
that it was sent to the correct location.

The configuration table ID will be set in the status owrd to 0, thereby indicating that the
module has reset to the default configuration.

4.4.4.6.1 Description

This message will reset the module using the default configuration. It is the equivalent
of a “cold boot” in a PC where the software will reset itself and start again.

It can be used to trigger several actions within the module that uses the API, such as
self test, internal resource allocation and initialization and so on.

4.4.4.6.2 Dependencies

This command should only be sent if the module is currently enabled and stopped.

4.4.4.6.3 Action

The module should treat this signal as a request to reset itself using the default
configuration. This may include initializing and/or flushing resources.

4.4.4.6.4 Results

If the module is currently
enabled and the message sent:

• The message should be acted upon.
• The status SSI shuld indicate that the module is

reset.
• The module should be able to receive selected

further messages.
If the module is currently
enabled but not stopped and
the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message shuld indicate that this is an

error.
• The module should continue executing.

If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-41

4.4.4.7 start (destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to confirm
that it was sent to the correct location.

The start/stop status bit will be returned set to 1.

4.4.4.7.1 Description

This message will start the module. Data will be accepted and processed in the module
only when it has been started. A synchronous start message may be required and has
not yet been defined.

4.4.4.7.2 Dependencies

This command should only be sent if the module is currently enabled and stopped.

4.4.4.7.3 Action

The module should treat this signal as a request to start processing data.

4.4.4.7.4 Results

If the module is currently
enabled but in a stopped state
and the message sent:

• The message should be acted upon.
• The status Ssi should indicate that the module has

started.
• The module should be able to receive selected

further messages.
If the module is currently
enabled but not stopped and
the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should continue executing.

If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-42

4.4.4.8 stop (destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to confirm
that it was sent to the correct location.

The start/stop status bit will be returned set to 0.

4.4.4.8.1 Description

This message will stop the module via the API from processing any data but it will
retain any allocated resources that have been allocated to it. A synchronous stop
message may be required and has not yet been defined.

4.4.4.8.2 Dependencies

This command should only be sent if the module is currently enabled and started.

4.4.4.8.3 Action

The module should treat this signal as a request to stop processing data.

4.4.4.8.4 Results

If the module is currently
enabled but in a started state
and the message sent:

• The message should be acted upon.
• The status SSI should indicate that the module has

stopped.
• The module should be able to receive selected

further messages.
If the module is currently
enabled but stopped and the
message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should continue executing.

If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-43

4.4.4.9 set_config (destination, table_config_id, parametersÖ) ←← (status)

destination
table_config_id

Parameters

status

Destination ID of the module to be enabled through the API.
This identifies the configuration table that is used to receive the new parameters. The
API supports up to n tables with table ID 0 being the default. The total number of
tables is defined in the capability exchange information. The default table 0 can either
be fixed and not capable of modification or capable of modification. Again, these
characteristics are returned in the capability table.
These are the parameters that are sent and stored in the configuration table. The
actual format will depend on the API definition for each module and will reflect the
functionality controlled by the API.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to
confirm that it was sent to the correct location.

4.4.4.9.1 Description

This message allows the module configuration via the API to be changed as required.
The changes do not imply or demand any activation and therefore the process of
changing the functionality should be seen as a two stage process:

• Set-up the new configuration using set_config and one of the
available configuration tables.

• Select this table using the select_config message to activate it.

4.4.4.9.2 Dependencies

This command should only be sent if the module is currently enabled.

4.4.4.9.3 Action

The module should treat this signal as a request to update a configuration table as
selected by table_config_id .

4.4.4.9.4 Results

If the module is currently
enabled and the message
sent:

• The message should be acted upon.
• The status SSI should indicate that the message

was successful.
• The module should be able to receive selected

further messages.
If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-44

4.4.4.10 select_config (destination, table_config_id) ←← (status)

destination
table_config_id

status

Destination ID of the module to be enabled through the API.
This identifies the configuration table to be selected to configure the module. The API
supports up to n tables with table ID 0 being the default. The total number of tables is
defined in the capability exchange information. The default table 0 can either be fixed
and not capable of modification or capable of modification. Again, these characteristics
are returned in the capability table.
This is returned to indicate the success or otherwise of the message and
the current status of the module. Included in the status word will be the
API module ID to confirm that it was sent to the correct location. The configuration
table ID bit will be returned set to the value specified by table_config_id.

4.4.4.10.1 Description

This message instructs the module to use the configuration information stored in the
selected configuration table. It is used to signal that this information should now be
used. The act of simply writing the information into the table does not imply or be
interpreted as requesting an immediate changeover. This select_config message is
used to do this as part of a two stage process:

• Set-up the new configuration using set_config and one of the available
configuration tables.

• Select this table using the select_config message to activate it.

Note: If the configuration table that is being modified by the set_config command is
the current one being used by the module, then any changes made to the table should
not change the module’s configuration until the select_config message is sent.

4.4.4.10.2 Dependencies

This command should only be sent if the module is currently enabled.

4.4.4.10.3 Action

The module should treat this signal as a request to select a configuration table as
selected by table_config_id.

4.4.4.10.4 Results

If the module is
currently enabled and
the message sent:

• The message should be acted upon.
• The status SSI should indicate that the message was

successful.
• The module should be able to receive selected further

messages.
If the module is
currently disabled and
the message sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-45

4.4.4.11 get_config (destination, table_config_id)←← (status, parameters)

destination
table_config_id

Status

parameters

Destination ID of the module to be enabled through the API.
This identifies the configuration table that is used to supply the parameters. The API
supports up to n tables with table ID 0 being the default. The total number of tables
is defined in the capability exchange information. Again, these characteristics are
returned in the capability table. The default table 0 can either be fixed and not
capable of modification or capable of modification. The currently used table ID is
available from the status information.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to
confirm that it was sent to the correct location.
These are the parameters that are sent and stored in the configuration table. The
actual format will depend on the API definition for each module and will reflect the
functionality controlled by the API.

4.4.4.11.1 Description

This message gets the configuration information from the selected configuration
table. If the ID is the same as that of the currently in use configuration table, the
information will define the current configuration of the module. If not, it will
represent an alternative configuration that is not active. The current configuration
table ID is returned in the status information.

4.4.4.11.2 Dependencies

This command should only be sent if the module is currently enabled.

4.4.4.11.3 Action

The module should treat this signal as a request to select a configuration table as
selected by table_config_id, and return its contents .

4.4.4.11.4 Results

If the module is currently
enabled and the message sent:

• The message should be acted upon.
• The status SSI should indicate that the message

was successful.
• The module should be able to receive selected

further messages.
If the module is currently
disabled and the message
sent:

• The message should be not acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is

an error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-46

4.4.4.12 capability_exchange(destination, max_capability) ←← (status, parameters)

destination
max_capability

status

parameters

Destination ID of the module to be enabled through the API.
ID of the capability table to be interrogated. Initially only one capability table will be
specified and supported and this is the maximum capability of the module which
defines the facilities and functional parameters that it supports. This information is
used in the capability exchange to determine a common set of messages between two
modules.
This is returned to indicate the success or otherwise of the message and the current
status of the module. Included in the status word will be the API module ID to
confirm that it was sent to the correct location.
These are the parameters that make up the capability exchange information. The
actual format will depend on the API definition for each module and will reflect the
functionality controlled by the API.

This should include manufacturer’s codes and revision numbers as well as the SDRF
API specification revision numbers to allow the API and module to be clearly
identified. This can also be expanded to include other data that can be used for
certification, type approval and authentication procedures.

4.4.4.12.1 Description

This message instructs the module to return its capability information that defines
exactly what it can support. This information is related to the configuration
information but is not exactly the same, although there are close similarities.

The returned parameters define all the capabilities that can be supported by the
module through the API and are therefore available to other modules. The
information includes options and configuration information etc. that is supported.
This table is fixed and cannot be changed unless the module itself is replaced.

4.4.4.12.2 Dependencies

This command should only be sent if the module is currently enabled.

4.4.4.12.3 Action

The module should process this signal as a request to return the contents of the
capability table .

4.4.4.12.4 Results

If the module is
currently enabled and
the message sent:

• The message should be acted upon.
• The status SSI should indicate that the message was

successful.
• The module should be able to receive selected further

messages.
If the module is • The message should not be acted upon.

SDRF Technical Report 2.1 November 1999

4-47

currently disabled and
the message sent:

• It should be treated as a programming error.
• The status message should indicate that this is an error.
• The module should stay disabled.

4.4.4.13 get_status(destination) ←← (status)

destination
status

Destination ID of the module to be enabled through the API.
This is returned to indicate the success or otherwise of the message and the
current status of the module. Included in the status word will be the API
module ID to confirm that it was sent to the correct location.

The status word will contain the following information:
Message ID This allows the status information to be associated with a message or

identified as unsolicited.
Destination ID This allows the source of the status information to be identified Again this is

provided to track status information in relation to messages.
Sequence number This is provided to allow the correct sequencing of the status information to

be obtained in the event that status information arrives out-of-order.
Current configuration ID This identifies which configuration table is used. If set to 0, this indicates that

the default is being used.
Module state This includes flags for start/stop, enable/disable and so on.
Status code This encompasses both error and good codes and defines either a response

to a message or some change in the module that should be notified to the
rest of the system.

Status code filter This defines the state of the filter for USI messages. This is used to control
or limit the number or type of USI messages that are passed across the
API.

4.4.4.13.1 Description

This message instructs the module to return its status information that
defines exactly its current state. This information is provided in addition to
the configuration information but is concerned with short term status.

4.4.4.13.2 Dependencies

This command can be sent at any time. This is necessary to identify the
status of an unknown module and to establish exactly how to bring the
module up to normal operation. The information is a snapshot of the system
and it should be remembered that it is constantly changing. As a result, the
actual physical status may be different from that indicated by the received
status information. Any differences, should result is further updated status
information to be sent via unsolicited status information.

4.4.4.13.3 Action

The module should treat this signal as a request to return the status
information .

4.4.4.13.4 Results

SDRF Technical Report 2.1 November 1999

4-48

• The message should be always be acted upon.
• The status SSI should indicate that the message was successful.
• The module should be able to receive selected further messages.

4.4.4.14 place_module (destination, info) ←← (status, parameters)
destination
Info

parameters

Destination ID of the module to be replaced, switched or augmented through the API.
Information facilitating the replacement, switching or augmentation of the module. This
will be specific to the module and the implementation.
To be defined.

4.4.4.14.1 Description

This message is used to change (replace, modify or augment) the module that is
accessed via the API. It is assumed that the replacement is local and accessible. To get
a module from a remote source will be achieved in two stages: the first is to obtain the
module and store it locally and the second is to use this command to actually use this
new version. The command does not imply or infer that the original module is replaced
or whether it is used to replace or switch between software or hardware specific
components.

4.4.4.14.2 Dependencies

This command should only be sent if the module is currently stopped and disabled.

4.4.4.14.3 Action

The module should treat this signal as a request to replace/augment or modify a module
or part of a module that is accessed via the API. After this command, the module
should go through the normal enable/start sequence, including capability exchange. This
is similar to the process used during module power up.

4.4.4.14.4 Results

If the module is currently
enabled and stopped, and the
message sent:

• The message should be acted upon.
• The status SSI should indicate that the message

was successful.
• The module should be able to receive selected

further messages.
If the module is currently
disabled and the message
sent:

• The message should not be acted upon.
• It should be treated as a programming error.
• The status message should indicate that this is an

error.
• The module should stay disabled.

SDRF Technical Report 2.1 November 1999

4-49

SDRF Technical Report 2.1 November 1999

4-50

4.4.5 Examples

4.4.5.1 The relationship between enable/disable and start/stop

The relationship between enable, disable, start and stop is shown in the diagram below. The
enable/disable and start/stop message pairs provide two levels of operation: enabled-but-stopped
(EBS) and enabled-and-started (EAS). This is important to allow the fine control over the module and
effectively correspond to an on-line and off line state where changes can be made in either state but their
effect on the rest of the system is different. In the enabled state, the module does not process data and
therefore the effect of any changes will not necessarily be made visible to other modules. If the visibility
is through the processed data, then clearly this will mean that the as far as the rest of the system is
concerned, the module is not doing anything. In practice, control and status messages are still flowing
and so, some visibility can be obtained, but for all intents and purposes, this is not common or available
system wide.

Enable Disable

Start Stop

get_status get_config

Module
disabled

Module
enabled

Module
started

Module
stopped

Figure 4.4.5-1 The relationship between enable/disable/start/stop messages

When the module is started, data is processed and thus any changes will become apparent to the rest of
the system. It is important therefore to ensure that any changes that are made to the module’s
configuration are down in a specific way. If the change is minor or expected as part of the normal

SDRF Technical Report 2.1 November 1999

4-51

operation of the current configuration then it can be done while the module is in the enabled and started
state. If the change is radical e.g. changing the modulation scheme to a non-standard one then this
change may need to be done only when the module is enabled but stopped to prevent other parts of the
system from incorrectly interpreting data or control messages.

As a result, the set_config/select_config message pair can operate generically in either of the
module’s two basic operating states as shown in figure 5.2.4-2 but, depending on the configuration
data being changed, it may be recommended to be in one or other states before completing the
sequence by sending the select_config message.

Enable Disable

Start Stop

set_config &
select_config

can be executed in
these module states

Module
disabled

Module
enabled

Module
started

Module
stopped

Figure 4.4.5-2 The scope of the set_config and select_config messages

A synchronous start/stop message may be required to simultaneously start/stop multiple
modules but has not yet been defined.

SDRF Technical Report 2.1 November 1999

4-52

4.4.5.2 Module initialization and disabling through the API

With this example, the process of bringing up a module is described. The example consists of two
modules (A and B) that communicate via the API. Module A has to initialize module B and it already
knows what the module is and that it is ready to proceed. If this was not the case, module A could issue
a get_status message prior to this process. The option of using the place_module message to
download or switch to a new implementation is also not included.

enable

<— status

Capability_exchange

<— status, params

select _config

<— status

start

<— status

stop

<— status

Module enabled

Module capabilities returned

Module configued

Module started. Normal
operation mode

Module enabled but
stopped

Module disableddisable

<— status

API

M
O

D
U

LE
 A

M
O

D
U

LE
 B

Figure 4.4.5-3 Module initialization and disabling through the API

SDRF Technical Report 2.1 November 1999

4-53

The process is shown in the ladder diagram. The module status is shown on the right hand side. The
process is fairly self-explanatory: the module is first enabled and then interrogated to get its capabilities.
These are returned and by using this information, the module can be configured by module A to meets
its requirements. In the example, this has been done by selecting the appropriate configuration table.
This has assumed that the one of the default tables contains the correct configuration. If this is not the
case, then the table must be updated by using the set_config message, prior to the select_config
message. The next stage is to start the module. After the successful completion of this, the module is in a
normal operating state and the initialization is complete.

The last two messages are the sequence to stop and disable the module as part of a shutdown process.
This may be used when the system is shutdown or prior to replacing the module implementation.

4.4.5.3 Module replacement through the API

With this example, the process replacing or augmenting a module is described. The example consists of
two modules (A and B) that communicate via the API. Module B is already operational and is in the
enabled-but-started mode. To replace or augment module B, module A must bring module B into the
disabled state. This is down by the stop and disable messages. The module is then enabled before
issuing the place-module message that instructs the module to replace or augment itself in some way.
This is very implementation dependent and could mean simply loading or using a different set of
software, switching to a different piece of hardware and so on.

Once this has been completed the new capabilities can be obtained, the module configured and then
brought up into the enabled -and-started (EAS) mode.

SDRF Technical Report 2.1 November 1999

4-54

place_module

<— status

Capability_exchange

<— status,
params

select _config

<— status

start

<— status

Module replaced

Module capabilities returned

Module configured

Module started. Normal
operation mode

API

M
O
D
U
L
E
A

M
O
D
U
L
E
B

enable

<— status
Module enabled

stop

<— status
Module enabled but
stopped

Module disableddisable

<— status

N
ew

 m
od

ul
e

im
pl

em
en

ta
tio

n

At this point the old module
isready for replacement or
augmentation

Figure 4.4.5-4 Module replacement through the API

SDRF Technical Report 2.1 November 1999

5-1

5.0 Frameworks and Design Patterns

This section introduces a mechanism for overall system design that follows a process based on the use
of different views of the system to completely describe its operation on several different levels.
Successful implementation of this method enables the designer to describe and manage the relationships
between the different system views. The system views are defined as follows : Use Case view, Logical
view, Component view, and Deployment view. Descriptors used to specify system operation include:
use cases, actors, classes, objects, states, relationships, and interactions. Diagrams are used to
delineate the relationships between views and relationships among the elements within each view. Each
view describes the way that the different elements of the view relate to one another, this is called a
Framework for the design. Taken together, these views and descriptions provide a means of visualizing
and manipulating the model's items and their properties to ensure a complete description of the desired
system operation is specified at each level. There is a many to many relationship between the elements
of each view and the elements of the other views. The relationships of the elements of one view as
related to the other views is important but not easy to describe.

SDRF Technical Report 2.1 November 1999

5-2

Views• Determined by the different ways the
 system is to be used:

• Use Cases, Actors:
 - Use cases are a basis for incremental

 evolutionary development

• Functionality
 - Functional structure & behavior
 - Objects, classes, states, relationships,
 interactions

• Implementation
 - Partitioning of functionality into
 implementations

 - Components, interfaces
 - The way these operate together
 defines a Framework

• Physical Elements
 - Handheld, mobile, basestation, satcom
 - General Purpose Processors, DSPs,

 RF Hardware, BUS structure
 - A particular implementation

Use Case View

Logical View

Component View

Deployment View

Figure 5.0-1 Use of Views to describe a system

The Use Case View expresses the requirements of a system (or a subsystem) in terms of scenarios, use
cases, in which the system interacts with its environment, the actors. A scenario is flow or sequence of
interactions between the system and its environment.

The Logical View identifies the conceptual entities of the system, usually as objects and classes with
attributes and operations. It also describes the relationships between these entities, and their dynamic
behavior in terms of states, state transitions, scenarios etc.

SDRF Technical Report 2.1 November 1999

5-3

The Component View describes the implementation units of a system. Components may be hardware
or software or combinations thereof. Components have defined interfaces, which are described in the
component view as well.

The Deployment View describes a specific configuration, in terms of processors, devices and
communication mechanisms. This view also allocates the Components from the Component View to its
nodes (processors) for a specific instantiation of a system.

What is a Framework

The four views identify the elements that are necessary to build the desired functionality of a system,
based on the requirements at the highest level. However, these elements do not operate in a stand-alone
fashion, it is necessary to make them cooperate. In order to do this, two additional pieces are needed to
complete the design:

1) The components must be designed in a consistent way, in order to allow interoperability. We can
call this a Design Pattern for components.

2) The actual interoperability mechanisms must be in place. This includes features like: How
components find each other in a distributed environment; What are the mechanisms with which the
components exchange data and control information; How are components activated, deactivated,
loaded, unloaded. These mechanisms may include standards, design patterns, and special
components dedicated to the task of making the other components work together. We can call this
structure a framework.

Even though components and design patterns may be reused between vastly different environments,
only the implementation of the framework (a particular deployment for example) is expected to vary
depending on constraints such as memory, power, size, processing power and speed requirements.
Therefore, it may be necessary to provide several examples of framework configurations, in which the
components may fit for different purposes. The final system depends on the properties of the actual
components and the way in which components are combined and configured into a framework. Figure
5.0-2 depicts the framework interaction with views.

SDRF Technical Report 2.1 November 1999

5-4

Components
Framework

Design
Patterns

Figure 5.0- 2 Framework Interaction with Views

SDRF Technical Report 2.1 November 1999

5-5

5.1 Handheld Framework Examples
Intentionally left Blank in this revision.

SDRF Technical Report 2.1 November 1999

5-6

5.2 Mobile Framework Examples

Below is a description of one method for implementing the mobile SDRF architecture module consistent
with the view structure. It is based on an object oriented approach. In the future other approaches may
be detailed.

5.2.1 An Object-Oriented Framework

5.2.1.1 Overview

This section describes the Software Defined Radio Forum architecture implemented with an object
oriented approach. This design enables objects in a multiprocessor environment to interact under real-
time constraints across boundaries imposed by different processor architectures and programming
languages. Use of object oriented technology permits development of software with a high degree of
encapsulation, and protects individual modules from perturbations in other parts of the system. It
facilitates redistribution of objects to processor resources in the system. It also provides a truly open
system, facilitating independent third party application development.

Software developed in this environment has inherent design for reuse. Interfaces are described in a
formal language so they can be readily published to make the system open for third party developers.

SDRF Technical Report 2.1 November 1999

5-7

5.2.1.2 The SDRF Framework

 The SDRF Framework is an implementation of the Tier 2 interface level (see Section 4.1.2.3).

Figure 5.2.1.2-1. SDRF Framework Objects

Figure 5.2.1.2-1. shows the framework components in a multiprocessor environment. Each processing
element, n, has a Processor Object (POn) that is responsible for instantiating other objects, loading
code, tracking status of available resources, and other housekeeping tasks that may be needed. A
communication module (COM) is also positioned in each processor to support inter-processor
communication.

One processing element is designated the Master by virtue of having a Domain Manager object
resident. The Domain Manager has a well-known address so the Processor Objects can register with
it. The Domain Manager maintains a registry of all of the Processor Objects, and communicates with
them to load class code, instantiate objects, and commit resources to applications.

The Implementation Repository is the system facility that provides code and structural information
needed to instantiate objects, and populate them in the various processors to provide resources for a
specific application. A File Manager is the storage facility used to provide persistence for the working
data of specific applications. These facilities are shown associated with the Master Processing Element,
but they could be located elsewhere, even in a remote system accessed by communication links.

Master Processing Element - P0P1 P2 Pn

COM COM COM COM

Domain
Manager

 PO1 PO2 POn

• • •

Processor Object PO0

File
Manager

Implementation
Repository

SDRF Technical Report 2.1 November 1999

5-8

5.2.1.3 Startup

Figure 5.2.1.3-1. shows the SDRF Framework components. The communication function is performed
by an object request broker (ORB), or other inter-object communication function and a transport layer
for controlling inter-processor messaging.

In addition to the framework objects, the transport layer and Framework Control function are shown.
They are the elements that have a role to play in the startup process.

Master Processing Element P0P1 P2 P3

ORB

Processor Object PO0
 PO1 PO2 POn

 Framework Control

Transport

ORB

Transport

ORB

Transport

ORB

Transport

ORB

File
Manager

Implementation
Repository Domain

Manager

Figure 5.2.1.3-1. SDRF Framework

When power is applied, each processor goes through a boot sequence, which includes loading and
instantiation of its Processor Object. In the Master Processing Element, the Domain Manager is also
instantiated, followed by the File Manager and Implementation Repository. Each processor object
does the necessary startup housecleaning and initiation, and then goes out over the bus through the
transport layer to the Domain Manager to register. Processors then retrieve the other code needed for
startup.

The system is now ready for an application to request resources, and execute. The system may come
up in its last known state, the NONE state (no active application) or by having an application designated
for automatic startup as part of the power-on sequence.

All of these objects are persistent for an epoch, the time from power up until system shut-down or reset.
Other objects will come and go as various applications are executed. Note that at this level of
abstraction there is nothing to differentiate the application - it could be a Software Defined Radio, a
bank of elevators, or a factory floor management system. In the next section we will discuss an SDRF
application.

SDRF Technical Report 2.1 November 1999

5-9

5.2.1.4 Mobile System Application of SDRF Framework

Figure 5.2.1.4-1. shows the system configured for an application. The Control function accesses
Framework Control Scripts to provide specific details of what objects are needed for each of the
processing elements in the system to implement the required applications. Those objects are beyond the
scope of the SDRF Framework, and will vary according to the waveform applications being executed,
so their characteristics are not specified in this section.

Figure 5.2.1.4-1. Framework Control and Application Objects

Master Processing Element - P0P1 P2 P3

ORB

Processor Object PO0
 PO1 PO2 POn

 Framework Control

Transport

ORB

Transport

ORB

Transport

ORB

Transport

ORB

File
Manager

Implementation
Repository Domain

Manager

A1a A1b A0a A0b A0c A2a A2b A3a

Anx Application objects, n = processor no., x = object no. in processor

SDRF Technical Report 2.1 November 1999

5-10

To start an application, Framework Control interacts with the Domain Manager to locate and allocate
the resources needed for channel setup and waveform instantiation. Then Framework Control orders
Processor Objects to obtain the objects they need and instantiate them. After the application objects
are in place control is passed to the application.

AIR

C

RF

C C C C

I I II

CONTROL

MSG

PROCESS

& I/O

C

Routing

Multimedia

Voice

Data

Flow Control

Network

LINK

PROC

(Black)

C

INFOSEC

C

MODEM

C

ANTENNA

C

I

C

Video

User Control

(HMI)

Figure 5.2.1.4-2. SDRF Reference Model

Figure 5.2.1.4-2., derived from the SDRF Reference Model, shows a structure for a typical SDR. At a
coarse level of granularity, it specifies the functions allocated to each of the component blocks. The I
interfaces are those that carry time-critical data. They must operate with latencies that are sufficiently
low to meet the Quality of Service requirements of the system, in effect, real-time. The C interfaces
indicate control flows. The SDRF Framework provides different mechanisms for connecting application
objects to satisfy the needs of these two types of interfaces.

Control interactions normally use the interobject communication method, and are bi-directional. The
calling object blocks until the called method completes providing its service, and returns. This is typical
client-server operation.

The I interfaces, however, operate as set of transformations in series. After they are instantiated,
control establishes a reference to the transformation method of the next object in the sequence. When
each object has completed its task, it passes the data packet on to the next transformation in line
through a direct invocation of that object’s reference, bypassing the normal interobject lookup. Control
information may be included in the I communication paths, in which case it is afforded the same real-
time performance as information data.

5.2.1.5 Summary

 This description of the SDRF Framework demonstrates how an object-oriented approach implements
the SDRF architecture, provides system openness and realizes the benefits of

SDRF Technical Report 2.1 November 1999

5-11

5.2.2 Object Orientation and CORBA Illustration

5.2.2.1 Overview

As discussed above, object orientation is a software engineering approach that encapsulates data and
the code to operate on that data in a package called an object. This section discusses the Common
Object Request Broker Architecture (CORBA), a specific approach to an object-oriented software
framework appropriate for use in SDRs.

The CORBA specification has been published by Object Management Group, Inc. (OMG), an
organization established to define standards in distributed object computing. It is middleware that
enables objects in a multiprocessor environment to operate across boundaries imposed by different
processor architectures and programming languages. By abstracting the details of inter-object
communication out of application objects, it facilitates development of software with a high degree of
encapsulation, protecting individual modules from perturbations in other parts of the system.

Software developed for use with CORBA in an object oriented environment has inherent design for
reuse. Interfaces are described in the CORBA Interface Definition Language (IDL) so they can be
readily published to make the system open for third party developers. Communication between objects
on different processors uses the CORBA Common Data Representation (CDR) over the system bus so
that independently developed modules can be brought together to provide “plug and play” capability.
Object Request Brokers (ORBs) abstract the details of message passing from the application objects,
and the General Inter Orb Protocol (GIOP) provides communication between ORBs.

5.2.2.2 Legacy Systems

In the past, systems have been developed using the techniques of structured analysis and structured
design. This approach leads to early functional decomposition of the system under development, often
before the system requirements are completely understood. Once the subsystems have been defined,
however, it is difficult to move modules from one to another.

Domain 1 Domain 2 Domain 3

SW
Package

B

SW
Package

A

Transport Layer Transport LayerTransport Layer

Figure 5.2.2.2-1. Message Passing

SDRF Technical Report 2.1 November 1999

5-12

Figure 5.2.2.2-1. shows a message passing system. Package A interacts with package B by sending
messages through the transport layer and over the system interconnection. Package A contains the
information needed to access the transport layer API. It also knows the specific details of where
package B is, what messages B knows about, and the data formats to be used in preparing the
message.

If a decision is made to move package B from Domain 3 to Domain 2, the developers of all three
domains have to coordinate to make the change. Changes will be required in all three domains.

In this type of system it is necessary to have unique message identifiers to avoid conflicts, so a central
authority is needed to control them. That complicates independent development of software modules to
operate on the system.

5.2.2.3 Object Oriented Software

Object-oriented (OO) software design has been in existence as a computer science concept for a
number of years. With the acceptance of languages such as C++ and Java that support OO constructs, it
has become a mainstream software engineering approach.

An object is a set of data with a set of methods, or computational procedures, to operate on that data.
Public methods are invoked by other objects requiring services. Private methods and data are hidden
to avoid unnecessary interaction and so they may be changed without unwanted side effects.

When objects on different processors are to interoperate in a CORBA environment, they use the
services of an object request broker (ORB).

Transport Layer

ORB

Object A

Skeleton A

Stub
Repository

Object T

Figure 5.2.2.3-1. The CORBA environment

The CORBA ORB defined by the Object Management Group is illustrated in Figure 5.2.2.3-1. It
defines a stub as a proxy for a remote object, and a skeleton to receive method invocations from other

SDRF Technical Report 2.1 November 1999

5-13

objects. The intent is to abstract the code needed for communication between objects into a common
layer rather than requiring that it be built into each one.

Object A can receive invocations from other objects. If the object is on the same processor the
invocation uses the normal method invocation or function call mechanism of the language in use. Object
T, for instance, can invoke services from Object A directly. If the client object is on another processor,
the request comes in through the ORB and the skeleton.

Object A can request services from other objects. Again, local servers do not need to invoke the
ORB. To access a remote object, A does so through the remote servers stub.

ORBs operate in pairs to support a given client-server interaction. An ORB is an interface between the
operating conventions of the processor on which it resides and the common world of CORBA. Each
ORB executes on the same processor as the objects it supports, and is compatible with the language in
which they are written. ORBs communicate with each other over some transport mechanism available
in the system using an Inter-Orb Protocol (IOP). Data on the bus is transferred according to the rules of
the Common Data Representation (CDR) so that the receiving ORB can convert data into the local
native format.

Transport Layer

ORB

Object A

Skeleton A

Stub
Repository

Transport Layer

ORB

Object B

Skeleton B

Inter-ORB communication

(C) (C)++

Figure 5.2.2.3-2. Remote method invocation

Figure 5.2.2.3-2 shows a client-server pair. Object A, the client, needs the services of Object B. A
invokes the stub for B from the local stub repository, without knowing where B is located, just as if B
were a C++ object on the same processor. The ORBs handle all the details of message passing,
including marshaling the arguments of the call, and converting them into the CDR to operate over the
bus. The local ORB works with the remote ORB to perform data conversion, unmarshal the
arguments, and pass the invocation to the skeleton for B. That skeleton, written in the C language,
makes a function call to B to request the services, and passes the result back to A through the same
route. There is no need for either of the objects to know where the other is running, what kind of
processor it is on, or what language it is written in.

SDRF Technical Report 2.1 November 1999

5-14

This high level of abstraction simplifies system integration, and builds reusability into the objects. It does
require development of an ORB for each different CPU type used in a system.

Transport Layer

ORB

Object A

Skeleton A

Stub
Repository

Transport Layer

ORB

Legacy module B

Skeleton B

Inter-ORB communication

(C) (C)++ Wrapper

Figure 5.2.2.3-3. Wrapper for legacy code

Except for performance issues, these concepts are not constrained to operation over the system bus.
Object B could be on a communication link thousands of miles away. Further, as shown in Figure
5.2.2.3-3, object B may be a legacy module or a whole legacy system adapted to the CORBA
architecture with a wrapper.

Historically system design has made use of coarse-grained subsystems that communicate with carefully
defined messages. Modifications to one subsystem frequently have repercussions in a number of other
parts of the system. The CORBA approach provides a fine-grained structure, populated with objects
that are internal surrogates for the real-world system components.

Transport Layer

ORB

Object A

Skeleton A

Stub
B

Stub
Rep

Object B

Skeleton B

Stub
Rep

General Inter-Orb Protocol (GIOP)

Transport Layer

ORB

Transport Layer

ORB

Figure 5.2.2.3-4. Object relocation

SDRF Technical Report 2.1 November 1999

5-15

In addition, the allocation of objects to processors can be easily changed for load balancing or system
modification. Moving object B to the central domain requires only installation of the code and
publishing the new location. Object A does not know that a change has taken place.

5.2.2.4 Interface Definition Language

Definition of the SDRF model requires a set of standard interfaces for communication between modules
in an open architecture for a Software Defined Radio (SDR). There is a need to specify those open
application programming interfaces (APIs) in a fashion that is both useful and unambiguous.

One such technique is to define the exact structure of the message that is passed across the interface.
Such a message might be defined as depicted in Figure 5.2.2.4-1.

0 16 24

Message Type x004B

Set_Xmit_Channel

Modulation
 1 = FM
 2 = AM

Frequency

floating point

8 32 40 48 56 64 72

Figure 5.2.2.4-1 Message Structure Example

This message is used to set the transmit channel frequency and modulation type, designated by its
message type (hexadecimal 004B). The modulation type is indicated by a code in the third byte. The
operating frequency is specified as a floating point number.

Although this is a very clear expression of the message contents, it is not in a form where it can be used
with automated tools. Each module designer has to include code to build the message if it is to be
transmitted, or parse it into its component parts if it is to be received. Confusion may be introduced
when there are many pages of messages in a system definition.

One of the first areas of standardization OMG established was the Interface Definition Language (IDL),
a means of describing the public portion of an object. Following the model established by C++, IDL
defines a syntax for classes of data, and identifies methods to work on that data. But IDL is purely
declarative, it does not describe the work performed by the interfaces it defines. That information is
presented in other documentation accompanying the IDL.

IDL has seen enough use so that software tools are available to work with it. In particular, there are
cross compilers for a number of languages that take IDL as input, and develop the declaration section of
the module in C, C++, Smalltalk, Ada, Java, etc. Because of this cross-language capability IDL is an
appropriate way to describe the details of inter-object interfaces after the modules have been identified
and the interface connections described at a high level.

The structure of IDL is described in the following pseudo-coded module. Language keywords are in
italics. Square brackets [...] indicate optional elements. Angle brackets indicate identifiers with their
modifiers. Curly brackets {...}, parentheses (...) and semi-colons “;” are part of the are part of the

SDRF Technical Report 2.1 November 1999

5-16

language grammar, and must be present as delimiters in the positions given. Comments are in sans-
serif font.

module <identifier> -Module provides scoping for related interfaces
// Comment 1. -Any characters on a line after the // symbol are comments
// Comment 2. -Comments are treated as white space, to be ignored by a compiler
{

<types>; -Various declarations with module-wide scope
<constants>;
<exceptions>;

interface <identifier> [:inheritance] -Equivalent to a class
{

<types>; -Declarations with scope limited to this interface
<constants>;
<attributes>;
<exceptions>;

 -Operation, equivalent to a class member function or method
<return_type> <identifier> ([<direction parameter>])

[raises (exception_name);
}

}

Module. The module is the basic container for IDL. Its purpose is to provide an overall name that can
be used as part of a hierarchy to provide unique naming of its internal elements, It also provides a
reasonable way to structure multiple interfaces. Modules may be nested.

Comment. Comments can be used in the definition to provide further documentation. Either the C
language form /* ...*/ or C++ form //... can be used. They are ignored by a compiler parsing the code.

Module Level Definitions. At the top of the module a variety of definitions can be made. Items
declared here have scope throughout the module.

Interface. The interface is the primary working element of IDL. It is similar in nature to a class in C++.
In particular, it can inherit from a base class, receiving definitions and operations from the higher level
class, and extending them. Multiple inheritance is permissible, but must be free of conflicts.

Interface Level Definitions. Definitions at the interface follow the same syntax as at the module, but
have scope local to the interface.

Operations. Operations are the equivalent of methods in C++, and are identified by the parentheses
following them. They contain any parameters communicated in and out of the operation, and must be
present even if empty.

The following is an example of an IDL description from an information transfer system. The system has
the concept of virtual link, a collection of resources that have facilities for Information and Control set up

SDRF Technical Report 2.1 November 1999

5-17

so that they can operate as a channel. There are different sets of commands needed to initialize the
system, set up channels, and operate channels once they are set up. These classes differ in their
performance requirements and in the amount of overhead needed. The class of commands used for
such operations as changing frequency or switching from receive to transmit is called Link_Command in
this example. The operations in the example inherit from the base Link_Command interface and add
their specific functionality.

The operator at the user interface has the ability select a frequency, and FM or AM as modulation
types. Transmit and receive can be on the same or different frequencies as commanded by invoking the
set_xmit_channel and set_rcv_channel operations. The initial condition in receive mode, when the Push
To Talk switch is activated the system switches to transmit mode.

module AM_FM_Virtual_Link { // Namespace for FM/AM VHF/UHF

 interface Link_Command {
 attribute float frequency;
 };

 enum ModulationType { AM, FM };

 exception OutOfRange { // System can't do it
 string errormsg;
 };

 exception IllegalFrequency { // Frequency not authorized
 string errormsg;
 };

 interface Xmit : Link_Command { // Transmit inherits from Link_Command
 void set_xmit_channel (in float frequency, in ModulationType Modulation)
 raises (OutOfRange, IllegalFrequency);

 void transmit (); // PTT is asserted
 };

 interface Rcv : Link_Command { // Receive inherits from Link_Command
 void set_rcv_channel (in float frequency, in ModulationType Modulation)
 raises (OutOfRange);
 void receive (); // Initial condition, PTT has been released
 };
};

IDL provides a method for interface description that is both rigorous and practical. Full specification of
IDL is found in only 38 pages as Section 3 of the OMG document The Common Object Request
Broker, V2.1, dated August, 1997.

5.2.2.5 Summary

CORBA is an effective standard for implementation of SDRs. In this section we have discussed how it
abstracts details of communication between objects out of the application code into the common system

SDRF Technical Report 2.1 November 1999

5-18

framework. Doing so reduces the effort required from application programmers, and improves system
openness. We have also described how IDL provides an effective mechanism for documenting
interfaces.

SDRF Technical Report 2.1 November 1999

5-19

5.2.3 Mobile Framework

This section defines the software framework for an open, distributed, object-oriented, software-
programmable radio architecture derived by the members of the SDR Forum’s Mobile Working Group.
The object-oriented methodology used to define the software architecture is based on the Institute of
Electrical and Electronic Engineers' Recommended Practice for Architectural Descriptions (draft), IEEE
P1471.

5.2.3.1 Definitions and Guidelines

This section defines the key terms used in the description of the software architecture including the Core
Framework (CF) and the Operating Environment (OE). Together with a Rule Set (part of the
architecture definition), the guidelines for design and implementation are also provided.
The software architecture is composed of the Operating Environment (OE) which includes the Core
Framework (CF). The Rule Set for the software architecture comes from the OE and includes the
design rules embedded in the attributes (behavior and interfaces) and in the structure defined by the CF
and OE.

5.2.3.1.1 Core Framework (CF)

The CF is the essential, “core” set of open interfaces and services that provide an abstraction of the
underlying software and hardware layers for “non-core”, i.e., non-CF, software radio applications. The
CF consists of

• Base CORBA interfaces (Message, MessageRegistration, LifeCycle, StateManagement,
and Resource) that are inherited by core and non-core software applications

• Core applications (DomainManager and ResourceManager) that provide framework control
of resources via CORBA interfaces

• Core services (Logger, Installer, Timer, FileManager, FileSystem, and File) that support
both core and non-core applications via CORBA interfaces

• An optional CORBA Factory interface for controlling the life span of core and non-core
applications

• A DomainProfile file that describes the properties of hardware devices and software resources
in the radio.

Elements of the CF are colored with aqua shading in the various diagrams throughout this document and
are also denoted with Italics in the text.

Figure 5.2.3.1.1-1 is a diagram showing the elements of the CF and their relationships.
This figure illustrates the readability of the Unified Modeling Language (UML) diagrams used to define
the software architecture. In the figure, boxes represent classes of things (in this case CORBA software
objects and interfaces). Lines connecting boxes represent associations between things. An association
has two roles (one in each direction). A role can optionally be named with a label. The role from A to B

SDRF Technical Report 2.1 November 1999

5-20

is nearest B, and vice versa. For example, the roles between DomainManager and
ResourceManager can be read as: “A DomainManager oversees one to many ResourceManager(s)”
and “one to many ResourceManager(s) register with a DomainManager”. Roles are one-to-one
unless otherwise noted. A role can have a multiplicity, e.g., a role marked with a ‘1..*’ is used to denote
“many,” as in a one-to-many or many-to-many association. A diamond (at the end of an association
line) denotes a “part-of” relationship. For example, Files are part of a FileSystem. A triangle
arrowhead (at the end of an association line) is used denote an “inheritance” relationship between a
parent class (pointed to) and a child class (or “subclass”). For example, a Resource inherits all
operations of the Message, MesssageRegistration, Life-Cycle, and StateManagement interfaces.

The stick-man figure (referred to as an “actor”) represents an external source of command and control
(C2) for the radio. The DomainManager provides specific interfaces for controlling and monitoring the
resources of the radio. Other (non-core) applications may also provide more specific interfaces for
controlling and monitoring their specific behavior.

Next to the block labeled “Non-Core Applications” is a list of the example types of applications that
will be hosted on this framework. These applications inherit attributes from the class called Resource,
which in turn inherits the Message, MessageRegistration, LifeCycle, and StateManagement
interfaces. Applications are managed by and/or make use of the services provided by the remaining
elements of the CF. For example, a non-core application Access Resource provides the interface into
hardware devices that are instantiated in a specific implementation. This interface provides the
connection, for example, to a Hardware Modem or a Security Module. Section 2.2.5.1 discusses the
CF in more detail.

A complete conceptual model of the SDR Software Architecture is depicted in Figure 5.2.3.1.1-2.
This model provides an informative summary of the key architectural concepts and depicts the inter-
relationships of the CF components, non-core application resources, and physical devices.

Example hardware devices are depicted at the bottom of the figure. Example types of non-core
application resources, including waveform resources, adapters, access, and utility resources are
depicted in lower half of the figure. The CF components are depicted in the upper half of the figure. An
“actor”, i.e., a human user (or an application acting on the behalf of the user, e.g., a workstation
application, or a numeric keypad application) controls the SDR framework.

SDRF Technical Report 2.1 November 1999

5-21

Installer

 CF Services

Logger

Timer

DomainManager

FileManager

ResourceManager

Factory

HW Device

registers with 1..*
oversees1

accesses SW
files via

1

knows what SW
is available via

1..*

creates static core &
dynamic non-core 1..*

detects &
reports

properties of 0..*

1

instantiates classes of

1..*

1

requests
resources of

1..*

provides

StateManagementMessageRegistrationMessage

sets or gets
resource states via

sets up resource
interconnects via 1..*

File stores & retrieves

0..*

bases allowable
configurations on

1..*

are types of

Executable

SW
Domain
Profile

1

1

1

1..*

controls
radio via

1

acts on
C2 for

FileSystem

0..*

1..*

1 1 1

1

1

1..*

1..*

Core
Services

Core
Applications

Base CORBA
Interfaces

Non-Core (Radio) Applications

1

Core Framework (CF)
Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

OE

Resource

inherits base CORBA interfaces

loads & unloads
1..*

are composed of different types of

LifeCycle

1

1..*
guides resource

startup & teardown via

• Network
• Access
• Utility

• Modem
• Link
• Security

Figure 5.2.3.1.1-1. The SDR Core Framework (CF)

SDRF Technical Report 2.1 November 1999

5-22

Installer

 CF
ServicesLogger

Timer

DomainManag
er

FileManage
r

ResourceManag
er

Factory

Access

Link

registers
with 1..*

oversee
s1

accesses
SWfiles via

1

knows what
SWis available
via

1..*

loads core
&non-core1..*

detects &
reports

1

1

creates
1..*

1

request
sresources

of
1..*

ModemAdapte
r

provide
s

LifeCycl
e

MessageRegistrati
on

Messag
e

are
types

guides start-up
&teardownvia

sets up virtual
pathdestinations

via
1..*

File stores &
retrieves

0..*

bases
allowableconfigurations

on 1..*

are
typesof

Executabl
e SW

Domai
nProfile

1

1 1

Modem Networ
k

UtilityRF

HostAdapte
r

AudioSerialEtherne
t

GPSMode
m

GPLRF Key
Fill

Crypto

SecurityAdapte
r

Securit
y

applicatio
n

decrypts
CTfor
1..*

sends
PT to

1

decrypts
PT for 1..*

1 sends
CT to

1..*

controls
radio
via

1

acts on
C2 for

Bridge Router

1..*

routes
to/from1..*

bridges
to/from 1..*

translate
sprotocols

for 1

1
1

1translate
sprotocols

for

1..* intercept
sCT
to/from

1

111

1
implement
sModem API

for

1 1

RF
API

analog

1..*

acts on
BB / IF
/complex

for
1..*

1acts on
A/D,
D/A for

1
implement
sInfosec API

for

1
intercept
sPT

to/from

Signal
Gen./Antenn
a

of radio

Resource

FileSyste
m

0..*

1..*

1

resource
s

1..*1..*

HW
Device

provide
sservices

for
1

1..*

Waveform
provide
sservices

for

provide
saccess
to

1 1 1

1

1

1..*

1..*

1

Gatewa
y

Repeate
r

retransmit
ssignals
of

1

1

StateManageme
nt

1..*
loads
&unloads

provide
sservices
for

0..*

1

1..* sets/getsResourc
e

 states
via

1

1

Core Framework
(CF)Commercial Off-the-Shelf

(COTS)

Non-Core (Radio)
Applications

OE

Figure 5.2.3.1.1-2. The SDR Software Architecture

SDRF Technical Report 2.1 November 1999

5-23

5.2.3.1.2 Operating Environment (OE)

The OE is the combined set of CF services and commercial off-the-shelf (COTS) infrastructure
software (e.g., bus support packages, operating system and services, and Common Object Request
Broker Architecture (CORBA) Middleware services) integrated together in a SDR implementation.
The OE also defines a complete development environment for application software suppliers and
reduces the non-recurring engineering cost associated with developing new capability waveforms.

Figure 5.2.3.1.2-1 illustrates the OE and its relationship to the CF. CORBA provides a well-defined
structure and logical definition between the SDR software objects.

Radios that do not have security requirements would need neither security software applications nor
separate black (secure) and red (non-secure) hardware busses.
This diagram also introduces the concept of “adapters” which are ways to incorporate legacy and non-
CORBA compliant elements into the radio. Adapters are further described in section 2.2.5.1.4.2.

SDRF Technical Report 2.1 November 1999

5-24

Core Framework (CF)
Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

OE

Red (Non-Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

RF API

RF API

Black (Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Core Framework IDL (“Logical Software Bus” via CORBA)

Non-CORBA
Modem

Applications
Non-CORBA
Modem API

Non-CORBA
Security

Applications

Non-CORBA
Host

Applications
Non-CORBA
Security APIRF

Modem
Applications

Link, Network
Applications

Security
Applications

Modem
Adapter

Security

Adapter

Security
Adapter

Host
Adapter

Host
Applications

Modem NAPI Link, Network NAPI Link, Network NAPI

Non-CORBA
Host API

Link, Network
Applications

Figure 5.2.3.1.2-1. The SDR Operating Environment (OE)

SDRF Technical Report 2.1 November 1999

5-25

5.2.3.1.3 Rule Set

The Rule Set provides general guidance for the design and implementation of a SDR architecture. We
have defined an initial set of rules relating to the SDRF Architecture. The rules constrain the
implementation to open standards and commercial elements. Government agencies or industry
standards bodies may choose to provide stricter guidelines relating to Form Factor, Interfaces,
Environmental Requirements, and Software Operating System applicable across multiple domains that
promote greater reuse at the hardware object (physical module) level.
The guidelines for a software developer writing SDR application software:

• System interfaces are selected from open, commercial standards (wide usage, available from
multiple vendors, and expected to have long-term support).

• System components are chosen to maximize reuse across domains.

• Software complies with the CF interface definitions and structure.

• Software uses POSIX OS and Real-time extensions.

• At a minimum, software complies with the OMG minimumCORBA specification (orbos/98-08-
04). Any extensions and/or services above and beyond minimumCORBA comply with the
OMG CORBA 2.2 (or subsequent) specification (e.g. Real-Time CORBA).

• Software is developed in a higher order language for ease in processor portability.

5.2.4 Software Architecture View

5.2.4.1 Introduction

The SDR Software Architecture has been defined using Object Oriented (OO) analysis and design
methods to specify an open, modular, reusable Software Architecture that is portable between SDR
domains and is independent to the maximum extent practical of the implementation dependent hardware
architecture.
This Section provides rationale for the selection of the Software Architecture defined herein.
Subsequent sections provide further definition of the architecture as seen through four “views”:

0, which is derived from the SDR functional reference model and broadly
categorizes the functional roles that may be performed by and/or controlled by SDR software entities
and the interface relationships among these software entities. This view also illustrates the Core
Framework (CF) and its role in providing class objects from which user application objects inherit
common types of behavior and interfaces.

Structural View – Section 0, which illustrates the multi-layered structure of the Operating Environment
(OE), including bus support, COTS software, industry standard protocol stacks, Core Framework
(CF) services, and SDR waveform and networking applications.

SDRF Technical Report 2.1 November 1999

5-26

Logical View – Section 0, which includes more detailed descriptions of the CF as well as the
relationships between the various CF objects and interfaces. Extensive use of Unified Modeling
Language (UML) diagrams and Interface Definition Language (IDL) of the Common Object Request
Broker Architecture (CORBA) support the textual descriptions of the CF.1

Use Case View – Section 2.2.6, which contains scenarios that depict examples of how the elements of
the Software Architecture, including COTS software, CF services, and SDR applications collaborate or
interact with one another to satisfy user requirements.

5.2.4.2. Software Architecture Rationale

This section summarizes the rationale behind the selection of the critical Software Architecture
components. The critical software components of the architecture can be grouped into three categories:

1. Middleware Selection

2. Operating Environment

3. Core Framework (CF).

The critical software components support the following SDR goals:
1. Wide Industry Acceptance

2. COTS Availability

3. Distributed-Object Computing Architecture

4. Reuse and Portability

5. Scalability

6. Support for Different Domains

7. Performance

8. Security and Safety.

5.2.4.3. Middleware Selection Rationale

Support for a distributed architecture is a crucial goal of the SDR. Middleware is the software used to
transfer messages across a distributed architecture. CORBA was selected as the middleware
component based on the following rationale:

1. CORBA is an open standard from the Object Management Group (OMG). Over 800
companies are members of the OMG. CORBA is a widely accepted industry standard and
there are many different COTS CORBA vendors. CORBA abstracts the bus hardware under
an Object Request Broker (ORB) software bus. Abstraction of the bus hardware allows the
applications to be ported over different buses. The CORBA specification calls out
minimumCORBA and the Portable Object Adapter (POA). The minimumCORBA

1 CORBA, IDL, and UML are open industry standards defined by the Object Management Group (OMG), a consortium of over 800 worldwide members. The OMG’s charter includes the
establishment of industry guidelines and detailed object management specifications to provide a common framework for application development. Conformance to these specifications will
make it possible to develop a heterogeneous computing environment across all major hardware platforms and operating systems. These standards are publicly available on the Internet at
http://www.omg.org.

SDRF Technical Report 2.1 November 1999

5-27

specification calls out the smallest subset of CORBA functionality and the ORB interface. This
ability to subset the CORBA functionality supports scalability. The POA standardizes the
interface to the ORB on the server side. Applications that are written to sit on a POA and/or
minimumCORBA ORB can be more easily ported to a different vendor’s ORB.

2. CORBA is language neutral. CORBA uses an Interface Definition Language (IDL) to define
the interfaces between distributed objects. There is movement away from programming
applications from scratch using low-level protocols. Since the process is automated, errors
don't arise from manual handcrafting which speeds up coding, testing, and integration. All this
makes the code more reliable and maintainable. Language specific IDL compilers convert the
IDL into software headers, packages, etc. Multiple languages could be used across the
distributed architecture. Legacy code would not have to be re-written, but would have to be
wrapped with the CF.

3. The platforms that communicate using CORBA do not all have to be the same type of
platforms. The CORBA framework does not depend on processor type, bus type, or
operating system. Big endian processors can communicate with little endian processors.
Problems with word size are reduced. Windows applications can even talk to Unix
applications.

4. In the CORBA framework, a client and a server can be implemented in different languages but
still communicate through the ORB. Different IDL compilers convert IDL into skeletons, stubs
and interfaces in different programming languages. The ORB marshals and de-marshals data
between local processor and language-based formats and the CORBA a "wire-format."

5. Middleware bridges and Environment Specific Inter-Operable Protocols (ESIOP) can be used
to connect to DCE, RPC, DCOM and Java Remote Method Invocation (RMI). Commercial
vendors supply RPC for the Texas Instrument (TI) C4x processor. This would allow a
CORBA capable module to talk to a digital signal processor (DSP) that uses RPC. The
CORBA General Inter-ORB Protocol (GIOP) allows a CORBA implementation to be ported
over different transport layers than just the TCP/IP based Internet Inter-ORB Protocol (IIOP).

6. Distributed Common Object Model (DCOM), is Microsoft proprietary More vendors support
CORBA and CORBA is supported on more platforms than DCOM. CORBA is more
applicable to the real-time domain than DCOM because of scalability and speed related
services.

7. CORBA defines several services that support faster than “standard” speed. The CORBAreal-
time service can provide thread priorities and present quality of service (QoS) options to the
application. The CORBAtelecom service describes the use of a low-latency by-pass of the
standard CORBA stack. Control is performed using standard CORBA Interfaces. Data is
streamed outside of the CORBA ORB.

8. Timing studies have been made of the data flowing up and down a protocol stack. These
studies indicate that less than 20% of the processing time is spent in the CORBA part of the
stack. It should be remembered that the majority of the processing performed by CORBA is
not unnecessary overhead. The CORBA ORB, stubs, skeletons and helper files “automate”

SDRF Technical Report 2.1 November 1999

5-28

what would have to be done “by hand” in a traditional message based system. This automatic
generation of the code reduces the SLOC count that has to be developed and reduces
development time and cost.

5.2.4.4 CORBA Timing Studies

The synchronization of data between two distributed objects, a Producer and a Consumer, can occur in
one of four ways:

1. No Synchronization – if the socket is not available, the data is dropped.

2. Synchronization with Transport – the data makes it to the socket but one doesn’t know if the
Consumer received the data.

3. Synchronization with Socket – the data makes it to the server (Consumer) but the Producer
doesn’t wait for the Consumer to process the data. This technique means the data is
guaranteed to make it to the Consumer.

4. Full Synchronization – the data makes it to the server (Consumer) and the Producer waits for
Consumer to process the data.

The implementation of a CORBA operation by an ORB depends on the location of the Consumer and
Producer and the capabilities of the ORB. The implementations, listed in order of best timing
performances, are:
A. Collocated – where the Consumer and Producer are within the same address (process) space. The

collocation call acts as a virtual language Function call and there is no marshalling of data. The
collocated timing is a maximum of 20 microseconds depending on the ORB and the processor. The
SDRF has verified this time on a COTS 200 MHz Pentium processor.

B. Local – where the Consumer and Producer are in separate address space (different processes) but
on the same processor. The times for local process to local process CORBA communication varies
on the processor speed, ORB capability, and whether two different ORBs are being used for the
local communication. When two different ORBs are used, the IIOP communication mechanism is
being used. If the same ORB is being used for both the Consumer and Producer objects, then the
vendor may have optimized the communication between them by using a local Object Adapter
(OA) instead of an IIOP OA, thus no marshalling of the data occurs. This can make the local
communication twice as fast as the IIOP transfer. This local OA could be implemented using
shared memory or UNIX Domain Protocol for data transport. One CORBA vendor,
ORBexpress, provided the following timing information for local communication:

1. Using a one-way operation passing 64 bytes of data:

a) 50 microseconds on a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi (small cache)
running Solaris 2.6.

b) 40 microseconds on a PC with a 266 Mhz Pentium II processor running Windows NT.

SDRF Technical Report 2.1 November 1999

5-29

2. Using a two-way operation passing 64 bytes of data:

a) 310 microseconds on a PC with a 266 Mhz Pentium II processor running Windows NT.
The ORB used about 80 microseconds of the total processing time.

b) 315 microseconds on a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi (small cache)
running Solaris 2.6. The ORB used about 115 microseconds of the total processing time.

Other vendors show local times from a low of 200 microseconds to a high of 900 microseconds
depending on the processor speed and length of the data transfer.

C. Processor-to-Processor – where the Consumer and Producer are on separate processors. The
communication conforms to the GIOP/IIOP protocol at the above synchronization levels. The most
important features of the ORB with respect to the performance of the request delivery mechanism
are the speed of marshalling, the efficiency of the communication mechanism, the speed of
dispatching (especially with respect of scalability and demultiplexing in the Object Adapter), and the
speed of unmarshalling. These are areas that the CORBA vendors are actively working and
competing with another to improve the performance of their products. One CORBA vendor,
ORBexpress, provided the following timing information for processor-to-processor communication:

1. Using a one-way operation passing 64 bytes of data:

a) 50 microseconds between a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi
(small cache) running Solaris 2.6, and a PC with a 266 MHz Pentium II processor
running Windows NT.

2. Using a two-way operation passing 64 bytes of data:

a) 420 microseconds between a Sun UltraSPARC 5 with a 270 MHz UltraSPARC IIi
(small cache) running Solaris 2.6, and a PC with a 266 MHz Pentium II processor
running Windows NT.

b) 370 microseconds between two 300 MHz UltraSPARC workstations.

Another test report comparing various ORB vendors using one-way operations for sending data of
varying lengths provided additional information. The Visibroker showed the best timing for one-way
operations with no parameters of 130 microseconds per call, second was Tao at 180 microseconds.
Visibroker’s best one-way times were 671 microseconds for 1k array of characters and 6.25
milliseconds for 10k sequence of characters. The Tao was second best at 701 microseconds for a 1k
array of characters. The test noted that these results are limited by the network bandwidth. The two-
way (synchronization) tests showed the performance was at least twice as slow as a one-way operation.
The SDRF has verified some of these two-way times using COTS 200 MHZ pentium processors
connected by a 100BaseT Ethernet. For all the tests, the server was running on a Compaq Proliana
333MHz bi-Pentium II machine with 512Mb of RAM and the client was running on a 266MHz Pentium
II with 64Mb of RAM. Both were running on Windows NT 4.0. The client and the server machines
were communicating thanks to 16Mb Token Ring cards.

The scalability implementation of an ORB impacts the timing performance of an ORB server. Scalability
is measured by how well an ORB scales based upon the number of object adapters, the number of

SDRF Technical Report 2.1 November 1999

5-30

objects within an object adapter, the number of operations in an interface, and the nesting level of
interfaces. There are real-time ORBs (Visibroker, ORBexpress, TAO, etc.) currently addressing
scalability where no performance degradation is detected, which means the time is basically the same for
dispatching a call to the first object as it is for the 1000th object.

5.2.4.5 Operating Environment Rationale

The OE is the infrastructure (hardware and software) upon which an SDR implementation is based.
Wide-ranging, domain-specific performance requirements and constraints influence the selection of OE
components. The selection of specific OE components is the prerogative of each SDR design. The
SDR Forum encourages the selection of OE components that support open, industry standards and are
available commercially. At a minimum, the OE must support the CF and software applications that are
hosted upon it. Further considerations on the desirable attributes of the OE are discussed in Section
2.2.4 Structural View.

5.2.4.6 Core Framework Rationale

The CF represents a baseline that has been evolved from the SDR Forum’s functional reference model.
Software modularity, portability, and dynamic instantiation are crucial goals of an SDR implementation.
When a radio powers up, the radio does not know what hardware or software is available or needed.
The core components of the CF are the DomainManager, ResourceManager and software Resource.
This triad provides the ability to investigate the capabilities of a radio domain and implement the
requested functionality.
An application in a distributed environment can consist of many different software components
(Resources). These components can be objects, processes, and/or threads on many different
processors. The CORBA Resource interface is specific enough to exert the required control but
generic enough to support many different applications.

A ResourceManager has two purposes. A ResourceManager provides the DomainManager with a
property list of the hardware devices and software resource co-located with the ResourceManager.
The ResourceManager also oversees the operation of the co-located software Resources.

The DomainManager keeps track of the Domain Profile. The Domain Profile keeps track of the
device properties and software resources on the radio domain. The DomainManager uses the
ResourceManager and other CF components to distribute and connect software Resources.
The member companies of the SDRF mobile working group have jointly agreed on the architecture.
Further industry support is being solicited through other SDRF working groups. Eventually the
architecture will be presented to the OMG as a proposed CORBAfacility.
The CF is being offered as an open, non-proprietary architecture. Eventually the CF will be available
from multiple vendors. The entire purpose of the CF is to bring up a distributed application in a
controlled and secure manner. Because of the use of CORBA and a standardized processor
environment the CF supported components should be able to port between different processors,
RTOSs, buses and ORBs. The CF is lightweight, and the number of interfaces and operations required
by the CF has been kept to a minimum. The CF scales to all SDR domains (mobile, base-station,
satellite, and handheld). All SDR domains have the same goals for installing/upgrading multiple

SDRF Technical Report 2.1 November 1999

5-31

applications, and dynamically allocating these resources to physical assets and linking them to other
software Resources. The linking of Resources to other Resources occurs within a processor and
across a bus for all the SDR domains. CORBA vendors code (ORB core, and the size of generated
stubs and skeletons code form the IDL compiler) are scalable. Some ORBs currently have small
footprints around 20 kbytes. The use of CORBA and POSIX provide a basis for security and safety.

5.2.5 Functional View

5.2.5.1 SDR Software Reference Model

The SDR software reference model is depicted in figure 5.2.5.1-1. The key points about the software
reference model are:

1. It serves as the basis for defining the functional view of the SDR Software Architecture

2. It broadly introduces the various functional roles performed by SDR software entities without
dictating a structural model of these elements

3. It broadly introduces the control and traffic data interfaces between the functional software
entities

4. It introduces the color coding of each functional entity used throughout the definition of the SDR
Software Architecture.

This functional software reference model is limited in that it cannot form the basis of a distributed object-
oriented software architecture. For example, the networking and waveform functions performed by
Black-Side Processing and Red-Side Internetworking entities will be, in some cases, completely
different functions. In other cases, they will be completely identical functions. A software architecture
that attempts to “force fit” these functions into one place will not provide the flexibility demanded by the
various SDR domains, nor the reusability desired by software radio vendors and operators. The SDR
Forum uses the functional model as a point of transition (or “evolution”) into the distributed object-
oriented architecture defined by the other three software views (i.e., structural, logical, and use case).

5.2.5.2 Transition from Functional Model to OO Model

SDR software applications will perform user communication functions that include modem-level digital
signal processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external access, security, and embedded utility behavior. These are user-oriented or “non-core
applications”, i.e., applications that are not part of the Core Framework (CF). The term “non-core” is
not meant to imply that these applications are not important. Without them, a radio does not perform
any useful function, so they are extremely important. A conceptual model of SDR non-core applications
is depicted in Figure 5.2.5.2-1.

SDRF Technical Report 2.1 November 1999

5-32

Figure 5.2.5.1-1 SDR Software Reference Model

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF

Waveform

Repeater

0..*

Resource
1

0..*

ModemResource

Modem NAPI

SecurityResource AccessResource UtilityResourceLinkResource

Link NAPI

NetworkResource

Network NAPI

0..* 0..* 0..*0..* 0..*

Aggregation

Multiplicity

Association

Child

“Inheritance”
Relationship

Parent

Non-Core (Radio) Applications

Figure 5.2.5.2-1 Conceptual Model of SDR Non-Core Applications

Analog

Control

RF Modem Security Internetwork
Utility,
Router,

Network,
Bridge,

Link

Digital Data

System Control

HCI (Control)

Security Monitor
(part of INFOSEC)

Air

I/O

HCI
(Data)

Black Proc.
Utility,
Router,

Network,
Bridge,

Link

Antenna

Utility,
Access

Utility,
Access

Waveform,
Repeater

Waveform

SDRF Technical Report 2.1 November 1999

5-33

To help transition from the Functional View to the object-oriented views described in the sections that
follow, it is useful to consider non-core applications not as functions but as resources that can inherit
common types of behavior and common types of interfaces. The conceptual model of a resource is
depicted in Figure 5.2.5.2-2. Notice that a resource encapsulates base class interfaces that support the
establishment (registration) of message paths (or “circuits”) between resources, provide a “pipe” for
message communication between resources, and provide standard methods of managing the states of
resources.
Subclasses of a resource extend the base class interfaces to more specific types of resources that
implement the non-core application behaviors or “functions”. For example, Networking Application
Program Interfaces (NAPIs) are the means by which the base class interfaces may be extended to
overlay the SDR Software Architecture onto an embedded networking architecture.
The types of Resources that are created within a radio domain include but are not limited to:
• Modem Resource – This resource extends the basic resource definition by adding the physical

interfaces that are common to all modem devices.

• Link Resource – This resource extends the basic resource definition by adding the link layer
interfaces. The Link Resource can be implemented on both sides of the Security boundary as
depicted by the Link Resource color in Figure 5.2.5.2-2.

• Network Resource – This resource extends the basic resource definition by adding the network
layer interfaces. The Network Resource can be implemented on both sides of the Security
boundary as depicted by the Network Resource color in Figure 5.2.5.2-2.

• Access Resource – This resource extends the basic resource definition by adding a set of multi-
media resources such as audio, video, serial, Global Positioning System (GPS), and Ethernet.
These resources contain the device drivers and the protocol.

• Security Resource – This resource extends the basic resource definition by adding embedded
security services such as encryption, decryption, authentication, key management, or other security
features.

• Utility Resource – This resource extends the basic resource definition by adding embedded
application “utilities” such as situational awareness, message translation, network gateway, and host
adapter services.

SDRF Technical Report 2.1 November 1999

5-34

StateManagementMessageMessageRegistration

Resource 1

0..*

Base CORBA Interfaces

Security
DomainResource

SecurityResource

Waveform
ModemResource AudioResource

AccessResource

are example types of

SitAwareResourceMsgFilterResource

UtilityResource

are example types of

LinkResource

Link NAPI

Waveform
LinkResource

Waveform
NetworkResource

NetworkResource

Network NAPI

Repeater
Resource

Bridge
Resource

Router
Resource

Gateway
Resource

are example types ofare example types of are example types ofare example types of

Modem
Adapter

Security
Adapter

Ethernet
Resource

Serial
Resource

Host
Adapter

ModemResource

Modem NAPI

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF

Waveform

Repeater
LifeCycle

Figure 5.2.5.2-2. Conceptual Model of SDR Resources

SDRF Technical Report 2.1 November 1999

5-35

Each specialized resource may also be extended by a Waveform resource by adding more functionality
as necessary. Each resource can be associated with zero or more other resources. The implementation
of a resource determines the relationships it will have with other resources within the radio domain.
Non-core applications will provide internal behavior to implement specific waveform, networking,
security, user access, and other embedded utility “functionality. This internal behavior is not dictated by
the CF. Rather, the CF allows all non-core applications to be derived from the base Resource class.
Where the hardware or security architecture in a given implementation may prevent a non-core
application from being implemented as a Resource class CORBA software object, e.g., a time-critical
DSP function, or an embedded COMSEC chip control function, the interface to this application will be
through a Resource class object. Discussions of encapsulated resources and adapter resources are
provided in section 0.

5.2.5.2.1 System Control Functions

Core applications , which are a part of the CF, support the non-core applications by providing the
necessary function of control as well as standard interface definitions that the non-core applications use
to ensure plug and play, ready to execute modularity. This allows industry-wide development of non-
core applications to a common standard framework.
Elements of the CF provide the system control functions for managing hardware assets, installing,
creating, and managing software resources, managing files, and providing run-time services. These
elements are depicted in Figure 5.2.5.2.1-1 and are described in further detail in Section 0 - Logical
View.

5.2.5.2.2 Modem Resource Functionality

A conceptual model of SDR Modem Resources is shown in Figure 5.2.5.2.2-1. The high diversity of
digital signal processing solutions, both in hardware and software, requires the SDR Software
Architecture to be flexible in accommodating a wide range of implementations. From the software
architecture perspective, a standard for the control and interface of a modem layer, which encapsulates
diverse implementations of smart antenna, RF, and modem functions is a critical concept. The SDR
base class interfaces are extended to modem resources through the Modem NAPI, which provides a
standard interface for control and communication with modem layer operations from a higher (link layer)
resource. The inclusion of a modem adapter resource in the architecture provides a transparent
gateway for those implementations in which a CORBA capable link resource is communicating with a
non-CORBA capable modem resource. The modem adapter provides the translation between the
Modem NAPI and the API set of the non-CORBA capable modem resource. Using the Modem
NAPI, the link resource is isolated from this translation. The modem adapter is thus transparent to the
link resource, which greatly enhances the reusability of the link resource with multiple modem
implementations.
The operations performed by the modem resources will vary depending on waveform requirements as
well as hardware/software allocation and are not dictated by the CF. Typical RF and modem
operations are depicted within the example subclasses.

SDRF Technical Report 2.1 November 1999

5-36

0..*

MessageRegistration

StateManagement

CF Services
Logger
Installer
Timer

DomainManager

Resource

Message

FileManager

0..*

1

1
1..*

1..*
1

0..*

1..*

0..*

1

0..*

1..*1

0..*

“Using”
Relationship

Source

Parent

Child

Association

Aggregation

Multiplicity

Class

FileSystem

Active
Class

Target

Factory

HW Device

ResourceManager

File

1

0..*1

1

1

Core Framework (CF)

Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

OE

LifeCycle

“Inheritance”
Relationship

Figure 5.2.5.2.1-1 Conceptual Model of the Core Framework (CF)

SDRF Technical Report 2.1 November 1999

5-37

Resource

LinkResource

Link NAPI

ModemResource

Modem NAPI

WaveformModemResourceWaveformRF_Resource RepeaterResourceModemAdapterResource

TranslateModem

1..* 1

are example types of

UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
selfTest

Modulate Demodulate
Interleave Deinterleave
FEC_Encode FEC_Decode
Spread Despread
Filter Synchronize
Track Correlate
AcquirePacket SchedulePacket
TimeStamp TRANSEC
selfTest

Retransmit
ControlModem

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Figure 5.2.5.2.2-1 Conceptual Model of SDR Modem Resources

SDRF Technical Report 2.1 November 1999

5-38

5.2.5.2.3 Networking Resource Functionality

A conceptual model of SDR networking resources is shown in Figure 5.2.5.2.3-1. The CF base class
interfaces are extended to link layer and network layer resources through the Link NAPI and Network
NAPI, which provide a standard interface for control and communication between modem, link, and
network layer resources.
The operations performed by the waveform networking and internetworking resources will vary
depending on waveform requirements as well as networking requirements and are not dictated by the
CF. Resources that provide networking behavior including repeater, link, bridge, network, router, and
gateway operations are depicted within the example subclasses.
Note that the Networking Resources may implement wireless IP routing external to the radio and should
not be confused with underlying IP stacks that support interprocessor communication within a radio.

5.2.5.2.4 Access Resource Functionality

A conceptual model of SDR access resources is shown in Figure 5.2.5.2.4-1. An access resource
provides access to radio hardware devices and external physical interfaces. The operations performed
by an access resource will vary depending on the radio hardware assets as well as the physical
interfaces to be supported and are not dictated by the CF. Typical access operations are depicted
within the example subclasses.

5.2.5.2.5 Security Resource Functionality

A conceptual model of SDR security resources is shown in Figure 5.2.5.2.5-1. Typical security
operations are depicted within the example subclasses. The high diversity of security solutions, both in
hardware and software, requires the SDR Software Architecture to be flexible in accommodating a
wide range of implementations. Transmission security and communications security requirements vary
between waveforms. The location of the security boundary with respect to networking requirements
also varies between waveforms. A security resource must also provide key fill, key management,
programmable security device control and interface, and software integrity and authentication services.
The CF base class interfaces are extended by the security resource to provide specific security services
within each type of security domain implementation. The inclusion of a security adapter resource in the
architecture provides a transparent gateway for those implementations in which other CORBA capable
resources, e.g., modem, link, network, and utility resources, are communicating with a non-CORBA
capable security resource. The security adpater provides the translation between these CORBA
capable resources and the API set of a non-CORBA capable security resource. This isolates these
other resources from the security API translation. The security adapter is thus transparent to these other
resources, which greatly enhances the reusability of these resources with multiple security
implementations. The CF base class interfaces can be extended to include a standard set of security
interface functionality for security domains. This would allow the resources to be more plug and play
across implementation domains.

SDRF Technical Report 2.1 November 1999

5-39

1

0..*
Resource

WaveformLinkResource

LinkResource

Link NAPI

NetworkResource

Network NAPI

ModemResource

Modem NAPI

UtilityResource

RepeaterResource GatewayResource

11..*
1

1..* 1

1..*

are example types of are example types of

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
selfTest

Retransmit
ControlModem

BridgeResource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

RouterResource

TranslateAddress
Route
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

TranslateMessage
TranslateVoice
TranslateVideo

WaveformNetworkResource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQuality
AnalyzeNetworkQuality
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Figure 5.2.5.2.3-1 Conceptual Model of SDR Networking Resources

1

0..*

Resource

AccessResource

 are example types of

NetworkResource

Network NAPI

UtilityResource

LinkResource

Link NAPI

1

1..*

1..*

1..*

1

1

SerialResource EthernetResource AudioResource

ConfigurePort
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

SDRF Technical Report 2.1 November 1999

5-40

Figure 5.2.5.2.4-1 Conceptual Model of SDR Access Resources

SDRF Technical Report 2.1 November 1999

5-41

1

0..*
Resource

SecurityResource

NetworkResource

Network NAPI

LinkResource

Link NAPI

Encrypt Decrypt
Fill Zeroize
SetKey Rollover
Authenticate Bypass
GenerateTRANSECStream
selfTest

AccessResource

UtilityResourceModemResource

Modem NAPI
11

1..*

1..* 1..*

1..*

1..* 1..*

1..*

1..*

SecurityAdapterResource

TranslateINFOSEC

SecurityDomainResource

are example types of

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Figure 5.2.5.2.5-1 Conceptual Model of SDR Security Resources

SDRF Technical Report 2.1 November 1999

5-42

5.2.5.2.6 Utility Resource Functionality

A conceptual model of SDR utility resources is shown in Figure 5.2.5.2.6-1. The operations performed
by the utility resources will vary depending on the embedded applications to be supported as well as
host interface protocol requirements and are not dictated by the CF. Typical utility operations are
depicted within the example subclasses.
The wide range of host system protocols and interfaces that are encountered in SDR implementations
requires the SDR Software Architecture to provide support for both CORBA-capable and non-
CORBA- capable host system implementations. Many of the CF defined interfaces are designed to be
extended “outside the box,” for use by CORBA-capable host systems. Where legacy or non-
CORBA-capable host systems prevent the direct use of the CF interfaces, the SDR architecture
includes a host adapter resource to provide a transparent gateway between the CF interfaces and the
non-CORBA-capable host system. The host adapter provides the translation between the CORBA-
capable SDR resources and the API set of a non-CORBA-capable host system. This isolates the SDR
resources from the Host API translation. The host adapter is thus transparent to the SDR resources,
which greatly enhances the reusability of these resources with multiple Host system implementations.

SDRF Technical Report 2.1 November 1999

5-43

1

0..*
Resource

 are example types of

HostAdapterResource

TranslateHost

GatewayResource SitAwareResource

NetworkResource

Network NAPI

UtilityResourceLinkResource

Link NAPI

1

1..*

1..*

1..*

1

1

AccessResource

CollectPositionReports
ConsolidatePositionReports
DisseminatePostionReports
selfTest

TranslateMessage
TranslateVoice
TranslateVideo
selfTest

MsgFilterResource

TypeFilter
GeographicFilter
PriorityFilter
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Figure 5.2.5.2.6-1 Conceptual Model of SDR Utility Resources

SDRF Technical Report 2.1 November 1999

5-44

5.2.6 Structural View

5.2.6.1 Open Multi-layered Structural Architecture

The SDR software structural architecture is shown in Figure 5.2.6.1-1. The structural architecture view
provides the best graphical depiction of the OE. The key aspects of the structural architecture are:

1. Maximizes the use of commercial protocols and products,

2. Isolates both core and non-core applications from the underlying hardware through multiple
layers of open, commercial software infrastructure, and

3. Provides for a distributed processing environment through the use of CORBA to provide
software application portability, reusability, and scalability.

SDR Operating Environment requirements needed to support implementations requiring multiple levels
of message security have not yet been established.

5.2.6.1.1 Bus Layer (Board Support Package)

The SDR Software Architecture is capable of operating on most commercial bus architectures. The OE
relies on reliable transport mechanisms, which may include error checking and correction at the bus
support level. This allows support for VME, PCI, CompactPCI, Firewire (IEEE-1394), Ethernet, and
others. The OE does not preclude the use of different bus architectures on the Red and Black
subsystems. The choice of bus architecture is driven by the bandwidth and latency requirements of the
non-core applications. The core applications and CORBA ORB should be considered, but should not
impact the decision.

5.2.6.1.2 Network Stacks & Serial Interface Services

The SDR Software Architecture relies on commercial components to support multiple unique serial and
network interfaces. The OE relies on reliable transport mechanisms, which may include error checking
and correction at the network and serial interface level. These interfaces can be selected to provide the
interfaces necessary to support the platform implementation. Possible serial and network physical
interfaces include: RS232, RS422, RS423, RS485, Ethernet, 802.x, and others.

To support these interfaces, various low-level network protocols may be used. They may include PPP,
SLIP, CSLIP, LAPx, and others. Using these protocols, other protocols such as IP, TCP/UDP, and
X.25 can be added to provide network connectivity. The standard transport mechanism for non-
colocated calls using CORBA 2.2 is GIOP on top of TCP/IP. Protocols to support ancillary
functionality, e.g., neighbor discovery, address resolution; etc., may also be used.

SDRF Technical Report 2.1 November 1999

5-45

Core Framework (CF)
Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

OE

Red (Non-Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

RF API

RF API

Black (Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Core Framework IDL (“Logical Software Bus” via CORBA)

Non-CORBA
Modem

Applications
Non-CORBA
Modem API

Non-CORBA
Security

Applications

Non-CORBA
Host

Applications
Non-CORBA
Security APIRF

Modem
Applications

Link, Network
Applications

Security
Applications

Modem
Adapter

Security

Adapter

Security

Adapter
Host

Adapter
Host

Applications

Modem NAPI Link, Network NAPI Link, Network NAPI

Non-CORBA
Host API

Link, Network
Applications

Figure 5.2.6.1-1. SDR Software Structure

SDRF Technical Report 2.1 November 1999

5-46

5.2.6.1.3 Operating System Layer

The SDR Software Architecture relies on a real-time embedded operating system to provide multi-
process, multi-threaded support for core applications (CF applications), as well as non-core waveform
and networking applications. A COTS solution is desirable, as well as a standard operating system
interface for operating system services in order to facilitate portability of both core and non-core
applications.
POSIX is an accepted industry standard that was developed for larger systems as a result of UNIX
distributors developing their own flavors of UNIX. POSIX and the real-time extensions are compatible
with the requirements to support the OMG’s RT CORBA specification. Complete POSIX compliance
encompasses more features than are necessary to control a typical SDR implementation. Even though
modern systems are more compact, have greater memory and processing speeds, it is still felt that a
more streamlined version of POSIX is necessary for the embedded real-time SDR market.
The SDR Software Architecture recommends the use of the POSIX 1003.13 API set. Four profiles
have been defined to reflect the wide range of system requirements presented by real-time designs.
These four profiles are:

a) Minimal Real-time Systems Profile (PSE51) are typically embedded and dedicated to the
control of one or more special I/O devices without operator intervention. The hardware model
for this profile is a single processor with memory but no memory management support.

b) Real-time Controller System Profile (PSE52) is an extension of the Minimal Real-time
System Profile, and supports file system interface and asynchronous I/O.

c) Dedicated Real-time System Profile (PSE53) is an extension of the Minimal Real-time
System Profile, and adds support for multiple processes, a common interface for device drivers
and files, and memory locking for management. The hardware model for this profile is one or
more processors with or without hardware MMU support.

d) Multipurpose Real-time System Profile (PSE54) which combines the functionality of the
other three and provides a comprehensive list of functionality, including all of POSIX.1,
POSIX.1b, and POSIX.1c. This profile also includes support for POSIX.2 and POSIX.2a.
The hardware model for this profile is one or more processors with memory management units,
high speed storage devices, special interfaces, network support and display devices.

A minimum requirement that would include one of these profiles or some combination of these profiles
for the SDR Operating Environment has not yet been established. The inherent desire to select the fully
featured Multipurpose Real-time System Profile (PSE54) would be prohibitive on the resources
available in handheld units.

5.2.6.1.3.1 Memory Management

Memory Management is useful in SDR implementations. Not only will memory management be needed
to achieve multiple security levels, but it is useful in the development environment as well. During
development, common coding errors such as stray pointers and indexing beyond array boundaries can
result in one process accidentally overwriting the data space of another. This can cause many wasted

SDRF Technical Report 2.1 November 1999

5-47

hours of debugging to determine the cause. In an multi-level secure system, memory management
protection prevents other processes or threads from reading memory that is outside its allocated area,
thus preventing an unclassified process from gaining access to classified data. If a process attempts to
access memory that is explicitly declared or allocated for the type of access attempted, the memory
management unit (MMU) hardware will notify the operating system (OS) kernel, which can then abort
the process immediately at the offending program statement. The kernel can then log information about
the process that has caused the access violation for later review. This protects processes from each
other, prevents coding errors from damaging memory used by other processes, protects the kernel
memory, and supports the SDR security architecture.
The SDR Software Architecture recommends the use of processors equipped with MMUs wherever
the COTS OS and CORBA middleware services are hosted.

5.2.6.1.3.2 File System Drivers

An SDR implementation may host many waveforms. These different waveform applications will need to
be added, read and distributed, replaced, and removed from a mass storage device. Rotating magnetic
media are vulnerable to shock, vibration and acceleration, but could continue to be used in semi-
permanent or permanent installations. For mobile platforms solid-state disks (SSD) are the best
solution.
Solid-state disks are random access, high-speed storage peripherals that use memory chips such as
Flash, EPROM, or SRAM. SSDs give faster and more efficient operation, a longer life span, and a
lower risk of breakdown or data loss than their magnetic cousins. Many SSDs incorporate industry
standards so the interface is compatible with most operating systems. Also, many of these SSDs follow
industry standards for shock and vibration. These characteristics make SSDs an ideal solution for harsh
environmental and mission critical applications where availability and reliability is important.
While the SDR Software Architecture does not require the use of SSDs, they are ideally suited to the
rugged environments. The SDR Software Architecture recommends the use of POSIX 1003.13
compliant file system services. These POSIX services supported by the OS are extended by the
CORBA-based CF definitions of FileManager, FileSystem and File Interfaces for remote and/or
distributed Network File System (NFS) type of file access.

5.2.6.1.4 CORBA Middleware

CORBA is a cross-platform framework that can be used to standardize client/server operations when
using distributed processing. Distributed processing is a fundamental aspect of the SDR system
architecture and CORBA is the mostly widely used “middleware” service for providing distributed
processing. A summary of the features and benefits of CORBA are contained in the following
paragraphs.
The idea behind the CORBA framework is to replace traditional message passing. As much as possible
the CORBA architecture tries to make the exchange of messages look to the client and server software
applications like a normal, local function invocation. The CORBA protocol code handles the bit
packing and handshaking required for delivering the message.
The IDL is an object-oriented language used to define the interface between a client and a server. This
interface definition acts as a contract between the client and the server applications. An interface is
defined as a collection of methods and object attributes. Methods are also known as messages in

SDRF Technical Report 2.1 November 1999

5-48

object-speak and correspond to functional operations, function calls and procedure calls. All CF
interfaces are defined in IDL, and thus serve as a contract between the SDR applications that use them.
The features and benefits of CORBA, including its significant technical advantages over earlier
distributed processing techniques, the maturity of the OMG specifications, the ability to define interfaces
in IDL, the wide commercial availability of CORBA products, and the wide industry acceptance of
CORBA make it ideally suited to the SDR Software Architecture.

5.2.6.1.5 Application Layer

SDR software applications will perform user communication functions that include modem-level digital
signal processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external access, security, and embedded utility behavior. These are user-oriented or non-core
applications, i.e., applications that are not part of the CF. Core applications, which are a part of the
CF, support the non-core applications by providing the necessary function of control as well as
standard interface definitions that the non-core applications can use. This allows industry-wide
development of non-core applications to a common standard framework. Section 0 - Logical View will
show the relationship between the CF and non-core applications.

5.2.6.1.5.1 Core Framework

The CF enables the development and use of SDR software applications in a distributed, plug and play
context. The CF consists of the following interfaces, core applications, and core services:

• Base CORBA interfaces (Message, MessageRegistration, StateManagement, and
Resource) that are inherited by core and non-core software applications

• Core applications (DomainManager and ResourceManager) that provide framework control
of resources

• Core services that support both core and non-core applications (Logger, Installer, Timer,
FileManager, FileSystem, and File)

• An optional core Factory interface for controlling the life span of core and non-core
applications.

5.2.6.1.5.2 Non-Core Applications

Non-core applications consist of one or more resources. These resources implement the Resource
interface or NAPI interfaces. The application developers can extend these definitions by creating
specialized Resource interfaces for the application. At a minimum, the extension has to come from the
Resource interface. Through the use of the CF, a developer can more easily reuse software developed
for an SDR implementation and reduce the NRE to produce new capability. Currently, the SDR
Software Architecture defines the following types of non-core applications or resources, but does not
preclude the definition of other types:
1. Modem Resource

2. Link Resource

3. Network Resource

SDRF Technical Report 2.1 November 1999

5-49

4. Access Resource

5. Security Resource

6. Utility Resource.

The internal behavior of a resource is not dictated by the SDR Software Architecture. This is left to the
application developer. The interfaces by which a resource is controlled and communicates with other
resources are defined by the SDR interfaces and are described in the following section.

5.2.7 Logical View

This section contains the detailed description of the CF interfaces and operations. This includes a
detailed description of the purpose of the interface, the purpose of each supported operation within the
interface, the IDL for each operation, and interface class diagrams to support these descriptions.

5.2.7.1 Core Framework

Figure 5.2.7.1-1 depicts the key elements of the CF and the relationships between these elements. A
DomainManager object manages the software Resources and hardware assets within the radio. Some
of the software Resources may directly control the radio’s internal hardware assets or interface devices.
For example, a ModemResource may provide direct control of a modem hardware device such as an
FPGA or an ASIC. An AccessResource may operate as a device driver to provide external access to
the radio. Other software Resources have no direct relationship with a hardware device, but perform
application services for the user. For example, a NetworkResource may perform a network layer
function. A WaveformLinkResource may perform a waveform specific link layer service. Each
Resource can potentially communicate with other Resources. These Resources are allocated to one or
more ResourceManager objects by the DomainManager object based upon various factors including
the hardware devices that the ResourceManager knows about, the current availability of hardware
devices, the behavior rules of a Resource, and the loading requirements of the Resource.
The Resources being managed by the DomainManager object are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface provides a
consistent way of creating up and tearing down any Resource within the radio. These resources can be
created by using a Factory interface or by the ResourceManager interface.
The file services: FileManager, FileSystem, and File are the interfaces that are used to support
installation and removal of application files within the radio, and for loading and unloading application
files on the various processors that the ResourceManagers execute upon.

SDRF Technical Report 2.1 November 1999

5-50

0..*

MessageRegistration

StateManagement

CF Services
Logger
Installer
Timer

DomainManager

Resource

Message

FileManager

0..*

1

1
1..*

1..*
1

0..*

1..*

0..*

1

0..*

1..*1

0..*

“Using”
Relationship

Source

Parent

Child

Association

Aggregation

Multiplicity

Class

FileSystem

Active
Class

Target

Factory

HW Device

ResourceManager

File

1

0..*1

1

1

Core Framework (CF)

Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

OE

LifeCycle

“Inheritance”
Relationship

Figure 5.2.7.1-1. SDR Core Framework (CF) Relationships

SDRF Technical Report 2.1 November 1999

5-51

5.2.7.1.1 Base Class Interfaces

All Resources inherit and encapsulate the base CF interfaces of:
• LifeCycle – This interface provides operations for managing the start-up and tear-down states of a

Resource, configuring the properties of a Resource, and invoking Resource self-test.

• StateManagement – This interface provides operations to set and retrieve the Administrative state
of a Resource and to retrieve the Operational and Usage states of a Resource. These states are
derived from the ISO/IEC 10164-2 Open Systems Interconnection - Systems Management: State
Management Function.

• MessageRegistration – This interface provides operations for the creation of virtual circuits, i.e.,
messaging pathways, among source (producer) and sink (consumer) Resources within the radio.

• Message – This interface provides messaging operations implemented by a sink (consumer)
Resource and issued by a source (producer) Resource. Messaging operations are provided for all
of the CORBA basic types.

5.2.7.1.1.1 LifeCycle

The LifeCycle interface defines the generic object operations for:
• Testing.

• Configuring (setting) and querying (retrieving) an object’s properties. The parameter type for
properties is based upon the CORBA any type. This provides the greatest flexibility for developing
software by leaving the definition of an object’s properties up to the developer not by the core
framework definition. The CORBA any type is also minimum CORBA compliant.

• Initializing and releasing an object.

• Message processing control operations: start, stop, and pause.

The DomainManager object uses these interfaces to start up and tear down resources in a determinate
and consistent manner within the radio. The DomainManager object performs selfTest, configure,
initialize, and start operations for each resource it is responsible for starting up.

LifeCycle Relationships

The definition of the LifeCycle interface, captured in Rational Rose using UML notation, is as shown in
Figure 5.2.7.1.1.1-1.

SDRF Technical Report 2.1 November 1999

5-52

LifeCycle

selfTest(testNum : inout unsigned long) : boolean
configure(properties : in DataType) : boolean
query(properties : inout DataType) : void
initialize() : boolean
release() : boolean
start() : boolean
stop() : boolean
pause() : boolean

<<Interface>>

DataType

id : unsigned long
value : any

uses

Figure 5.2.7.1.1.1-1. LifeCycle Relationships

LifeCycle Interfaces

The IDL for the LifeCycle interface produced from the Rational Rose diagrams in Figure is shown
below:
interface LifeCycle {

The selfTest operation performs a specific test on an object. True is returned if the test passes,
otherwise false is returned. When false is returned, the operation also returns a reason why the test
failed.

boolean selfTest(inout unsigned long testNum);

The configure operation sets the object's properties. True is returned if the configure was successful,
otherwise False is returned. Any basic CORBA type or static IDL type could be used for the
configuration data. An object's ICD indicates the valid configuration values.

boolean configure(in DataType properties);

The query operation retrieves object's properties. Any basic CORBA type or static IDL type could be
used for the query. An object's ICD indicates the valid query types. The information retrieved can later
be used when an object is recreated, by calling the configure operation.

void query(inout DataType properties);

The initialize operation controls when configuration data is implemented by the resource or initializes the
devices being controlled by the resource.

boolean initialize();

SDRF Technical Report 2.1 November 1999

5-53

The release operation releases itself from the CORBA ORB. When the object’s ORB reference count
goes go to zero, the object destructor operation will be called.

boolean release();

The start operation starts processing messages that are received from the front end and/or back end of
the radio. The object's sink (consumer) objects are enabled for processing messages.

boolean start();

The stop operation stops processing messages that are received from the front end and/or back end of
the radio. The object's sink (consumer) objects are disabled from processing messages and the
messages are discarded.

boolean stop();

The pause operation queues messages that are received from the front end and/or back end of the
radio.

boolean pause();
 };

5.2.7.1.1.2 StateManagement

The StateManagement interface defines the generic object operations for:
• Retrieving and setting system management state information. The state information is based upon

the ISO/IEC 10164-2 Open Systems Interconnection - Systems Management: State Management
Function standard. The Administrative, Operational, and Usage states are included in the
StateManagement interface. The ISO standard identifies additional states that could be used to
expand the definition of managed Resource states.

The DomainManager object uses the StateManagement interface to provide the radio operator,
administrator, or maintainer with fundamental control and access to system managed states. The
purpose of the Administration, Operational, and Usage states are intended for use by the
DomainManager for high-level, user-oriented, control and system management of an SDR. They
allow a system operator to determine the health and status of the SDR. The states are not intended to
provide low-level, real-time state management between Resources. The following definitions apply to
these states.
Administrative State attributes are defined as:

a) Locked = the managed resource is adminstratively prohibited from performing services for its
users. This is a “settable” state.

b) Shutting Down = the managed resource is adminstratively permitted to existing instances of
use but is otherwise locked to new use. This is a transitional state between Unlocked and
Locked.

c) Unlocked = the managed resource is adminstratively permitted to perform services for its
users. This is a “settable” state.

d) Admin Not Applicable = the managed resource is not subject to Administrative State control.
Operational State attributes are defined as:

SDRF Technical Report 2.1 November 1999

5-54

a) Disabled = the managed resource is totally inoperable and unable to provide service to the
user.

b) Enabled = the managed resource is partially or fully operable and available for use.
Usage State attributes are defined as:

a) Idle = the managed resource is inactive, i.e., not providing service to the user.
b) Active = the managed resource is actively providing service to the user.
c) Usage Not Applicable = the managed resource is not subject to Usage State reporting.

StateManagement Relationships

The definition of the StateManagement interface, captured in Rational Rose using UML notation, is as
shown in Figure 5.2.7.1.1.2-1

UsageType

USAGE_NOT_APPLICABLE
IDLE
ACTIVE

(from StateManagement)

StateManagement

setAdminState(adminState : in AdminType) : void
getState() : StateType

<<Interface>>

AdminType

ADMIN_NOT_APPLICABLE
LOCKED
SHUTTING_DOWN
UNLOCKED

(from StateManagement)

OperationalType

ENABLED
DISABLED

(from StateManagement)

StateType

adminState : AdminType
operationalState : OperationalType
usageState : UsageType

(from StateManagement)

Figure 5.2.7.1.1.2-1 StateManagement Relationships

StateManagement Interfaces

The IDL for the StateManagement interface produced from the Rational Rose diagrams in Figure
5.2.7.1.1.2-1 is shown below:
interface StateManagement {

The following type is a CORBA IDL enumeratiuon type that defines an object's Administrative states.
enum AdminType

 {
 ADMIN_NOT_APPLICABLE,

SDRF Technical Report 2.1 November 1999

5-55

 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };

The following type is a CORBA IDL enumeration type that defines an object's Operational states.
 enum OperationalType
 {
 ENABLED,
 DISABLED
 };

The following type is a CORBA IDL enumeration type that defines the object's Usage states.
 enum UsageType
 {
 USAGE_NOT_APPLICABLE,
 IDLE,
 ACTIVE
 };

The following type is a CORBA IDL struct type that contains an object's Admin, Operational, and
Usage states.

struct StateType {
 AdminType adminState;
 OperationalType operationalState;
 UsageType usageState;
 };

The setAdminState operation sets the Adminstrative State per the specified parameter (Locked or
Unlocked).

 void setAdminState(in AdminType adminState);

The getState operation returns the object's state.
 StateType getState();

 };

5.2.7.1.1.3 MessageRegistration

The MessageRegistration interface provides the operations for a Push Data Model and an Observer
Design Pattern. The Push Data Model involves a Producer (source) and Consumer (sink), where the
Producer pushes data to a Consumer. A Producer may know about a Consumer via the Observer
Design Pattern that behaves as a callback where a consumer registers itself with producers for callback
to it. The Observer Design Pattern is based on the industry accepted design pattern2. Alternatively, the
DomainManager may establish the virtual path between a Consumer and Producer by providing the
Producer with the Consumer Resource object reference. The outcome of using the

2 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 293.

SDRF Technical Report 2.1 November 1999

5-56

MessageRegistration interface is the set up of a dynamic virtual path between two resources within the
radio. When an application is started up by the DomainManager within the radio, a set of virtual
circuits are created among the application resources and other resources (Access, Security, Modem,
etc.) as shown in Figure 5.2.7.1.1.3-1

Most of these Resources act as both a Consumer and Producer within the radio depending on the
direction (from antenna or to the antenna) of data. The outcome of connecting these dynamic resources
together is known as the Chain Of Responsibility design pattern, where each resource processes the
data and pushes the data to another resource in the chain who has responsibility for further processing
of the data. Only those Resources that have a need to process the data need to be included in the
virtual path.

Virtual

Circuits
Virtual

Circuits

Virtual

Circuits
Virtual

Circuits

Modem Consumer/Producer:

ModemResource

Link Consumer/Producer:

LinkResource

Security Consumer/Producer:

SecurityResource

Network Consumer/Producer:

NetworkResource

Access Consumer/Producer:

NetworkResource

processMsg ()

processMsg ()

processMsg () processMsg () processMsg ()

processMsg () processMsg () processMsg ()

Figure 5.2.7.1.1.3-1 Example of Chained Resources

SDRF Technical Report 2.1 November 1999

5-57

MessageRegistration Relationships

The definition of the MessageRegistration interface, captured in Rational Rose using UML notation, is
as shown in Figure 5.2.7.1.1.3-2.

Destinations
Message

<<Interface>>

MessageRegistration

setSink(pushSink : in Message, destinationResource : in ResourceID_Type) : void
unsetSink(destinationResource : in ResourceID_Type) : void
setMultipleSinks(destinationSinks : in Destinations) : void
getSink(sourceResource : in ResourceID_Type) : Message
getTransferSize() : unsigned long
setTransferSize(size : in unsigned long) : void

<<Interface>>

ResourceID_Type

Des t i na t i ons

Des t i na t i onType

r e s o u r c e : R e s o u r c e
r e s o u r c e N u m b e r : R e s o u r c e N u m T y p e
r e s o u r c e T y p e : R e s o u r c e T y p e
r e d S i d e O n l y : B o o l e a n

R e s o u r c e
<< In te r f ace>>

R e s o u r c e T y p e

uses

R e s o u r c e N u m T y p e

Figure 5.2.7.1.1.3-2. MessageRegistration Relationships

SDRF Technical Report 2.1 November 1999

5-58

MessageRegistration Interfaces

The IDL for MessageRegistration interface produced from the Rational Rose diagrams in Figure
5.2.7.1.1.3-2 is shown below:

interface MessageRegistration {
The setSink operation registers a single Message sink (Consumer) object for call back by a source
(Producer) object. The Message sink object reference is added to the source object's list of registered
Message sinks. When pushing data to this destination the Message sink object is used.

 void setSink(in Message pushSink, in ResourceID_Type destinationResource);

The unsetSink operation removes a registered Message sink (Consumer) resource from a source
(Producer) object's registered Message Sinks.

 void unsetSink(in ResourceID_Type destinationResource);

The setMultipleSinks operation registers a set of Message sink (Consumer) objects for call back by a
source (Producer) object.

 void setMultipleSinks(in Destinations destinationSinks);

The getSink operation requests the Message sink (Consumer) object reference that is responsible for
processing data to be received from the requesting source (Producer) object.

 Message getSink(in ResourceID_Type sourceResource);

The getTransferSize operation gets the maximum transfer message size.
 unsigned long getTransferSize();

The setTransferSize operation sets the suggested transfer message size for the Producer Source.
 void setTransferSize(in unsigned long size);

};

5.2.7.1.1.4 Message

The Message interface provides multiple operations, based on the CORBA IDL basic types, for
pushing data from a Producer to a Consumer. The recommended implementation for Message
operations is a one way CORBA operation implemented as Synchronization with Socket method or as
a co-location call. The co-location call acts as a C language Function call.
Each Message operation supports a “message” parameter composed of an unbounded sequence of a
specific CORBA IDL basic type and an “options” parameter for describing optional properties or
control information to be sent with the “message”. The “options” parameter is of type “Properties”,
which is an unbounded sequence of name/value pairs of type DataType.

SDRF Technical Report 2.1 November 1999

5-59

Message Relationships

The definition of the Message interface captured in Rational Rose using UML notation is as shown in
Figure 5.2.7.1.1.4-1.

Properties

Message

processOctetMsg(message : in OctetSequence, options : in Properties) : void
processWcharMsg(message : in WcharSequence, options : in Properties) : void
processLongMsg(message : in LongSequence, options : in Properties) : void
processShortMsg(message : in ShortSequence, options : in Properties) : void
processLongLongMsg(message : in LongLongSequence, options : in Properties) : void
processUlongMsg(message : in UlongSequence, options : in Properties) : void
processULongLongMsg(message : in UlongLongSequence, options : in Properties) : void
processFloatMsg(message : in FloatSequence, options : in Properties) : void
processDoubleMsg(message : in DoubleSequence, options : in Properties) : void
processLongDoubleMsg(message : in LongDoubleSequence, options : in Properties) : void
processBooleanMsg(message : in BooleanSequence, options : in Properties) : void
processCharMsg(message : in CharSequence, options : in Properties) : void
processUshortMsg(message : in UshortSequence, options : in Properties) : void
processStringMsg(message : in StringSequence, options : in Properties) : void
processWstringMsg(message : in WstringSequence, options : in Properties) : void
processAnyMsg(message : in DataType, options : in Properties) : void

<<Interface>>

uses

DataType

id : unsigned long
value : any

Figure 5.2.7.1.1.4-1. Message Relationships

Message Interfaces

The IDL for the Message interface produced from the Rational Rose diagrams in Figure 5.2.7.1.1.4-1
is shown below:

 interface Message {

 Nested Types (unbounded sequences of the CORBA IDL basic types):
 This type is an unbounded sequence of octets (8-bit unconverted bytes):

 typedef sequence<octet> OctetSequence;
 This type is an unbounded sequence of characters:

SDRF Technical Report 2.1 November 1999

5-60

typedef sequence<char> CharSequence;
 This type is an unbounded sequence of signed short (16-bit) integers (-215...215-1):

typedef sequence<short> ShortSequence;
 This type is an unbounded sequence of signed long (32-bit) integers (-231...231-1):

typedef sequence<long> LongSequence;
 This type is an unbounded sequence of signed long long (64-bit) integers (-263...263-1):

typedef sequence<long long> LongLongSequence;
 This type is an unbounded sequence of unsigned short (16-bit) integers (0...216-1):

typedef sequence<unsigned short> UshortSequence;
 This type is an unbounded sequence of unsigned long (32-bit) integers (0...232-1):

typedef sequence<unsigned long> UlongSequence;
 This type is an unbounded sequence of unsigned long long (64-bit) integers (0...264-1):

typedef sequence<unsigned long long> UlongLongSequence;
 This type is an unbounded sequence of IEEE single-precision floating point numbers:

typedef sequence<float> FloatSequence;
 This type is an unbounded sequence of IEEE double-precision floating point numbers:

typedef sequence<double> DoubleSequence;
 This type is an unbounded sequence of IEEE double-extended floating point numbers:

typedef sequence<long double> LongDoubleSequence;
 This type is an unbounded sequence of booleans.

typedef sequence<boolean> BooleanSequence;
 This type is an unbounded sequence of wide characters (size is implementation-dependent):

typedef sequence<wchar> WcharSequence;
 This type is a CORBA unbounded sequence of strings.

typedef sequence<string> StringSequence;
 This type is a CORBA unbounded sequence of wide strings.

typedef sequence<wstring> WstringSequence;

Operations:
The following operations are used to push a sequence of information, formatted according to one of the
CORBA IDL basic types listed above, from one Resource (a producer or “Push Source”) to one or
more registered destination Resources (consumers or “Push Sinks”). The destination Resources are
registered using the operations of the MessageRegistration interface.

oneway void processOctetMsg(in OctetSequence message, in Properties options);
oneway void processWcharMsg(in WcharSequence message, in Properties options);
oneway void processLongMsg(in LongSequence message, in Properties options);
oneway void processShortMsg(in ShortSequence message, in Properties options);
oneway void processLongLongMsg(in LongLongSequence message, in Properties
options);
oneway void processUlongMsg(in UlongSequence message, in Properties options);
oneway void processULongLongMsg(in UlongLongSequence message, in Properties
options);
oneway void processFloatMsg(in FloatSequence message, in Properties options);

SDRF Technical Report 2.1 November 1999

5-61

oneway void processDoubleMsg(in DoubleSequence message, in Properties options);
oneway void processLongDoubleMsg(in LongDoubleSequence message, in Properties
options);
oneway void processBooleanMsg(in BooleanSequence message, in Properties
options);
oneway void processCharMsg(in CharSequence message, in Properties options);
oneway void processUshortMsg(in UshortSequence message, in Properties options);
oneway void processStringMsg(in StringSequence message, in Properties options);
void processWstringMsg(in WstringSequence message, in Properties options);
oneway void processAnyMsg(in DataType message, in Properties options);

 };

5.2.7.1.1.5 Resource

The Resource interface defines the minimal interface for any software resource within the radio. A
Resource simply inherits and encapsulates the interfaces of MessageRegistration, Message, LifeCycle,
and StateManagement. This small set of operations is all that a DomainManager object will know
about for any Resource object within the radio. Application Resources can, however, extend this basic
Resource definition and use their extensions among themselves or by their Application GUI, since they
are the only ones that know these extensions. The DomainManager interface provides the mechanism
of retrieving Resources that have been created for direct GUI usage.

Resource Relationships

The definition of the Resource interface captured in Rational Rose using UML notation is as shown in
Figure 5.2.7.1.1.5-1.

SDRF Technical Report 2.1 November 1999

5-62

Resource
<<Interface>>

Message

processOctetMsg()
processWcharMsg()
processLongMsg()
processShortMsg()
processLongLongMsg()
processUlongMsg()
processULongLongMsg()
processFloatMsg()
processDoubleMsg()
processLongDoubleMsg()
processBooleanMsg()
processCharMsg()
processUshortMsg()
processStringMsg()
processWstringMsg()
processAnyMsg()

<<Interface>>
MessageRegistration

setSink()
unsetSink()
setMultipleSinks()
getSink()
getTransferSize()
setTransferSize()

<<Interface>>

inherits
from

StateManagement

setAdminState()
getState()

<<Interface>>

LifeCycle

selfTest()
configure()
query()
initialize()
release()
start()
stop()
pause()

<<Interface>>

Figure 5.2.7.1.1.5-1. Resource Relationships

Resource Interfaces

The IDL for the Resource interface produced from the Rational Rose diagrams in Figure 5.2.7.1.1.5-1
is shown below:

interface Resource : Message, MessageRegistration, StateManagement, LifeCycle {
 };

5.2.7.1.2 Framework Control Interfaces

5.2.7.1.2.1 DomainManager

In order to provide for the interoperability of both hardware and software resources within a radio it is
necessary to provide for a mechanism within the system to manage resources. Resources need to be
treated in a generic manner such that hardware and software may be moved from one system to
another. This capability must allow for a module, a waveform application, and other software
applications to be updated without requiring code changes to the CF. To assure the ability for the CF
to support this functionality, the design includes a DomainManager Figure 5.2.7.1.2.1-1.

In a SDR implementation, it is necessary to provide a means to match generic hardware and software
resources to the desired user functionality. As shown in Figure 5.2.3.3.5-8 the DomainManager is the

SDRF Technical Report 2.1 November 1999

5-63

CF component responsible for the allocating the Physical Resources in the radio based on the required
Functional Applications. The DomainManager uses a Domain Profile to determine the proper
allocation of resources (hardware and software) in the system.
The DomainManager and DomainProfile are similar concepts to the SDRF Handheld Working
Group concepts of a “Switcher” and a “Capability Exchange” respectively.
Figure 5.2.7.1.2.1-2 shows that a SDR Application can be thought of as a collection of Resources
connected together in a particular order to provide the desired functionality. Each Resource can be
made up of other Resources either software and/or hardware and in turn can require other resources.
There will be at least one Domain Manager in every SDR implmentation. The Domain Manager
component can logically be grouped into two categories: Host and Registration. The Host operations
are used to configure the radio, manage radio capabilities, manage software resources, and provide
radio status information. The Registration operations provide the mechanism for the Resource
Managers in the system to acquire and report information about the capabilities of the system.

SDRF Technical Report 2.1 November 1999

5-64

Hardware Resources

ModemModem

ProcessorProcessor

RF SwitchRF Switch

Security ProcessorSecurity Processor

DSP ProcessorDSP Processor

FPGAFPGA

Functional Applications

PCS CellularPCS Cellular

Analog CellularAnalog Cellular

Military
Wideband

Military
Wideband

New WaveformNew Waveform

Military
Narrowband

Military
Narrowband

Domain
Manager

Domain
Manager

Software Resources

Modem SWModem SW

Internetworking SWInternetworking SW

Black Processing SWBlack Processing SW

INFOSEC SWINFOSEC SW

Figure 5.2.7.1.2.1-1. Domain Management

Figure 5.2.7.1.2.1-2. Layered Resource Allocation

Application

Physical
Components

Resources

• Allocates Physical
Components to
Functional Resources

• Configures and
Tracks the States of
Functional Resources

Domain
Manager

User Interface or
Application Request

Resource
Manager

Resource
Manager

Resource
Manager

Encapsulated
Resources

Domain
Profile

Device &
Resource
Properties

IN

OUT

SDRF Technical Report 2.1 November 1999

5-65

Profile Domain

The DomainManager uses a Domain Profile to store the necessary information about the resources in
the system to properly allocate and de-allocate hardware and software resources to a required
Functional Application. Physical resources such as modems, processors, security processors, Digital
Signal Processors (DSP), and Field Programmable Gate Arrays (FPGAs), and other resources each
report their presence in the system through the CF component called the ResourceManager. As each
physical resource in the system reports itself, the data about the resource is stored in the Domain
Profile. The DomainManager will use this information to determine the proper allocation of these
resources.
A Domain Profile is the information used by the DomainManager to perform a variety of tasks including
Boot up and Initialize of Core Framework Components and Resources, the re-initialization of radio
configuration based on the state of the radio at power down, and the allocation and de-allocation of
resources. The Domain Profile also provides a place for the configuration management of software
and hardware resources available to the system. Using the Install Service, software modules are
loaded into a File System; and information such as version, resource requirements, and other
information is stored in the Domain Profile. The DomainManager uses this information to manage
system resources to accomplish the required capability of the system. For instance, an algorithm is
written and compiled for a particular Digital Signal Processor (DSP) such as the TI-TMS320C6000.
Using the Install Service, the software module is loaded into the File System and information such as
version, physical hardware requirements, and other important parameters are stored in the Domain
Profile. The DomainManager uses this information to load the software resource onto the proper
allocated physical assets to accomplish the required capability in the system.
The Domain Profile also contains information about Functional Applications. Functional Applications
are a collection of generic resources that accomplish a specific user desired purpose. Examples of the
Functional Applications in a radio will include waveforms, network routing applications, and other high
level applications. Application portability across many different versions of an SDR product line
reduces development and maintenance costs. In order for an application to be portable, it will be
necessary to store information about the required capabilities for the application in the Domain Profile.
The Domain Manager will use this information to determine the requirements of the application when
the User makes a request for it.

Application Control

The DomainManager provides interfaces to the User for starting, stopping, configuring, and managing
the radio Functional Applications. A User (automated or using an HCI) will request that a specific User
Function(s) be provided in the radio. (Using the CreateVirtualCircuit () interface). Based on the
Functional Application requested the DomainManager uses the information in the Domain Profile to
determine the devices to be allocated, configured, and used for the desired Function(s). If the required
devices are available and operational state is enabled, then the DomainManager loads and executes
the software resource files necessary to support the mode of operation. Software Resources are
loaded on the appropriate processors using a ResourceManager interface, and status is returned to
identify whether the Functional Application has been created for this request, or not.

SDRF Technical Report 2.1 November 1999

5-66

The DomainManager is also responsible for the transition of Resource Objects through their various
states using the StateManagement interfaces. The Domain Profile will indicate which Resources to
create, and what states to transition Resources to. Based upon Domain Profile, the DomainManager
may use Naming or Trading Services to obtain a resource. A Factory resource can be obtained from
Naming or Trading Services, and may be used for starting other Resources. The DomainManager is
responsible for the setup and control of Resources within a Functional Application. The
DomainManager assure the Resources operations, including health and status, and other pertinent
information about the Resource. The DomainManager also provides a window to the User (HCI) into
the state of those Resources.
The DomainManger is the CF Component that provides the configuration capability that allows for the
ultimate flexibility for setting up Application Resources. Because of the generic approach to Resources
in the system, new waveform designs, hardware modules, and new architectural designs may still be
supported by the CF now and in the future.

DomainManager Relationships

Below is a Description of the Relationships that the DomainManager component has with other CF
Components in the system.
<uses> Factory – to request a Resource to be instantiated.
<manages> Resources – configures, manages the generic Resources in the system
<uses> FileManager – to access the necessary files
<allocates resources to> ResourceManager

The relationships for this interface are shown in the DomainManager Relationships in Figure
5.2.7.1.2.1-3.

SDRF Technical Report 2.1 November 1999

5-67

Figure 5.2.7.1.2.1-3. DomainManager Relationships

DomainManager Interfaces

Below is the list of interfaces for the DomainManager CF component for managing the application
setup and teardown capabilities of a radio.
interface DomainManager {

The registerDevice capability adds a device entry into the DomainManager for a specific Resource
Manager object.

boolean registerDevice(in string resourceManagerID, in DeviceType device);

The registerResourceManager adds a Resource Manager object entry into the Domain Manager object
database.

boolean registerResourceManager(in string resourceManagerID, in
ResourceManager resourceManager);

The releaseVirtualCircuit operation releases an active circuit and releases all allocated assets.
 void releaseVirtualCircuit(in CircuitNumType circuit);

The unregisterResourceManager capability unregisters a Resource Manager object from the
DomainManager.
 void unregisterResourceManager(in string resourceManagerID);

The unregisterDevice operation removes a device entry from the Domain Manager object.
 void unregisterDevice(in string resourceManagerID, in DeviceType device);

DomainManager

registerDevice(resourceManagerID : in string, device : in DeviceType) : boolean
registerResourceManager(resourceManagerID : in string, resourceManager : in ResourceManager) : boolean
releaseVirtualCircuit(circuit : in CircuitNumType) : void
unregisterResourceManager(resourceManagerID : in string) : void
unregisterDevice(resourceManagerID : in string, device : in DeviceType) : void
createVirtualCircuit(configurationRequest : in ConfigurationRequestType) : void
getVirtualCircuitResource(circuit : in CircuitNumType) : Object
fileManager() : FileManager
getNetworks() : Networks
getDevices(deviceRequest : in Properties) : DeviceList
getResources(resourceRequest : in Properties) : Resources

<<Interface>>

ResourceManager
<<Interface>>

ConfigurationRequestType

FileSystem
<<Interface>>

Networks

Resources

CircuitNumType

DeviceList

DeviceType
classID : ClassID_Type
element : DeviceNumType
deviceID : DeviceID_Type

FileManager
<<Interface>>

Properties

uses

SDRF Technical Report 2.1 November 1999

5-68

The createVirtualCircuit operation creates a virtual circuit within the radio.
oneway void createVirtualCircuit(in ConfigurationRequestType configurationRequest);

The getVirtualCircuitResource operation returns the object reference for the specified virtual circuit.
 Object getVirtualCircuitResource(in CircuitNumType circuit);

The FileMan operation returns a FileManager object reference to the main FileManager repository.
 FileManager fileManager();

The getNetworks operation returns network information based upon the input network request.
Networks getNetworks();

The getDevices operation returns devices information based upon the input device request.
 DeviceList getDevices(in Properties deviceRequest);

The getResources operation returns the resources information based upon the input resource request.
 Resources getResources(in Properties resourceRequest);
};

5.2.7.1.2.2 ResourceManager

The ResourceManager is a CF application in a SDR implementation for booting, initializing, and
reporting the capabilities of hardware modules. The ResourceManager interfaces define the means for
communicating with all the devices on a particular module within the radio. Processors with an
instantiation of the ResourceManager component are responsible for reporting to the DomainManager
the pertinent information about the hardware devices that it knows about. The ResourceManager uses
the deviceProperties, deviceList, and deviceExists methods to provide this information to the
DomainManager. The DomainManager uses this information to allocate these devices to specific
requested User functions.
Figure 5.2.3.3.5-11 visually demonstrates how ResourceManagers report device properties to the
DomainManager. The DomainManager uses the Domain Profile to store the information about the
Devices. The ResourceManager is responsible to indicate the state of the devices, their capabilities,
and other pertinent information about the devices. For proper interoperability, a common set of
properties needs to be reported for each module within the radio. These properties should provide the
basis for deciding the allocation constraints on the system. Module developers may also provide
additional properties for additional usable information.
A ResourceManager also provides the capability to load and execute software on Resources within its
control. The DomainManager tells the ResourceManager what resources to use, and the
ResourceManager load and executes the proper software on the given hardware resources. A
ResourceManager upon startup may create a Logger, FileManagers, FileSystem, and other
Resources based on the direction of the DomainManager using the Domain Profile.

SDRF Technical Report 2.1 November 1999

5-69

D o m a i n
M a n a g e r

D o m a i n
M a n a g e r

D o m a i n
M a n a g e r

D o m a i n
M a n a g e r

R e s o u r c e
M a n a g e r

R e s o u r c e
M a n a g e r

R e p o r t D e v i c e
P r o p e r t i e s

D e v i c e sD o m a i n P r o f i l e

D e v i c e
I n f o r m a t i o n

Figure 5.2.3.3.5-1. ResourceManagers Report Device Properties

SDRF Technical Report 2.1 November 1999

5-70

ResourceManager Relationships

Below is a list of Relationships that the ResourceManager component has with other Framework
Components in the system.
<Uses> FileSystem – To load and unload software resource files
<Uses> DomainManager – To register itself or register or unregister a device.
<Uses> Logger – To log warnings or information, and alarm conditions

The relationships for this interface are shown in the ResourceManager Relationships in Figure
5.2.7.1.2.2-2

DeviceList

DeviceType

classID : ClassID_Type
element : DeviceNumType
deviceID : DeviceID_Type

DevicePropertiesType
device : DeviceType
properties : Properties

Properties

uses

Figure 5.2.7.1.2.2-2. ResourceManager Relationships

ResourceManager

terminate(processId : in ProcessID_Type) : boolean
fileManager() : FileManager
logger() : Logger
deviceProperties(device : in DeviceType) : Properties
deviceExists(device : in DeviceType) : unsigned long
list() : DeviceList
execute(functionName : in string, parameters : in StringSequence) : ProcessID_Type
load(fileSystem : in FileSystem, fileName : in string) : boolean
unload(fileName : in string) : boolean

< < I n t e r f a c e > >

F i l e S y s t e m

<<Interface>>
Logger

<<Interface>> ProcessID_Type
FileManager

<<Interface>> StringSequence Properties DeviceList

uses

SDRF Technical Report 2.1 November 1999

5-71

ResourceManager Interfaces

Following is the list of Interfaces for the ResourceManager CF component for managing the plug and
play capabilities of the radio.
interface ResourceManager {

The terminate operation terminates the execution of the function on the device the Resource Manager is
managing.

boolean terminate(in ProcessID_Type processId);

The fileManager operation returns the file manager associated with this ResourceManager.
 FileManager fileManager();

The logger operation returns the logger associated with this ResourceManager.
 Logger logger();

The deviceProperties capability returns the properties for the specified device. If the specified device
does not exist, a null Properties set is returned.
 Properties deviceProperties(in DeviceType device);

The deviceExists operation returns the number of registered devices based upon the input type.
 unsigned long deviceExists(in DeviceType device);

The DeviceList operation provides a list of the hardware devices along with their properties that are
currently associated with this ResourceManager object.
 DeviceList list();

The execute operation executes the given function name using the arguments that have been passed in
and returns an ID of the process that has been created.
 ProcessID_Type execute(in string functionName, in StringSequence parameters);

The load operation loads a file based on the given fileName using the input FileSystem to retrieve it.
True is returned if the load was successful, otherwise False is returned.
 boolean load(in FileSystem fileSystem, in string fileName);

The unload operation unloads software based on the fileName and returns a success or failure status.
 boolean unload(in string fileName);
};

5.2.7.1.3 Framework Services Interfaces

5.2.7.1.3.1 File

The File interface provides the basic primitive interfaces for accessing any non-collocated file within an
SDR implementation. This interface may be extended for specific application files types.

SDRF Technical Report 2.1 November 1999

5-72

File Relationships

Below is a list of Relationships that the File component has with other Framework Components in the
system.
<uses> Message Interface
The definition of the File interface captured in Rational Rose using UML notation is as shown in Figure
5.2.7.1.3.1-1.

File

fileName : string

read(data : out Message::OctetSequence, length : in unsigned long) : unsigned long
write(data : in Message::OctetSequence, length : in unsigned long) : unsigned long
sizeOf() : unsigned long

< < I n t e r f a c e > >

M e s s a g e

<<Interface>>

Figure 5.2.7.1.3.1-1. File Relationships

File Interfaces
INTERFACE FILE {
This attribute provides read access to the fully qualified name of the file.
 readonly attribute string fileName;

The read operation reads data from the file. The read operation returns a True value if the read was
successful, otherwise False is returned.
 unsigned long read(out Message::OctetSequence data, in unsigned long length);

The write operation writes data to the file. The write operation returns a True value if the write was
successful, otherwise False is returned.
 unsigned long write(in Message::OctetSequence data, in unsigned long length);

The sizeOf operation returns the current size of the file.
 unsigned long sizeOf();
 };

5.2.7.1.3.2 FileSystem

The FileSystem interface provides basic OS file system operations to access non-collocated files within
the radio. The interface also provides the capability for accessing non-collocated FileSystems within the
radio. The radio may use one to many (1…*) FileSystems as depicted in Figure 5.2.7.1.3.2-1.

SDRF Technical Report 2.1 November 1999

5-73

Fi leFi leF i l e

P r o c e s s o r 1

F i l e S y s t e m

Fi leFi leF i l e

P r o c e s s o r 2

F i l e S y s t e m

Fi leFi leF i l e

P r o c e s s o r 3

F i l e S y s t e m
F i l e S y s t e m

Figure 5.27.1.3.2-1. Conceptual FileSystem Relationships

FileSystem Relationships

Below is a list of the relationships that the FileSystem component has with other CF components in the
system.
<uses> File – to open, .delete, and create a file.
<uses> Logger – to log information.
The definition of the FileSystem interface captured in Rational Rose using UML notation is as shown in
Figure 5.2.7.1.3.2-2.

Fi le

< < I n t e r f a c e > >

F i l e S y s t e m

remove(fileName : in string) : boolean
copy(sourceFileName : in string, destinationFileName : in string, destinationFileSystem : in FileSystem) : boolean
exists(fileName : in string) : boolean
list(name : in string, argv : in string, argc : in short) : StringSequence
load(fileName : in string) : boolean
create(fileName : in string, size : in unsigned long) : File
open(fileName : in string) : File
close(fileName : in string) : boolean
unload(fileName : in string) : boolean

<<Interface>>

StringSequence

uses

Figure 5.2.7.1.3.2-2. FileSystem Relationships

SDRF Technical Report 2.1 November 1999

5-74

FileSystem Interfaces

interface FileSystem {

The remove operation removes the file with the given name from the file system. The name includes the
full path of the file. The operation returns true on success, false on fail.

boolean remove(in string fileName);

The copy operation copies the source file with the specified name to the destination FileSystem. The
copy operation returns true on success, false on fail.

boolean copy(in string sourceFileName, in string destinationFileName, in FileSystem
destinationFileSystem);

The exists operation checks to see if a file exists based the file name parameter and returns true if found,
false otherwise. The file name should include the path where to search for the file.

boolean exists(in string fileName);

The list operation behaves similar to the UNIX "ls" command.
 StringSequence list(in string name, in string argv, in short argc);

The load operation loads a file based on the file Name and returns a success or failure status. The load
allows a file in the file system to be loaded into RAM without having to open a file and read the file to
load the file into RAM.
 boolean load(in string fileName);

The create operation creates a new File based upon the input file name. The size is used to determine if
the file system has enough space for creating the new file and to verify the file size when closing the file.
A null file object reference is returned if the name already exists or size is too large for file system.
 File create(in string fileName, in unsigned long size);

The open operation opens a File based upon the input file name. A null File object reference is returned
if name does not exist in the file system.
 File open(in string fileName);

The close operation releases a File object that has been created and registered with the ORB. A True
value is returned upon successful file close, otherwise False is returned.
 boolean close(in string fileName);

The unload operation unloads a file based on the fileName and returns a success or failure status. The
unload operation unloads the software from RAM.
 boolean unload(in string fileName);
};

5.2.7.1.3.3 FileManager

The CF includes the FileManager interface for common access to non-collocated Files and
FileSystems. The FileManager organizes FileSystems within the radio, and makes the various
FileSystems available to any Resource in the system. The FileManager is accessible to non-core

SDRF Technical Report 2.1 November 1999

5-75

application resources as well as CF Resources to locate the various FileSystems within the radio. The
FileManager is the top-level access to all the files in the system. Files may be located anywhere within
the architecture. Files may be in found in memory, hard-drive space, flash, or other means of storage.
The generic FileManager interface will allow for multiple FileSystems to be mapped and located using
the FileManager interface.
Figure 5.2.7.1.3.3-1 shows a FileManager on Processor 2 which provides access to FileSystem 1 on
Processor 1 and to the local FileSystem 2 on its own processor. The second FileManager on
Processor 3 provides access to the local FileSystem 3, and FileSystem 2 on Processor 2. Both
FileManagers have access to the Processor 2 FileSystem even though the processors may be of
different type or architecture.

FileFileFile

P r o c e s s o r 1

FileFileFile

Fi leManager

Processor 2

FileFileFile

Fi leManager

Processor 3

Fi le System
FileSys temFileSystemFileSystem

Figure 5.2.7.1.3.3-1. File Management

FileManager Relationships

The definition of the FileManager interface, captured in Rational Rose using UML notation, is as
shown in Figure 5.2.7.1.3.3-2.
<uses> FileSystem – to access and list files in the system
<uses> Logger – to log information.

SDRF Technical Report 2.1 November 1999

5-76

FileManager

list() : Properties
map(fileSystemName : in string, fileSystem : in FileSystem) : boolean
unmap(fileSystemName : in string) : boolean
find(name : in string) : StringSequence
open(name : in string) : File

<<Interface>>

FileSystem
<<Interface>> PropertiesStringSequence

File
<<Interface>>

Figure 5.2.7.1.3.3-2. FileManager Relationships

FileManager Interfaces

Below is the list of FileManager interfaces for managing the FileSystems of an SDR implementation.
interface FileManager {

The list operation returns a list for FileSystem object references.
 Properties list();

The map operation registers a FileSystem object with the File Manager object. True is returned if the
mapping was successful; otherwise false is returned.
 boolean map(in string fileSystemName, in FileSystem fileSystem);

The unmap operation removes a FileSystem reference from a File Manager object.
 boolean unmap(in string fileSystemName);

The find operation returns a list of Files that are found based upon the input criteria.
 StringSequence find(in string name);

File open(in string name);
 };

5.2.7.1.3.4 Installer

The Installer interface defines a standard mechanism in the SDR architecture for loading, initializing, and
reporting the properties of software Resources in the system. The Installer interface provides the
DomainManager with information about the software Resources by populating the Domain Profile.
Software Resources in an SDR implementation are persistent assets, and remain as usable Resources
until deleted from the system. Similar to the ResourceManager, the Installer will provide information
to the Domain Profile, and by combining both software and hardware resource information, the
DomainManager is able to determine allocation of resources.

SDRF Technical Report 2.1 November 1999

5-77

The Installer will provide a common interface allowing both HCI and over-the-air-programming
(OTAP) components the capability of installing and uninstalling software Resources within a radio.
The Administrator’s ability to access the Installer service is verified prior to the Installer being
invoked. This provides for secure management of the software.
The Installer provides the software Resource properties and requirements to the DomainManager
through the population of the Domain Profile. The Resource requirements consist of the definition of
the necessary hardware and software for the operation of the installed software Resource. The
software properties consist of information needed by the DomainManager about the installed modules
such as:

• Their location in the File System

• Software version identification

• Timestamp

• Size

• Security level.

This information is used to allocate the software Resources when a user Functional Application is
requested.

5.2.7.1.3.5 Logger

The Logger interface is used to capture alarm, warning, and informational messages during the
execution of software within the radio. A Logger object interfaces with two other types of objects:

• Message Producers – Objects in the system which send messages to be logged by the Logger.

• Message Consumers - Objects in the system which register with the Logger to receive logged
messages of particular log levels.

The Logger interface provides operations for both Message Producers and Message Consumers.
The Logger uses Log Levels to determine the severity of a message being logged by a Message
Producer. Log Levels range in value from LEVEL_14 (alarm) to LEVEL_0 (purely informational) and
are provided by Message Producers to the Logger along with the message to be logged. The Logger
determines if any Message Consumers are registered to receive messages at the level provided by the
Message Producer and will pass on the message and Log Level to the appropriate Message
Consumer(s).
The Logger also provides the ability:

• To display the last n number (where n is defined by the user) of logged messages to the system
console.

• To enable and disable the logging of messages to a file.

• For Message Consumers to filter the types of messages which they are receiving.

Logger Relationships

SDRF Technical Report 2.1 November 1999

5-78

The definition of the Logger interface, captured in Rational Rose using UML notation, is as shown in
Figure 5.2.7.1.3.5-1.

Logger

logData(producerName : in string, messageString : in string, logLevel : in unsigned short) : void
setLoggingState(enable : in boolean) : void
setProducerLogLevel(producerName : in string, logLevel : in unsigned short) : void
setConsumerLogLevel(consumerName : in string, producerName : in string, logLevel : in unsigned short) : void
displayLast(number : in unsigned short) : void
registerConsumer(consumerName : in string, consumerMessage : in Message, logLevel : in unsigned short) : void
unregisterConsumer(consumerName : in string) : void
showProducerLogLevels() : void
showConsumerLogLevels(consumerName : in string) : void
enableFileLogging(filename : in string, fileSystem : in FileSystem) : void
disableFileLogging() : void
retrieveLogFile() : File

< < I n t e r f a c e > >

F i l e S y s t e m

<<Interface>>
Message

<<Interface>>

File
<<Interface>>

Figure 5.2.7.1.3.5-1. Logger Relationships

Logger Interfaces

The IDL for the Logger interface produced from the Rational Rose diagram in figure is shown below:
 interface Logger {

The logData operation logs a log string and a time stamp to the console depending on the current log
level set for the producer object and the log level of the string. It also logs the same information to a file
if file logging is enabled for the object. The operation also pushes the data to registered consumers
based upon their log levels. The logger log level is automatically assigned to a new producer.

 oneway void logData(in string producerName,
 in string messageString,
 in unsigned short logLevel);

This operation enables the logging of all messages at the currently set level for each object, or disables
the logging of all messages from all objects, depending on the value of the argument.

 void setLoggingState(in boolean enable);

This operation sets the log level for a producer object. All incoming log strings <= to the currently set
level are displayed/saved. The log level is bitmapped 00 00 - 7F FF (hex) with bit 16 being a control
bit to allow for log level manipulation.

Examples:

SDRF Technical Report 2.1 November 1999

5-79

LogLevel = C010 h (1100 0000 0001 0000 b) indicates only levels 14 and 4 are to be
displayed.

LogLevel = 000A h indicates levels 10 and below will be displayed, and bits 4-14 are unused.

 void setProducerLogLevel(in string producerName,
 in unsigned short logLevel);

This operation sets the log level for a consumer object. All incoming log strings <= to the currently set
level are displayed/saved. The log level is bitmapped 00 00 - 7F FF (hex) with bit 16 being a control
bit to allow for log level manipulation.

Examples:

LogLevel = C010 h (1100 0000 0001 0000 b) indicates only levels 14 and 4 are to be
displayed.

LogLevel = 000A h indicates levels 10 and below will be displayed, and bits 4-14 are unused.

 void setConsumerLogLevel(in string consumerName,
 in string producerName,
 in unsigned short logLevel);

This operation displays at the console the last number of log messages stored locally within the logger.
void displayLast(in unsigned short number);

This operation registers a consumer object with the logger. Initially all producers' messages that pass
the input logLevel are pushed to the consumer. A consumer can change its filtering by the
setConsumerLogLevel operation.

void registerConsumer(in string consumerName,
 in Message consumerMessage,
 in unsigned short logLevel);

This operation unregisters a consumer object.
void unregisterConsumer(in string consumerName);

This operation displays the current log level for all producer objects.
void showProducerLogLevels();

This operation displays the current log levels for a consumer object.
void showConsumerLogLevels(in string consumerName);

This operation stores to disk the incoming log based on the current log level. It does not affect output to
the console.

 void enableFileLogging(in string filename,
 in FileSystem fileSystem);

This operation disables storage to disk of the incoming log based on the current debug level.
 void disableFileLogging();

This operation retrieves the current log file.
 File retrieveLogFile();

SDRF Technical Report 2.1 November 1999

5-80

 };

5.2.7.1.3.6 Timer

The CF Timer service provides operations for synchronizing time within the radio as well as for creating
and managing time-based events.
The Timer service is made up of two interfaces, a Time Service interface and a Timer Event Service
interface.
The Time Service interface manages the following two types of objects:

• Universal Time Objects (UTO)
• Time Interval Objects (TIO)

The UTOs are used to represent a time and the TIOs are used to represent a time interval. The Time
Service interface provides operations for creating UTOs or TIOs, as well as operations to create TIOs
based upon UTOs and vice versa. The Time Service also provides operations for returning the current
time and manipulating time formats.
The Timer Event Service manages Timer Event Handler objects. To use this service, the CORBA
Event Service is used to create an Event Channel. The Timer Event Handler then registers the Event
Channel for use. The Timer Event Handler is then used to set up a Timer Event as needed using an
UTO.
The CF Timer service is based on the CORBA Time Service. Concerns about the real-time nature of
current COTS implementations of the CORBA Time Service may preclude its use, however. That
being the case, the SDRF recommends the CF Timer service implement the CORBA Time Service.
Ultimately, COTS implementations of the CORBA Time Service may replace the CF Timer service
implementation if deemed acceptable.

5.2.7.1.4 Optional Framework Interfaces

5.2.7.1.4.1 Factory

The Factory interface defines a generic interface that can be implemented by any Factory Resource
within the radio. Each Factory object creates a specific type of Resource within the radio. The
Factory interface provides a one-step solution for creating a Resource, reducing the overhead of
starting up Resources. The Factory interface is similar to the COM Factory class and is based on the
industry accepted Factory design pattern3. In CORBA, there are two separate object reference
counts. One for the client side and one for the server side. The Factory keeps a server-side reference
count of the number of clients that have requested the resource. When a client is done with a resource,
the client releases the client resource reference and calls releaseResource to the Factory. When the
server-side reference goes to zero, the server resource object is released from the ORB that causes the
resource to be destroyed.

3 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 107.

SDRF Technical Report 2.1 November 1999

5-81

Factory Relationships

The definition of the Factory interface, captured in Rational Rose using UML notation, is as shown in
Figure 5.2.7.1.4.1-1.

Factory

createResource(resourceNumber : in ResourceNumType, qualifiers : in DataType) : Object
releaseResource(resourceNumber : in ResourceNumType) : boolean
shutdown() : boolean

< < I n t e r f a c e > >

D a t a T y p e

id : unsigned long
value : any

ResourceNumType

Figure 5.2.7.1.4.1-1. Factory Relationships

Factory Interfaces

The IDL for the Factory interface produced from the Rational Rose diagram in Figure 5.2.7.1.4.1-1 is
shown below:
 interface Factory {

The createResource operation returns a resource based upon the input resource number and qualifiers.
If the resource does not already exist, then this operation creates the resource, else the operation returns
the object already created for that resource number.

 Object createResource(in ResourceNumType resourceNumber, in DataType
qualifiers);

This operation removes the resource from the Factory if no other clients are using the resource. The
resource to be released is associated with a specific resource number.

 boolean releaseResource(in ResourceNumType resourceNumber);

This operation destroys all resources managed by this factory and terminates the factory object.
 boolean shutdown();

};

5.2.7.1.4.2 Adapters

The SDR Software Architecture is easily extended to support non-CORBA-capable processing
elements through the use of Adapters. Adapters are inserted into the architecture to provide the
translation between non-CORBA-capable Resources and CORBA-capable Resources. The Adapter

SDRF Technical Report 2.1 November 1999

5-82

concept is based on the industry accepted Adapter design pattern4. Since an Adapter implements the
CF CORBA interfaces known to other CORBA-capable Resources, the translation service performed
by the Adapter is transparent to the CORBA-capable Resources. Adapters become particularly useful
to support non-CORBA-capable Modem, Security, and Host processing elements. Figure
5.2.7.1.4.2-1 depicts an example of message reception flow through the radio with and without the use
of Adapters. Modem, Security, and Host Adapters implement the interfaces marked by the circled
letters M, S, and H respectively. Notice that the Waveform Link and Waveform Network Resources
are unaffected by the inclusion or exclusion of the Adapters. The interface to these Resources remains
the same in either case.

5.2.8 Use Case View

“No system exists in isolation. Every interesting system interacts with human or automated actors that
use that system for some purpose, and those actors expect that system to behave in predictable ways.
A use case specifies the behavior of a system or a part of a system and is a description of a set of
sequences of actions, including variants that a system performs to yield an observable result of value to
an actor. Use cases serve to help validate the architecture and to verify the system as it evolves during
development.”5

The ability of the SDR Software Architecture definition to meet the needs of users (actors) is contained
in the behavioral models specified in this section. Several example scenarios for the use cases depicted
in Figure 5.2.8-1 have been modeled using the SDR interface definitions. This is the first step in
validating the SDR Software Architecture.

4 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

5 Booch, Rumbaugh, Jacobson – The Unified Modeling Language User Guide, p.219

SDRF Technical Report 2.1 November 1999

5-83

OE
Core Framework (CF)

Commercial Off-the-Shelf (COTS)

Non-Core (Radio) Applications

CORBA
SecurityResource

Host
Adapter

RF

Non-CORBA
Host

CORBA
Host Resource

Waveform
Network Resource

Waveform
Link Resource

Non-CORBA
Modem

CORBA
Modem Resource

S

S

S

SM

M

(2) (3) (4) (5)

(1)

(1)

(2)

(3) (4)

(5) (6)

(7) (8)

(9)

OTA Message Reception Path (with Adapters)
 (1) from RF physical link API
 (2) API for non-CORBA Modem
 (3) CORBA Interface to Waveform Link
 (4) CORBA Interface to Security Adapter
 (5) API for Black-side non-CORBA Security
 (6) API for Red-side non-CORBA Security
 (7) CORBA Interface to Waveform Network
 (8) CORBA Interface to Host Adapter
 (9) API for non-CORBA Host

OTA Message Reception Path (without Adapters)
 (1) from RF physical link API
 (2) CORBA Interface to Waveform Link
 (3) CORBA Interface to Security
 (4) CORBA Interface to Waveform Network
 (5) CORBA Interface to Host

M

S

S Note: The design goal of a CORBA gateway “Adapter” is to
define the CORBA side of the gateway such that the eventual
removal of the Adapter does not change the Core Framework
CORBA interface.

Modem
Adapter

Security
Adapter

Security
Adapter

H

H

H

M
S

S

H

Non-CORBA
Security

Figure 5.2.7.1.4.2-1. Example Message Flows with and without Adapters

Radio
System

Baseband
System

8.
Send and Receive
Comms Traffic

7.
Configure

Radio

4.
Manage Software

Configuration

1.
Bootup and

Initalize

5.
Radio

Diagnostics

3.
Manage Physical

Configuration
2.

Manage
User Access

9.
Develop
SW/HW

Administrator

Comms User

Maintainer

Developer

SDR

<<enables>>
<<uses>>

6.
Manage Security

Security

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<develops>>

Figure 5.2.8-1. SDR Use Cases

SDRF Technical Report 2.1 November 1999

5-84

5.2.8.1 Boot Up and Initialize Use Case

5.2.8.1.1 Power Up Scenario

This scenario provides an example of the Power Up and Initialization of the Core Framework Objects.
The use case begins when the system is booting up. The flow of events is described below and
depicted in Figure 5.2.8.1.1-1.

1. The OS start procedure loads and executes a Factory on the processor used by the
DomainManager to create a FileManager.

2. The OS start procedure loads and executes a Factory on the processor used by the
DomainManager to create a FileSystem.

3. The OS start procedure maps the FileSystem to FileManager.

4. The OS start procedure executes a Factory to create the Domain Manager on a designated
processor.

5. The DomainManager uses the FileManager to locate the DomainManager’s
DomainProfile.

6. The DomainManager loads the DomainProfile.

7. The DomainManager locates the startup procedure in the DomainProfile.

8. The DomainManager loads and executes Factories to create core Resources (Logger,
Factories, etc.) base on the startup procedure in the DomainProfile.

9. The DomainManager loads and executes Factories on processor(s) to create
ResourceManager(s) based on the startup procedure in the DomainProfile.

10. The DomainManager gets the available Resource(s) from the ResourceManager(s).

11. The DomainManager re-initializes the waveform application(s) run at power down.

12. Notification is given to the actor.

13. The DomainManager loads and executes Factories on processor(s) to create
FileManager(s) based on the startup procedure in the DomainProfile.

14. The DomainManager loads and executes Factories on processor(s) to create FileSystem(s)
based on the startup procedure in the DomainProfile.

15. The DomainManager maps the FileSystem(s) to FileManager(s) based on the startup
procedure in the Domain Profile.

SDRF Technical Report 2.1 November 1999

5-85

DomainManager
DomainManager

 : Operating

System

FileManagerFactory

Factory

FileManager :
FileMan

FileSystem :
FileSystem

FileSystemFactory
: Factory

DomainManagerFactory

Factory

DomainProfile :
File

CoreResourcesFactory

Factory

ResourceManagerFactory

Factory

ResourceManager

ResourceManager

Load
DomainProfile

Create Based on

 DomainProfile

Map File systems

Based on DomainProfile

8: find(in string)
14: map(in string, in FileSystem)

9: open(in string)

11: close(in string)

10: read(out Message::MessageBuffer, in unsigned long)

12: createResource(in CircuitNumType,
 in DataType)

13: createResource(in CircuitNumType, in DataType)

15: createResource(in CircuitNumType, in DataType)

17: createResource(in CircuitNumType, in DataType)

19: deviceProperties(in DeviceType)

1: createResource(in CircuitNumType, in DataType)

3: createResource(in CircuitNumType, in DataType)

5: map(in string, in FileSystem)

6: createResource(in CircuitNumType, in DataType)

2: // Create

4: // Create

7: // Create

16: // Create

18: // Create

CoreResources :
Resource

Figure 5.2.8.1.1-1. CF Power Up and Initialization Example Scenario

5.2.8.2. Send and Receive Communication Traffic Use Case

5.2.8.2.1 Receive Communications Scenario

This scenario provides an example of receiving communications traffic. The flow of events is described
below and depicted in Figure 5.2.8.2.1-1. The scenario begins after a radio has been powered on and
configured to receive. The virtual circuit Message paths have been registered. The “R” labeled flows
denote RF signals. The “F” labeled flows denote Frequency Control flows. The “B” labeled flows
denote Baseband data flows. The “C” labeled flows denote Clock recovery flows. N” labeled
flows denote Network configuration flows.

1. (R1) RF signal is received by the antenna and sent to the LNA.

SDRF Technical Report 2.1 November 1999

5-86

2. (R2) LNA amplifies RF signal.

3. (R3) Received signal is filtered to reject out-of-band energy.

4. (F1, F1.1, F1.2) The synthesizer (part of RF resource) is commanded by waveform control to
tune to a user-selected frequency.

5. (R4) Signal strength of received signal is adjusted by AGC process.

6. (R5) Using the reference frequency provided by the synthesizer,
(B1) the received RF signal is down converted to baseband.

7. (B2) Using an error estimate provided by the demodulator, the baseband signal is corrected for
any frequency errors.

8. (B3) The corrected baseband signal is then demodulated, producing a stream of “raw” data
bits.

9. (F2, F2.1) The demodulator also updates the frequency error estimate and the AGC setting at
this time.

10. (C1) Additionally, the demodulator monitors transitions in the bit stream and provides an
indication of these events to the clock generator.

11. (C1.1, C1.2) The clock recovery object generates a “receive bit clock” signal to be used as a
reference by other receive objects. This clock signal is adjusted regularly to keep it aligned with
the “bit transition” indications provided to it by the demodulator.

12. (B4) Based on comparisons with expected bit patterns (e.g., a waveform dependant data
preamble pattern) the “raw” data stream is converted to a “hard” bit stream (if necessary).

13. (B5) The received data stream is then parsed into messages to be decrypted.

14. (B6) The Security module decrypts the message and presents the decrypted data to the red-
side processor.

15. (B7) If the message is user data (such as voice data) it is sent to the voice decoder object.

16. (N1, N1.1, N1.2) If the decrypted data is radio configuration data (Op mode change,
frequency change, etc.) the new configuration data is sent to the black-side configuration
management controller. (Radio configuration is a separate sequence diagram.)

17. (B7.1) Finally, the decoded voice data is converted to an analog signal and routed to the
enduser.

SDRF Technical Report 2.1 November 1999

5-87

Filter :
RFDevice

DownConverter:
RFResource

DemodFSK :

ModemResource
ClockGen :

ModemResource

BitDecision :

ModemResource

DataParsing:

LinkResource

OpModeSelection:

NetworkResource

VoiceDecode:
:Recovery :UtilityResource

AnalogOut :
AccessResource

FreqOffset :

ModemResource

GainControl :

RFResource

Synthesizer:
:RFDevice

Configuration:
LinkResource

MsgSec :
SecurityResource

TuneControl :
LinkResource

Control Panel :

AccessResource

CryptoBypass
SecurityResource

R2: Amplified RF Signal

R3: Filtered RF Signal

B1: processOctetMsg
 (in OctetSequence)

C1 : processShortMsg
 (in ShortSequence)

B3: processOctetMsg
 (in OctetSequence)

F2: configure(in DataType)

B2: processOctetMsg
 (in OctetSequence)

F2.1: configure(in DataType)
C1.1: Bit Clock()

C1.2: Bit Clock()

B4 : processOctetMsg
 (in OctetSequence)

B7 : processUshortMsg
 (in UshortSequence)

N1: configure(in DataType)

B7.1: processUshortMsg
 (in UshortSequence)

R4: Adjusted RF Signal

R5
Reference
Frequency

F1.2: tune data

N1.2: configure(in DataType)

B5 : processAnyMsg
 (in AnySequence)

B6: processAnyMsg
 (in AnySequence)

F1: configure(in DataType)

N1.1: configure(in DataType)

F1.1: configure(in DataType)

Antenna

R1 : Received RF Signal

RFDevice

LNA:

ManageMAC:

LinkResource

Figure 5.2.8.2.1-1. Receive Communications Example Scenario

Transmit Communications Scenario

This scenario provides an example of transmitting communications traffic. The flow of events is
described below and depicted in Figure 5.2.8.2.2-1. The scenario begins after a radio has been
powered on and configured to transmit.

1. User indicates that a transmission event is desired. (ex; PTT)

2. The input data (in this example analog voice) is digitized.

3. The digitized voice data is encoded following waveform specific rules. (in this example called
“CVSD”)

4. The encoded voice message is encrypted.

5. The encrypted data packet is sent over to the black-side where it is processed for transmission.
(Interleaving, P-N cover, appended to header information, etc.)

6. The process of preparing the “front-end” of the radio for transmission is then started.

SDRF Technical Report 2.1 November 1999

5-88

7. The amplifier is enabled.

8. The up-converter is enabled.

9. The packet of data to be transmitted is then passed to the modulator.

10. The modulator translates the data into a base-band signal.

11. Using a signal provided by the carrier generator the base-band signal is up-converted to the
transmit frequency.

12. The modulated RF signal is amplified and transmitted.

13. The up-converter is disabled.

14. The amplifier is disabled.

15. Preparation for the next transmission event is begun.

CVSD :
UtilityResource

EnvelopConstruct:
LinkResource

FSKModulate:
ModemResource

UpConvert :

RFResource

Amplifier :
RFDevice

SequenceControl:
LinkResource

CarrierGenerator:

RFDevice

Encrypt :
SecurityResource

A/D :
AccessResource

3: processUshortMsg
 (in UshortSequence)

8: start()
13: stop()

7: enable

14: disable

11: generate carrier

10: processOctetMsg
 (in OctetSequence)

12: Transmit Signal

5: configure(in DataType)

9: processOctetMsg
 (in OctetSequence)

6: start()

4: processUshortMsg
 (in UshortSequence)

2: processUshortMsg
 (in UshortSequence)

1: User PTT

5.1: processUshortMsg
 (in UshortSequence)

11.1: RF Carrier

Figure 5.2.8.2.2-1. Transmit Communications Example Scenario

SDRF Technical Report 2.1 November 1999

5-89

5.2.9 Summary of Core Framework Operations

The following tables provide a summary description of the operations included in the SDR Core
Framework (CF).

LifeCycle Interface:

Operations Purpose

1 selfTest This operation performs a specific test on an object.

2 configure This operation sets an object's properties.

3 query This operation retrieves an object's properties.

4 initialize This operation controls when configuration data is implemented by the
resource or initializes the devices being controlled by the resource.

5 release This operation releases the resource from the CORBA ORB. When
the object's ORB reference count goes go to zero, the object’s
destructor operation will be called.

6 start This operation starts processing messages that are received from the
front end and/or back end of the radio. The object's sink (consumer)
objects are enabled for processing messages.

7 stop This operation stops processing messages that are received from the
front end and/or back end of the radio. The object's sink (consumer)
objects are disabled from processing messages and the messages are
discarded.

8 pause This operation queues messages that are received from the front end
and/or back end of the radio.

StateManagement Interface:

Operations Purpose

9 setAdminState This operation sets the administrative state of an object managed by a
Resource. The Administrative state of the object may be set to
“Locked” (unusable for service) or “Unlocked” (usable for service)
using this operation. (Note: If a request to Lock a resource is made
while the resource is busy providing user service (i.e. Usage state is
Active), the resource will transition to the “Shutting Down” state.
When the user service is completed (i.e. Usage state is Idle) the
resource will transition to the requested “Locked” Admin state.

10 getState This operation returns an object's state. The Administrative (Locked,
Unlocked, Shutting Down), Usage (Active, Idle), and Operational

SDRF Technical Report 2.1 November 1999

5-90

(Enabled, Disabled) states of an object managed by a Resource are
returned.

MessageRegistration Interface:

Operations Purpose

11 setSink This operation registers a single Message sink (Consumer) object for
call back by a source (Producer) object.

12 unsetSink This operation removes a registered Message sink (Consumer)
resource from a source (Producer) object's registered Message Sinks.

13 setMultipleSinks This operation registers a set of Message sink (Consumer) objects for
call back by a source (Producer) object.

14 getSink This operation requests the Message sink (Consumer) object
reference that is responsible for processing data to be received from
the requesting source (Producer) object.

15 getTransferSize This operation gets the maximum transfer Message size.

16 setTransferSize This operation sets the suggested transfer Message size for the source
(Producer) object.

Message Interface:

Operations Purpose

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

processOctetMsg
processWcharMsg
processLongMsg
processShortMsg
processLongLongMsg
processULongMsg
processULongLongMsg
processFloatMsg
processDoubleMsg
processLongDoubleMsg
processBooleanMsg
processCharMsg
processUshortMsg
processStringMsg
processWstringMsg
processAnyMsg

These operations are used to push information to be received or
transmitted through the radio from a source object (Producer) to one
or more registered destination objects (Consumers). The destination
objects are registered using the operations of the
MessageRegistration interface. The data format is determined by
the operation. All of the basic CORBA IDL types are supported.

SDRF Technical Report 2.1 November 1999

5-91

DomainManager Interface:

Operations Purpose

33 registerResourceManager This operation adds a ResourceManager object entry into the
DomainManager Domain Profile. This allows the
DomainManager to dynamically direct the ResourceManager to
load and execute software applications.

34 registerDevice This operation adds a device entry into the DomainManager for a
specific ResourceManager object.

35 unregisterResourceManager This operation unregisters a ResourceManager object from the
DomainManager.

36 unregisterDevice The unregisterDevice operation removes a device entry from the
DomainManager object for a specific ResourceManager.

37 getResources This operation returns resources based upon the input resource
request.

38 getDevices This operation returns device information based upon the input
device request.

39 getNetworks This operation returns network information based upon the input
network request.

40 createVirtualCircuit
This operation creates a virtual circuit for an application within the radio.

41 getVirtualCircuitResource This operation returns the object reference for the specified virtual
circuit.

42 releaseVirtualCircuit This operation changes the state of the associated device entries in
the DomainManager to be available and releases the application
resources in the radio for this virtual circuit number.

43 fileManager This operation returns a FileManager object reference to the main
FileManager repository.

SDRF Technical Report 2.1 November 1999

5-92

ResourceManager Interface:

Operations Purpose

44 load The load operation loads a file based on the given fileName using the
input FileSystem to retrieve it.

45 unload This operation unloads software based on the fileName.

46 execute This operation executes the given function name using the arguments
that have been passed in and returns an ID of the process that has
been created.

47 terminate This operation terminates the execution of the function on the device
the ResourceManager is managing.

48 fileManager This operation returns the FileManager object associated with this
ResourceManager.

49 deviceProperties This operation returns the properties for the specified device.

50 deviceExists This operation returns the number of registered devices based upon
the input type.

51 list This operation provides a list of the hardware devices along with their
properties that are currently associated with this ResourceManager
object.

52 logger This operation returns the Logger object associated with this
ResourceManager.

File Interface:

Operations Purpose

53 read This operation reads data from a file.

54 write This operation writes data to a file.

55 sizeOf The sizeOf operation returns the current size of a file.

SDRF Technical Report 2.1 November 1999

5-93

FileSystem Interface:

Operations Purpose

56 remove This operation provides a method of removing a file from the local file
system.

57 copy This operation provides a method of copying a file from the local file
system to a remote file system.

58 exists This operation provides a method of determining if a particular file
exists in the file system.

59 list This operation provides a list of the files contained in the file system.

60 load This operation provides a method for the loading of a file system
resident executable file into dynamic memory for subsequent
execution.

61 unload This operation provides a method for the unloading of an executable
file from dynamic memory.

62 create This operation creates a new on the local file system.
63 open This operation opens a file on the local file system.
64 close This operation closes a File server object that has been created and

registered with the ORB.

FileManager Interface:

Operations Purpose

65 list This operation returns a list for FileSystem object references.

66 map
This operation registers a FileSystem object with the FileManager object.

67 unmap This operation removes FileSystem reference from a FileManager
object.

68 find This operation returns a list of files that are found based upon the
input criteria.

69 open This operation opens a file.

SDRF Technical Report 2.1 November 1999

5-94

Logger Interface:

Operations Purpose

70 logData This operation logs a log string and a time stamp to the console
depending on the current log level set for the producer object and the
log level of the string. It also logs the same information to a file if file
logging is enabled for the object. The operation also pushes the data
to registered consumers based upon their log levels. The logger log
level is automatically assigned to a new producer.

71 setLoggingState This operation enables the logging of all messages at the currently set
level for each object, or disables the logging of all messages from all
objects, depending on the value of the argument.

72 setProducerLogLevel This operation sets the log level for a producer object. All incoming
log strings <= to the currently set level are displayed/saved.

73 setConsumerLogLevel This operation sets the log level for a consumer object. All incoming
log strings <= to the currently set level are sent to the consumer.

74 displayLast This operation displays at the console the last number of log
messages stored locally within the logger.

75 registerConsumer This operation registers a consumer object with the logger. Initially
all producers' messages that pass the input logLevel are pushed to the
consumer. A consumer can change its filtering by the
setConsumerLogLevel operation.

76 unregisterConsumer This operation unregisters a consumer object.

77 showProducerLogLevels This operation displays the current log level for all producer objects.

78 showConsumerLogLevels This operation displays the current log level for all consumer objects.

79 enableFileLogging This operation stores to disk the incoming log based on the current
log level.

80 disableFileLogging This operation disables storage to disk of the incoming log based on
the current debug level.

81 retrieveLogFile This operation retrieves the current log file.

SDRF Technical Report 2.1 November 1999

5-95

Factory Interface:

Operations Purpose

82 createResource This operation returns a Resource based upon the input resource
number and qualifiers. If the Resource does not already exist then
this operation creates the Resource, else the operation returns the
object already created for that resource number.

83 releaseResource This operation removes the Resource from the Factory if no other
clients are using the Resource.

84 shutdown This operation shuts down the Factory and destroys all Resource(s)
that are being maintained by the Factory.

5.2.10 Core Framework IDL

The CF interfaces are expressed in CORBA IDL. The IDL has been generated directly by the Rational
Rose UML software modeling tool. This “forward engineering” approach ensures that the IDL
accurately reflects the architecture definition as contained in the UML models. Any IDL compiler for
the target language of choice may compile the generated IDL. All of the interfaces are contained in the
CF CORBA module as depicted in Figure 5.2.10-1. This module is also provided separately in
electronic form. A listing of the Core Framework IDL is provided on the following pages.

CF

Resource

Resource
Manager

FileSystem

File

Logger

Factory

FileManager
Message
Registration

Domain
Manager

StateManagement

MessageLifeCycle

Figure 5.2.10-1. CF CORBA module

SDRF Technical Report 2.1 November 1999

5-96

5.2.10.1 Core Framework IDL Listing

The following is a complete list of the CF IDL generated from the Rational Rose model.

//## Module: CF
//## Subsystem: CF_IDL_Implementation_Component
//## Source file: C:\projects\sdr\CF.idl
//## Documentation::
// This CORBA module defines the SDR CF interfaces and types.
//##begin module.cm preserve=no
// %X% %Q% %Z% %W%
//##end module.cm

//##begin module.cp preserve=no
//##end module.cp

#ifndef CF_idl
#define CF_idl

//##begin module.additionalIncludes preserve=no
//##end module.additionalIncludes

//##begin module.includes preserve=yes
//##end module.includes

// ==

interface Resource;

//## DataType Documentation:
// This type is a CORBA IDL struct type which can be
// used to hold any CORBA basic type or static IDL type.
//## Category: CF_IDL_Design_Components

struct DataType {
 //##begin DataType.initialDeclarations preserve=yes
 //##end DataType.initialDeclarations

 // Attributes

 //## Attribute: id
 //## Documentation:
 // The id attribute indicates the kind of value (e.g.,
 // frequency, preset, etc.).
 unsigned long id;
 //## Attribute: value
 //## Documentation:
 // The value attribute can be any static IDL type or
 // CORBA basic type.
 any value;

 // Relationships

SDRF Technical Report 2.1 November 1999

5-97

 // Associations

 //##begin DataType.additionalDeclarations preserve=yes
 //##end DataType.additionalDeclarations

};

//## Properties Documentation:
// The Properties is a CORBA IDL unbounded sequence of
// DataType(s), which can be used in defining a sequence
// of name and value pairs. The relationships for Properties
// are shown in the Properties Relationships figure.
//## Category: CF_IDL_Design_Components

typedef sequence <DataType> Properties;

//## CircuitNumType Documentation:
// This class defines the circuit number values within the radio.
//## Category: CF_IDL_Design_Components

typedef unsigned short CircuitNumType;

//## DirectionType Documentation:
// This CORBA IDL enumeration type defines the data direction
// within the radio.
//## Category: CF_IDL_Design_Components

enum DirectionType
{
 FROM_ANTENNA,
 TO_ANTENNA
};

//## ProcessID_Type Documentation:
// This defines the process number within the radio.
// Processor number is qualified by the Processor OS
// that created the process.
//## Category: CF_IDL_Design_Components

typedef unsigned long ProcessID_Type;

//## DeviceNumType Documentation:
// This type defines the device number values.
//## Category: CF_IDL_Design_Components

typedef unsigned long DeviceNumType;

//## ClassID_Type Documentation:
// This type defines the device kind number.
//## Category: CF_IDL_Design_Components

typedef unsigned long ClassID_Type;

//## DeviceID_Type Documentation:

SDRF Technical Report 2.1 November 1999

5-98

// This type defines the device identification values.
//## Category: CF_IDL_Design_Components

typedef unsigned long DeviceID_Type;

//## DeviceType Documentation:
// This CORBA IDL struct type defines the actual physical
// hardware device.which contains an identification, number,
// and device identification as shown in the DeviceType
// Relationships figure.
//## Category: CF_IDL_Design_Components

struct DeviceType {
 //##begin DeviceType.initialDeclarations preserve=yes
 //##end DeviceType.initialDeclarations

 // Attributes

 //## Attribute: classID
 //## Documentation:
 // This attribute indicates the type of physical device.

 ClassID_Type classID;

 //## Attribute: element
 //## Documentation:
 // This attribute indicates the number of the device kind.

 DeviceNumType element;

 //## Attribute: deviceID
 //## Documentation:
 // This attribute identifies the device within the radio.

 DeviceID_Type deviceID;

 // Relationships

 // Associations

 //##begin DeviceType.additionalDeclarations preserve=yes
 //##end DeviceType.additionalDeclarations

};

//## StringSequence Documentation:
// This type defines a sequence of strings
//## Category: CF_IDL_Design_Components

typedef sequence <string> StringSequence;

//## DevicePropertiesType Documentation:
// This type contains the properties for a specific type.
//## Category: CF_IDL_Design_Components

SDRF Technical Report 2.1 November 1999

5-99

struct DevicePropertiesType {
 //##begin DevicePropertiesType.initialDeclarations preserve=yes
 //##end DevicePropertiesType.initialDeclarations

 // Attributes

 DeviceType device;
 Properties properties;

 // Relationships

 // Associations

 //##begin DevicePropertiesType.additionalDeclarations preserve=yes
 //##end DevicePropertiesType.additionalDeclarations

};

//## DeviceList Documentation:
// This type defines an unbounded CORBA IDL sequence of
// DeviceType as shown in the DeviceList Relationships figure.
//## Category: CF_IDL_Design_Components

typedef sequence<DevicePropertiesType> DeviceList;

//## Message Documentation:
// The Message interface provides operations for pushing data
// to a consumer Message object. This interface is implemented by
// a consumer that processes messages pushed to it. The relationships
// for Message are shown in the Message Raltionships figure.
//## Category: CF_IDL_Design_Components

interface Message {
 //##begin Message.initialDeclarations preserve=yes
 //##end Message.initialDeclarations

 // Nested Classes
 //## OctetSequence Documentation:
 // This type is a CORBA unbounded sequence of octets.

 typedef sequence<octet> OctetSequence;

 //## CharSequence Documentation:
 // This type is a CORBA unbounded sequence of characters.

 typedef sequence<char> CharSequence;

 //## ShortSequence Documentation:
 // This type is a CORBA unbounded sequence of short integers.

 typedef sequence<short> ShortSequence;

 //## LongSequence Documentation:

SDRF Technical Report 2.1 November 1999

5-100

 // This type is a CORBA unbounded sequence of long integers.

 typedef sequence<long> LongSequence;

 //## LongLongSequence Documentation:
 // This type is a CORBA unbounded sequence of long long integers.

 typedef sequence<long long> LongLongSequence;

 //## UshortSequence Documentation:
 // This type is a CORBA unbounded sequence of unsigned short integers.

 typedef sequence<unsigned short> UshortSequence;

 //## UlongSequence Documentation:
 // This type is a CORBA unbounded sequence of unsigned long integers.

 typedef sequence<unsigned long> UlongSequence;

 //## UlongLongSequence Documentation:
 // This type is a CORBA unbounded sequence of unsigned longlong
integers.

 typedef sequence<unsigned long long> UlongLongSequence;

 //## FloatSequence Documentation:
 // This type is a CORBA unbounded sequence of floats.

 typedef sequence<float> FloatSequence;

 //## DoubleSequence Documentation:
 // This type is a CORBA unbounded sequence of doubles.

 typedef sequence<double> DoubleSequence;

 //## LongDoubleSequence Documentation:
 // This type is a CORBA unbounded sequence of long doubles.

 typedef sequence<long double> LongDoubleSequence;

 //## BooleanSequence Documentation:
 // This type is a CORBA unbounded sequence of booleans.

 typedef sequence<boolean> BooleanSequence;

 //## WcharSequence Documentation:
 // This type is a CORBA unbounded sequence of wide characters.

 typedef sequence<wchar> WcharSequence;

 //## StringSequence Documentation:
 // This type is a CORBA unbounded sequence of strings.

 typedef sequence<string> StringSequence;

SDRF Technical Report 2.1 November 1999

5-101

 //## WstringSequence Documentation:
 // This type is a CORBA unbounded sequence of wide strings.

 typedef sequence<wstring> WstringSequence;

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: processOctetMsg
 //## Documentation:
 // This operation is used to push a sequence of octets.

 oneway void processOctetMsg(in OctetSequence message, in Properties
options);

 //## Operation: processWcharMsg
 //## Documentation:
 // This operation is used to push a sequence of wide characters.

 oneway void processWcharMsg(in WcharSequence message, in Properties
options);

 //## Operation: processLongMsg
 //## Documentation:
 // This operation is used to push a sequence of long integers.

 oneway void processLongMsg(in LongSequence message, in Properties options);

 //## Operation: processShortMsg
 //## Documentation:
 // This operation is used to push a sequence of short integers.

 oneway void processShortMsg(in ShortSequence message, in Properties
options);

 //## Operation: processLongLongMsg
 //## Documentation:
 // This operation is used to push a sequence of long long integers.

 oneway void processLongLongMsg(in LongLongSequence message, in Properties
options);

 //## Operation: processUlongMsg
 //## Documentation:
 // This operation is used to push a sequence of unsigned long integers.

 oneway void processUlongMsg(in UlongSequence message, in Properties
options);

SDRF Technical Report 2.1 November 1999

5-102

 //## Operation: processULongLongMsg
 //## Documentation:
 // This operation is used to push a sequence of unsigned long long
 // integers.

 oneway void processULongLongMsg(in UlongLongSequence message, in Properties
options);

 //## Operation: processFloatMsg
 //## Documentation:
 // This operation is used to push a sequence of floats.

 oneway void processFloatMsg(in FloatSequence message, in Properties
options);

 //## Operation: processDoubleMsg
 //## Documentation:
 // This operation is used to push a sequence of doubles.

 oneway void processDoubleMsg(in DoubleSequence message, in Properties
options);

 //## Operation: processLongDoubleMsg
 //## Documentation:
 // This operation is used to push a sequence of long doubles.

 oneway void processLongDoubleMsg(in LongDoubleSequence message, in
Properties options);

 //## Operation: processBooleanMsg
 //## Documentation:
 // This operation is used to push a sequence of booleans.

 oneway void processBooleanMsg(in BooleanSequence message, in Properties
options);

 //## Operation: processCharMsg
 //## Documentation:
 // This operation is used to push a sequence of characters.

 oneway void processCharMsg(in CharSequence message, in Properties options);

 //## Operation: processUshortMsg
 //## Documentation:
 // This operation is used to push a sequence of unsigned short
integers.

 oneway void processUshortMsg(in UshortSequence message, in Properties
options);

 //## Operation: processStringMsg
 //## Documentation:
 // This operation is used to push a CORBA string

SDRF Technical Report 2.1 November 1999

5-103

 oneway void processStringMsg(in StringSequence message, in Properties
options);

 //## Operation: processWstringMsg
 //## Documentation:
 // This operation is used to push a CORBA wide string

 void processWstringMsg(in WstringSequence message, in Properties options);

 //## Operation: processAnyMsg
 //## Documentation:
 // This operation is used to push a CORBA any type

 oneway void processAnyMsg(in DataType message, in Properties options);

 //##begin Message.additionalDeclarations preserve=yes
 //##end Message.additionalDeclarations

};

//## File Documentation:
// The File interface defines the CORBA interfaces for manipulating
// a file within the radio. The relationships for File are shown in
// the File Relationships figure. The File interface emulates the
// POSIX/C file interface.
//## Category: CF_IDL_Design_Components

interface File {
 //##begin File.initialDeclarations preserve=yes
 //##end File.initialDeclarations

 // Attributes

 //## Attribute: fileName
 //## Documentation:
 // Theis attribute provides read access to the fully qualified
 // name of the file.

 readonly attribute string fileName;

 // Relationships

 // Associations

 // Operations

 //## Operation: read
 //## Documentation:
 // The read operation reads data from the file. The read operation
 // returns a True value if the read was successful, otherwise False
 // is returned.

SDRF Technical Report 2.1 November 1999

5-104

 unsigned long read(out Message::OctetSequence data, in unsigned long
length);

 //## Operation: write
 //## Documentation:
 // The write operation writes data to the file. The write operation
 // returns a True value if the write was successful, otherwise False
 // is returned.

 unsigned long write(in Message::OctetSequence data, in unsigned long
length);

 //## Operation: sizeOf
 //## Documentation:
 // The sizeOf operation returns the current size of the file.

 unsigned long sizeOf();

 //##begin File.additionalDeclarations preserve=yes
 //##end File.additionalDeclarations

};

//## FileSystem Documentation:
// The FileSystem interface defines the CORBA interfaces that
// provide the file I/O manipulation operations for a file system.
// The FileMan interface provides the flexibility of having
// multiple file systems within the radio, and of being located
// anywhere within the radio. The relationships for FileSystem
// are shown in the File System Relationships figure.
//## Category: CF_IDL_Design_Components

interface FileSystem {
 //##begin FileSystem.initialDeclarations preserve=yes
 //##end FileSystem.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: remove
 //## Documentation:
 // The remove operation removes the file with the given name
 // from the file system. The name includes the full path of the
 // file. The operation returns true on success, false on fail.
 boolean remove(in string fileName);

 //## Operation: copy
 //## Documentation:
 // The copy operation copies the source file with the specified

SDRF Technical Report 2.1 November 1999

5-105

 // name to the destination FileSystem. The copy operation
 // returns true on success, false on fail.
 boolean copy(in string sourceFileName, in string destinationFileName, in

FileSystem destinationFileSystem);

 //## Operation: exists
 //## Documentation:
 // The exists operation checks to see if a file exists based on
 // the file name parameter and returns true if found, false
 // otherwise. The file name should include the path where to
 // search for the file.

 boolean exists(in string fileName);

 //## Operation: list
 //## Documentation:
 // The list operation behaves similar to the UNIX "ls" command.

 StringSequence list(in string name, in string argv, in short argc);

 //## Operation: load
 //## Documentation:
 // The load operation loads a file based on the file Name and
 // returns a success or failure status. The load allows a file
 // in the file system to be loaded into RAM without having to
 // open a file and read the file to load the file into RAM.

 boolean load(in string fileName);

 //## Operation: create
 //## Documentation:
 // The create operation creates a new File based upon the input
 // file name. The size is used to determine if the file system
 // has enough space for creating the new file and to verify the
 // file size when closing the file. A null file object reference
 // is returned if the name already exists or size is too large
 // for the file system.
 File create(in string fileName, in unsigned long size);

 //## Operation: open
 //## Documentation:
 // The open operation opens a File based upon the input file
 // name. A null File object reference is returned if name does
 // not exist in the file system.

 File open(in string fileName);

 //## Operation: close
 //## Documentation:
 // The close operation releases a File object that has been
 // created and registered with the ORB. A True value is
 // returned upon successful file close, otherwise False is returned.

 boolean close(in string fileName);

SDRF Technical Report 2.1 November 1999

5-106

 //## Operation: unload
 //## Documentation:
 // The unload operation unloads a file based on the fileName
 // and returns a success or failure status. The unload
 // operation unloads the software from RAM.
 boolean unload(in string fileName);

 //##begin FileSystem.additionalDeclarations preserve=yes
 //##end FileSystem.additionalDeclarations

};

//## Logger Documentation:
// The Logger interface is used to capture alarms, log warnings and
// information messages during the execution of software withinn the
// radio, and pushes messages to registered consumers. The interface
// provides operations for both producer and consumer clients.
//## Category: CF_IDL_Design_Components

interface Logger {
 //##begin Logger.initialDeclarations preserve=yes
 //##end Logger.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: logData
 //## Documentation:
 // This operation logs a log string and a time stamp to the console
 // depending on the current log level set for the producer object
 // and the log level of the string. It also logs the same
 // information to a file if file logging is enabled for the object.
 // The operation also pushes the data to registered consumers based
 // upon their log levels. The logger log level is automatically
 // assigned to a new producer.

 oneway void logData(in string producerName, in string messageString, in
unsigned short logLevel);

 //## Operation: setLoggingState
 //## Documentation:
 // This operation enables the logging of all messages at the
 // currently set level for each object, or disables the logging
 // of all messages from all objects, depending on the value of
 // the argument.

 void setLoggingState(in boolean enable);

SDRF Technical Report 2.1 November 1999

5-107

 //## Operation: setProducerLogLevel
 //## Documentation:
 // This operation sets the log level for a producer object. All
 // incoming log strings <= to the currently set level are
 // displayed/saved. The log level is bitmapped 00 00 - 7F FF(hex)
 // with bit 16 being a control bit to allow for log level manipulation.

 // Examples:
 // LogLevel = C010 h (1100 0000 0001 0000 b) indicates
 // only levels 14 and 4 are to be displayed.
 // LogLevel = 000A h indicates levels 10 and below
 // will be displayed, and bits 4-14 are unused.

 void setProducerLogLevel(in string producerName, in unsigned short
logLevel);

 //## Operation: setConsumerLogLevel
 //## Documentation:
 // This operation sets the log level for a consumer object. All
 // All incoming log strings <= to the currently set level are sent
 // to the consumer. The log level is bitmaped 00 00 - 7F FF (hex)
 // with bit 16 being a control bit to allow for log level manipulation.

 // Examples:
 // LogLevel = C010 h (1100 0000 0001 0000 b) indicates
 // only levels 14 and 4 are to be displayed.
 // LogLevel = 000A h indicates levels 10 and below
 // will be displayed, and bits 4-14 are unused.

 void setConsumerLogLevel(in string consumerName, in string producerName, in
unsigned short logLevel);

 //## Operation: displayLast
 //## Documentation:
 // This operation displays at the console the last number of log
 // messages stored locally within the logger.

 void displayLast(in unsigned short number);

 //## Operation: registerConsumer
 //## Documentation:
 // This operation registers a consumer object with the logger.
 // Initially all producers' messages that pass the input logLevel
 // are pushed to the consumer. A consumer can change its filtering
 // by the setConsumerLogLevel operation.

 void registerConsumer(in string consumerName, in Message consumerMessage, in
unsigned short logLevel);

 //## Operation: unregisterConsumer
 //## Documentation:
 // This operation unregisters a consumer object.

 void unregisterConsumer(in string consumerName);

SDRF Technical Report 2.1 November 1999

5-108

 //## Operation: showProducerLogLevels
 //## Documentation:
 // This operation displays the current log level for all producer
 // objects.

 void showProducerLogLevels();

 //## Operation: showConsumerLogLevels
 //## Documentation:
 // This operation displays the current log levels for a consumer
object.

 void showConsumerLogLevels(in string consumerName);

 //## Operation: enableFileLogging
 //## Documentation:
 // This operation stores to disk the incoming log based on the current
 // log level. It does not affect output to the console.

 void enableFileLogging(in string filename, in FileSystem fileSystem);

 //## Operation: disableFileLogging
 //## Documentation:
 // This operation disables storage to disk of the incoming log based
 // on the current debug level.

 void disableFileLogging();

 //## Operation: retrieveLogFile
 //## Documentation:
 // This operation retrieves the current log file.

 File retrieveLogFile();

 //##begin Logger.additionalDeclarations preserve=yes
 //##end Logger.additionalDeclarations

};

//## FileManager Documentation:
// The FileMan interface provides the operations for manipulating a
// File Manager object. A File Manager object contains a set of
// File System object references. The File Manager interface is
// is similar to COTS OS file managers (UNIX, NT) capabilities. The
// relationships for FileMan are shown in the File Manager
// Relatinships figure.
//## Category: CF_IDL_Design_Components

interface FileManager {
 //##begin FileManager.initialDeclarations preserve=yes
 //##end FileManager.initialDeclarations

 // Attributes

SDRF Technical Report 2.1 November 1999

5-109

 // Relationships

 // Associations

 // Operations

 //## Operation: list
 //## Documentation:
 // The list operation returns a list for FileSystem object references.
 Properties list();

 //## Operation: map
 //## Documentation:
 // The map operation registers a FileSystem object with the
 // File Manager object. True is returned if the mapping was
 // successful, otherwise false is returned.

 boolean map(in string fileSystemName, in FileSystem fileSystem);

 //## Operation: unmap
 //## Documentation:
 // The unmap operation removes FileSystem reference from a
 // File Manager object.

 boolean unmap(in string fileSystemName);

 //## Operation: find
 //## Documentation:
 // The find operation returns list of Files that are found based
 // upon the input criteria.

 StringSequence find(in string name);

 //## Operation: open
 //## Documentation:
 // This operation opens a file.

 File open(in string name);

 //##begin FileManager.additionalDeclarations preserve=yes
 //##end FileManager.additionalDeclarations

};

//## ResourceManager Documentation:
// The ResourceManager interface defines the CORBA interfaces for
// communicating with a device that is CORBA capable. A Resource
// Manager object dynamically receives load and execute requests.

// A Resource Manager upon startup determines its local devices and
// may create or obtain a Logger and FileSystem objects. The
// relatiuonships for this interface are shown in the ResourceManager
// Relationships figure.

SDRF Technical Report 2.1 November 1999

5-110

//## Category: CF_IDL_Design_Components

interface ResourceManager {
 //##begin ResourceManager.initialDeclarations preserve=yes
 //##end ResourceManager.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: terminate
 //## Documentation:
 // The terminate operation terminates the execution of the function
 // on the device the Resource Manager is managing and returns a
 // True value when termination is successful or False if unsuccessful.

 boolean terminate(in ProcessID_Type processId);

 //## Operation: fileManager
 //## Documentation:
 // The fileManager operation returns the File Manager associated
 // with this Resource Manager.

 FileManager fileManager();

 //## Operation: logger
 //## Documentation:
 // The logger operation returns the logger associated with this
 // Resource Manager.

 Logger logger();

 //## Operation: deviceProperties
 //## Documentation:
 // The deviceProperties capability returns the properties for the
 // specified device. If the specified device does not exist a null
 // Properties set is returned.

 Properties deviceProperties(in DeviceType device);

 //## Operation: deviceExists
 //## Documentation:
 // This operation returns the number of registered devices based upon
 // the input type.

 unsigned long deviceExists(in DeviceType device);

 //## Operation: list
 //## Documentation:
 // This operation provides a list of the hardware devices along

SDRF Technical Report 2.1 November 1999

5-111

 // with their properties that are currently associated with this
 // Resource Manager object.

 DeviceList list();

 //## Operation: execute
 //## Documentation:
 // The execute operation executes the given function name using the
 // arguments that have been passed in and returns an ID of the process
 // that has been created.

 ProcessID_Type execute(in string functionName, in StringSequence
parameters);

 //## Operation: load
 //## Documentation:
 // The load operation loads a file based on the given filename using
 // the input FileSystem to retrieve it. True is returned if the load
 // was successful, otherwise False is returned.

 boolean load(in FileSystem fileSystem, in string fileName);

 //## Operation: unload
 //## Documentation:
 // The unload operation unloads software based on the fileName and
 // returns a success or failure status.

 boolean unload(in string fileName);

 //##begin ResourceManager.additionalDeclarations preserve=yes
 //##end ResourceManager.additionalDeclarations

};

//## ResourceType Documentation:
// This type is used to indicate a type of resource.
//## Category: CF_IDL_Design_Components

typedef unsigned long ResourceType;

//## Category: CF_IDL_Design_Components

typedef unsigned short ResourceNumType;

//## Factory Documentation:
// The Factory class is the interface for all factories in the Radio.
// The relationships for Factory are depicted in the Factory Raltionships
// figure.

// Each Factory object produces a specific resource within the radio.

// The Factory Interface provides a one-step solution for creating a
// resource, reducing the overhead of starting up resources.

SDRF Technical Report 2.1 November 1999

5-112

// The Factory Interface provides a one-step solution for releasing
// resources, reducing the overhead of releasing resources.

// The Factory Interface is similar to the COM factory class and is
// based on the industry accepted Factory design pattern.
//## Category: CF_IDL_Design_Components

interface Factory {
 //##begin Factory.initialDeclarations preserve=yes
 //##end Factory.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: createResource
 //## Documentation:
 // This operation returns a resource based upon the input resource
 // number and qualifiers. If the resource does not already exist
 // then this operation creates the resource, else the operation
 // returns the object already created for that resource number.

 Object createResource(in ResourceNumType resourceNumber, in DataType
qualifiers);

 //## Operation: releaseResource
 //## Documentation:
 // This operation removes the resource from the Factory if no
 // other clients are using the resource. The resource to be
 // released is associated with a specific resource number.

 boolean releaseResource(in ResourceNumType resourceNumber);

 //## Operation: shutdown
 //## Documentation:
 // This operation destroys all resources managed by this factory
 // and terminates the factory server.

 boolean shutdown();

 //##begin Factory.additionalDeclarations preserve=yes
 //##end Factory.additionalDeclarations

};

//## ResourceID_Type Documentation:
// This type defines a CORBA IDL struct type which contains a
// direction, resource number, and resource type as shown in the
// ResourceID_Type Relationships figure.
//## Category: CF_IDL_Design_Components

SDRF Technical Report 2.1 November 1999

5-113

struct ResourceID_Type {
 //##begin ResourceID_Type.initialDeclarations preserve=yes
 //##end ResourceID_Type.initialDeclarations

 // Attributes

 //## Attribute: direction
 //## Documentation:
 // This attribute indicates the direction the data is coming
 // from (to the antenna or from the antenna).

 DirectionType direction;

 //## Attribute: number
 //## Documentation:
 // This attribute indicates the number of the resource sink
 // Consumer) or source (Producer) object.

 ResourceNumType number;

 //## Attribute: resourceType
 //## Documentation:
 // This attribute indicates the type of resource
 // (e.g., modem, access, link, etc)
 ResourceType resourceType;

 // Relationships

 // Associations

 //##begin ResourceID_Type.additionalDeclarations preserve=yes
 //##end ResourceID_Type.additionalDeclarations

};

//## StateManagement Documentation:
// The StateManagement interface defines the state information
// that is based upon the ISO/IEC 10164-2 Open Systems
// Interconnection - Systems Management: State Management Function
// standard. This standard identifies additional states which
// could be used to expand the definition of the Resource states.
//## Category: CF_IDL_Design_Components

interface StateManagement {
 //##begin StateManagement.initialDeclarations preserve=yes
 //##end StateManagement.initialDeclarations

 // Nested Classes
 //## AdminType Documentation:
 // This type is a CORBA IDL enumeratiuon type that defines an
 // object's administrative states.

 enum AdminType

SDRF Technical Report 2.1 November 1999

5-114

 {
 ADMIN_NOT_APPLICABLE,
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };

 //## UsageType Documentation:
 // This type is a CORBA IDL enumeration type that defines the
 // object's Usage states.

 enum UsageType
 {
 USAGE_NOT_APPLICABLE,
 IDLE,
 ACTIVE
 };

 //## OperationalType Documentation:
 // This type is a CORBA IDL enumeration type that defines an
 // object's Operational states.

 enum OperationalType
 {
 ENABLED,
 DISABLED
 };

 //## StateType Documentation:
 // This type is a CORBA IDL struct type that contains an object’s
 // Admin, Operational, and Usage states.

 struct StateType {
 //##begin StateType.initialDeclarations preserve=yes
 //##end StateType.initialDeclarations

 // Attributes

 AdminType adminState;
 OperationalType operationalState;
 UsageType usageState;

 // Relationships

 // Associations

 //##begin StateType.additionalDeclarations preserve=yes
 //##end StateType.additionalDeclarations

 };

 // Attributes

 // Relationships

SDRF Technical Report 2.1 November 1999

5-115

 // Associations

 // Operations

 //## Operation: setAdminState
 //## Documentation:
 // This operation sets the adminstrative state per the specified
 // parameter.

 void setAdminState(in AdminType adminState);

 //## Operation: getState
 //## Documentation:
 // This operation returns the object's state.

 StateType getState();

 //##begin StateManagement.additionalDeclarations preserve=yes
 //##end StateManagement.additionalDeclarations

};

//## LifeCycle Documentation:
// The LifeCycle interface defines the generic object operations
// for: 1) Testing, 2) Configuring (setting) and querying
// (retrieving) an object's properties, 3) Initializing and
// releasing an object, and 4) Messaging control operations:
// start, stop, and pause.

// The parameter type for properties is based upon the CORBA “any”
// type. This provides the greatest flexibility for developing
// software by leaving the implementation up to the developer not
// by the core framework definition. The CORBA any type is also
// minimum CORBA compliant.
//## Category: CF_IDL_Design_Components

interface LifeCycle {
 //##begin LifeCycle.initialDeclarations preserve=yes
 //##end LifeCycle.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: selfTest
 //## Documentation:
 // The selfTest operation performs a specific test on an object.
 // True is returned if the test passes, otherwise false is
 // returned. When false is returned, the operation also returns

SDRF Technical Report 2.1 November 1999

5-116

 // a reason why the test failed.

 boolean selfTest(inout unsigned long testNum);

 //## Operation: configure
 //## Documentation:
 // The configure operation sets the object's properties. True
 // is returned if the configure was successful, otherwise False
 // is returned. Any basic CORBA type or static IDL type could
 // be used for the configuration data. An object’s ICD indicates
 // the valid configuration values.

 boolean configure(in DataType properties);

 //## Operation: query
 //## Documentation:
 // The query operation retrieves object's properties. Any basic
 // CORBA type or static IDL type could be used for the query.
 // An object's ICD indicates the valid query types. The
 // information retrieved can later be used when an object is
 // recreated, by calling the configure operation.

 void query(inout DataType properties);

 //## Operation: initialize
 //## Documentation:
 // The intialize operation controls when configuration data is
 // implemented by the resource or initializes the devices being
 // controlled by the resource.

 boolean initialize();

 //## Operation: release
 //## Documentation:
 // The release operation releases itself from the CORBA ORB.
 // When the object's ORB reference count goes to zero, the
 // objects desctructor operation will be called.

 boolean release();

 //## Operation: start
 //## Documentation:
 // The start operation starts processing messages that are
 // received from the front end and/or back end of the radio.
 // The object's sink objects are enabled for processing messages.

 boolean start();

 //## Operation: stop
 //## Documentation:
 // The stop operation stops processing messages that are
 // received from the front end and/or back end of the radio.
 // The object's sink objects are disbaled from processing
 // messages and the messages are discarded.

SDRF Technical Report 2.1 November 1999

5-117

 boolean stop();

 //## Operation: pause
 //## Documentation:
 // The pause operation queues messages that are received from
 // the front end and/or back end of the radio.

 boolean pause();

 //##begin LifeCycle.additionalDeclarations preserve=yes
 //##end LifeCycle.additionalDeclarations

};

//## ConfigurationStatusType Documentation:
// This type indicates configuration status values.
//## Category: CF_Domain_Manager_IDL_Design_Components

enum ConfigurationStatusType
{
 Configure_Successful,
 Configure_Failure,
 Configure_NA
};

//## Category: CF_Domain_Manager_IDL_Design_Components

struct Network {
 //##begin Network.initialDeclarations preserve=yes
 //##end Network.initialDeclarations

 // Attributes

 string netType;
 ResourceNumType resourceNumber;
 string alias;
 Properties properties;

 // Relationships

 // Associations

 //##begin Network.additionalDeclarations preserve=yes
 //##end Network.additionalDeclarations

};

//## Category: CF_Domain_Manager_IDL_Design_Components

typedef sequence <Network> Networks;

//## Category: CF_Domain_Manager_IDL_Design_Components

SDRF Technical Report 2.1 November 1999

5-118

struct ResourcePropertiesType {
 //##begin ResourcePropertiesType.initialDeclarations preserve=yes
 //##end ResourcePropertiesType.initialDeclarations

 // Attributes

 ResourceID_Type id;
 Properties properties;

 // Relationships

 // Associations

 //##begin ResourcePropertiesType.additionalDeclarations preserve=yes
 //##end ResourcePropertiesType.additionalDeclarations

};

//## Category: CF_Domain_Manager_IDL_Design_Components

typedef sequence <ResourcePropertiesType> Resources;

//## DestinationType Documentation:
// The Destination type is a CORBA IDL struct type
// which defines the attributes necessary for setting
// up a virtual path to another resource in the radio.
//## Category: CF_IDL_Design_Components

struct DestinationType {
 //##begin DestinationType.initialDeclarations preserve=yes
 //##end DestinationType.initialDeclarations

 // Attributes

 //## Attribute: resource
 //## Documentation:
 // The object attribute indicates the CORBA object that
 // should be used for pushing data to it.

 // When the destination is for an I/O physical device and the
 // source is the red-side waveform object, then the source
 // obtains the message object from the object using the getSink
 // operation. Otherwise the destination needs to be sent to
 // the black-side waveform for setting up the virtual path.

 // When the source and destination is for a MODEM and the source
 // is compatible (e.g., mode, crypto algorithm and key) with the
 // destination, then the destination information needs to be sent
 // to the black-side to set up the virtual path on the black-side.
 // Otherwise, source obtains the message object from the object
 // using the getSink operation.

 // When the source is an I/O (audio, serial, ethernet) physical
 // device, it should call the GetSink operation using the

SDRF Technical Report 2.1 November 1999

5-119

 // resource interface. For black-side I/O, it needs to obtain
 // the object reference from the waveform connection factory.

Resource resource;

 //## Attribute: resourceNumber
 //## Documentation:
 // This attribute describes the identification number
 // of the resource.

 ResourceNumType resourceNumber;

 //## Attribute: resourceType
 //## Documentation:
 // This attribute indicates the type of resource
 // (e.g., modem, access, link, etc.)

 ResourceType resourceType;
 //## Attribute: redSideOnly
 //## Documentation:
 // This attribute indicates whether or not the resource is on
 // the red side boundary of the INFOSEC resource. True
 // indicates the resource is on the red side of the INFOSEC.

 boolean redSideOnly;

 // Relationships

 // Associations

 //##begin DestinationType.additionalDeclarations preserve=yes
 //##end DestinationType.additionalDeclarations

};

//## Destinations Documentation:
// The Destinations type defines an unbounded CORBA IDL sequence
// of Destination(s) as shown in the Destinations figure. Each
// Each destination is used to set up a virtual path to a resource.
//## Category: CF_IDL_Design_Components

typedef sequence <DestinationType> Destinations;

//## MessageRegistration Documentation:
// The MessageRegistration interface provides the operations for
// an active source (producer) side of a push data transfer. The
// interface defines the operations to register and unregister
// PushSink (consumer) objects to a source (producer) object.
// The source object pushes data to these sink objects. The
// PushSource is implementing the Observer Design Pattern, which
// behaves as a callback. This interface supports the Push Model.
// The relationships for this interface are shown in the
// MessageRegistration figure.
//## Category: CF_IDL_Design_Components

SDRF Technical Report 2.1 November 1999

5-120

interface MessageRegistration {
 //##begin MessageRegistration.initialDeclarations preserve=yes
 //##end MessageRegistration.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //## Operation: setSink
 //## Documentation:
 // This operation registers a single Message sink (Consumer)
 // object for call back by a source (Producer) object. The
 // Message sink object reference is added to the source object's
 // list of registered Message sinks. When pushing data to
 // this destination the message sink object is used.

 void setSink(in Message pushSink, in ResourceID_Type destinationResource);

 //## Operation: unsetSink
 //## Documentation:
 // This operation removes a registered Message sink (Consumer)
 // resource from a source (Producer) object's registered Message Sinks.

 void unsetSink(in ResourceID_Type destinationResource);

 //## Operation: setMultipleSinks
 //## Documentation:
 // The setMultipleSinks operation registers a set of Message sink
 // (Consumer) objects for call back by a source (Producer) object.

 void setMultipleSinks(in Destinations destinationSinks);

 //## Operation: getSink
 //## Documentation:
 // This operation requests the Message sink (Consumer) object
 // reference that is responsible for processing data to be
 // received from the requesting source (Producer) object.

 Message getSink(in ResourceID_Type sourceResource);

 //## Operation: getTransferSize
 //## Documentation:
 // This operation gets the maximum transfer message size.

 unsigned long getTransferSize();

 //## Operation: setTransferSize
 //## Documentation:
 // This operation sets the suggested transfer message size for

SDRF Technical Report 2.1 November 1999

5-121

 // the Producer Source.

 void setTransferSize(in unsigned long size);

 //##begin MessageRegistration.additionalDeclarations preserve=yes
 //##end MessageRegistration.additionalDeclarations

};

//## Resource Documentation:
// The Resource interface defines the minimal
// interface for any software resource created up by a Domain Manager.
//## Category: CF_IDL_Design_Components

interface Resource : Message, MessageRegistration, StateManagement, LifeCycle
{
 //##begin Resource.initialDeclarations preserve=yes
 //##end Resource.initialDeclarations

 // Attributes

 // Relationships

 // Associations

 // Operations

 //##begin Resource.additionalDeclarations preserve=yes
 //##end Resource.additionalDeclarations

};

//## Circuits Documentation:
// This type defines an unbounded CORBA sequence of
// DeviceTypes.
//## Category: CF_Domain_Manager_IDL_Design_Components

typedef sequence <CircuitNumType> Circuits;

//## ConfigurationRequestType Documentation:
// This type defines the configuration request for a physical link
// in the Radio.
//## Category: CF_Domain_Manager_IDL_Design_Components

struct ConfigurationRequestType {
 //##begin ConfigurationRequestType.initialDeclarations preserve=yes
 //##end ConfigurationRequestType.initialDeclarations

 // Attributes

 //## Attribute: device
 //## Documentation:
 // This attribute indicates the channel physical link to be
 // configured within the radio.

SDRF Technical Report 2.1 November 1999

5-122

 DeviceType device;

 //## Attribute: operationalMode
 //## Documentation:
 // This attribute indicates the mode of operation for the channel
 // physical link.

 string operationalMode;

 //## Attribute: destinationCircuits
 //## Documentation:
 // This attribute contains a list of channel physical link’s
 // channel/port numbers which indicate the channels that are to
 // receive the data from this physical link.

 Circuits destinationCircuits;

 //## Attribute: qualifiers
 //## Documentation:
 // This attribute describes the Configuration Qualifiers for a
 // PhysicalLinkConfiguration.

 Properties qualifiers;

 // Relationships

 // Associations

 //##begin ConfigurationRequestType.additionalDeclarations preserve=yes
 //##end ConfigurationRequestType.additionalDeclarations

};

//## DomainManager Documentation:
// The DomainManager interface is used to configure the radio,
// get the radio's capabilities, software resources, and status.

// The DomainManager interface can be logically grouped into two
// catagories: Host and Registration. The Host operations are
// used to configure the radio, get radio's capabilities, software
// resources, and radio status, and to get a channel resource.
// The Registration operations are used to register and unregister
// Resource Managers and devices at startup or dynamically for
// hot swap capability. The DomainManager Relationships figure
// depicts the relationships fo DomainManager.
//## Category: CF_Domain_Manager_IDL_Design_Components

interface DomainManager {
 //##begin DomainManager.initialDeclarations preserve=yes
 //##end DomainManager.initialDeclarations

 // Attributes

SDRF Technical Report 2.1 November 1999

5-123

 // Relationships

 // Associations

 // Operations

 //## Operation: registerDevice
 //## Documentation:
 // The registerDevice capability adds a device entry into the
 // DomainManager for a specific ResourceManager object.

 boolean registerDevice(in string resourceManagerID, in DeviceType device);

 //## Operation: registerResourceManager
 //## Documentation:
 // The registerResourceManager adds a ResourceManager object
 // entry into the Domain Manager object database.

 boolean registerResourceManager(in string resourceManagerID, in
ResourceManager resourceManager);

 //## Operation: releaseVirtualCircuit
 //## Documentation:
 // The releaseVirtualCircuit operation changes the state of the
 // associated device entries in the DomainManager to be
 // available and releases the resources in the radio for this
 // virtual circuit number.

 void releaseVirtualCircuit(in CircuitNumType circuit);

 //## Operation: unregisterResourceManager
 //## Documentation:
 // The unregisterResourceManager capability unregisters a
 // Resource Manager object from the DomainManager.

 void unregisterResourceManager(in string resourceManagerID);

 //## Operation: unregisterDevice
 //## Documentation:
 // The unregisterDevice operation removes a device entry from
 // the Domain Manager object.

 void unregisterDevice(in string resourceManagerID, in DeviceType device);

 //## Operation: createVirtualCircuit
 //## Documentation:
 // This operation creates a virtual circuit within the radio.
 // The mode of operation (waveform or non-waveform for this
 // virtual circuit is passed in as input to this operation.
 // The virtual circuit end point (Antenna end of the radio)
 // may be specified or determined by the DomainManager.
 // Other parameters passed in to this operation are the
 // destination paths the virtual circuit uses to push data to
 // and the configuration data for the virtual circuit created.

SDRF Technical Report 2.1 November 1999

5-124

 // The createVirtualCircuit operation determines the devices to
 // be loaded based upon the devices available and the types
 // devices that are needed by the request. If devices are
 // available and operational state is enable, then this operation
 // loads and executes the software resource files based on the
 // mode of operation on the appropriate processors using the
 // ResourceManager interface and returns a virtual circuit number
 // that has been created for this request.

 // The operation obtains the resource object references from
 // Factories or from CORBA Naming Services, and transitions the
 // resource thru their states using the LifeCycle interface.
 // The application rule indicates which resources the
 // DomainManager should control and setup virtual paths between
 // the resources.

 // If the device is unavailable or its operational state is
 // disabled, then a NULL virtual circuit number is returned to caller.

 oneway void createVirtualCircuit(in ConfigurationRequestType
configurationRequest);

 //## Operation: getVirtualCircuitResource
 //## Documentation:
 // The getVirtualCircuitResource operation returns the
 // object reference for the specified virtual circuit.

 Object getVirtualCircuitResource(in CircuitNumType circuit);

 //## Operation: fileManager
 //## Documentation:
 // This operation returns a FileManager object reference to the
 // main FileManager repository.

 FileManager fileManager();

 Networks getNetworks();

 //## Operation: getDevices
 //## Documentation:
 // This operation returns device information based upon the input
 // deviceRequest.

 DeviceList getDevices(in Properties deviceRequest);

 Resources getResources(in Properties resourceRequest);

 //##begin DomainManager.additionalDeclarations preserve=yes
 //##end DomainManager.additionalDeclarations

};

#endif

SDRF Technical Report 2.1 November 1999

5-125

SDRF Technical Report 2.1 November 1999

5-126

5.2.11 Other Reference Sources

1. The Unified Modeling Language User Guide, Grady Booch, et al, Addison Wesley, 1998

2. Unified Modeling Language Reference Manual, Grady Booch, et al, Addison Wesley, 1998

3. Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, et al,
Addison-Wesley, 1995

4. The Common Object Request Broker Architecture and Specification, Version 2.2, OMG, 1
February 1998

5. Naming Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

6. Event Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

7. Transaction Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

8. Time Service Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

9. Trading Object Services Specification contained in CORBAservices: Common Object Services
Specification, 05 July 1998

10. MinimumCORBA, Joint Revised Submission, OMG, August 17, 1998

11. CORBAtelecoms: Teecommunications Domain Specifications, Version 1.0, June 1998

12. “Optimizing a CORBA Inter-ORB Protocol (IIOP) Engine for a Minimal Footprint Embedded
Multimedia Systems”, Washington University Web Site.

13. Aniruddha Gokhale, Gokhale@research.bell-labs.com, Bell Laboratories, Lucent Technologies

14. Douglas C. Schmidt, Schmidt@cs.wustl.edu, Dept. of Computer Science, Washington
University, One Brookings Drive, St. Louis, MO 63130

15. http://www.objenv.com/cetus/oo_object_request_brokers.html#oo_corba_orbs_comparisons.
(This internet site provides online CORBA ORB comparisons.)

16. http://www.objenv.com/cetus/software.html. (This internet site provides online object-oriented
information such as languages, distributed communicating, modeling, etc)

17. http://www.objenv.com/cetus/oo_corba.html (This internet site provides online CORBA
information)

18. A Large Distributed Control System Using Ada in Fusion Research, John P. Woodruff and Paul
J. Arsdall, Lawrence Livermore National Laboratory.

19. DoD Joint Technical Architecture Version 3.0 Draft 1 2.2-18, 26 February 1999

20. "Recommendations for Using DCE, DCOM and CORBA Middleware", MITRE Corporation.
April 13,1998, DII COE Distributed Applications Series by the Defense Information System
Agency (DISA) Joint Interoperability & Engineering Organization (JIEO) Center for Computer
Systems Engineering (JEXF)

SDRF Technical Report 2.1 November 1999

5-127

5.3 Base Station Framework Examples

Intentionally left blank this revision

SDRF Technical Report 2.1 November 1999

5-128

5.4 Satellite Framework Examples

Intentionally left Blank in this revision

SDRF Technical Report 2.1 November 1999

6-1

6.0 Implementation Recommendation

6.1 Software Download

6.1.1 Introduction

This section contains progress to date on software download which, following further development
within the technical committee, will lead to standards recommendations.

Section 6.1.1 presents an overview of software download in the context of SDRF handheld and mobile
devices, with reference to application, requirements, methods and implementations, and presents a list of
issues to be resolved, concerning regulation, certification and standardization.

Section 6.1.2 presents a number of download scenarios for both handheld and mobile SDRF devices.

6.1.2 Software Download Overview

This section discusses various issues surrounding software download, and has been used for extracting
potential standardization issues, establishing implications on the software and hardware architecture of
the SDRF device, and defining working group work packages for issues requiring further study.

6.1.2.1 Definition of Software Download

Software download is the process of introducing new program code to a SDRF device to modify its
operation or performance.

6.1.2.2 Areas of Application

A SDRF device potentially offers ultimate reconfigurability, via software download, of all its functions,
benefiting

• Manufacturers
• Operators (carriers)
• Third-party software developers
• Subscribers

 The SDRF device with software download capability thus further enables the ongoing convergence of
personal computing and personal communications, and the convergence of technology for personal and
professional applications as bearer services are enhanced.

SDRF Technical Report 2.1 November 1999

6-2

Downloaded software will fall into distinct categories:

• High-level communications and computing applications
• Protocol entities for modification or changing of the air interface or the bearer service
• Low-level signal processing algorithms for modification or changing of the communication

physical layer processing

 In turn, download will enable the following areas of application:

• Download of new computing and communication applications
• Download of new user interface (look and feel) and I/O drivers
• Adaptation of air interface to implement a new standard (inter-standard adaptation)
• Adaptation of air interface to implement different features (e.g., increased bearer data rate)

specified within a standard (intra-standard adaptation)
• Download of incremental enhancements (module or entity replacement)
• Download of patches for software bug-fixes
• Download of reference material, e.g, locally available services and operators
• Download of activation licenses to activate downloaded applications, upon verified receipt of

payment

6.1.2.3 Requirements for Software Download

Many parties potentially benefit from the prospect of software download. Moreover, different parties
will have different requirements for software download. Some examples of potential beneficiaries are
listed:

• Manufacturers
• Operators (carriers)
• Third party software developers
• Subscribers and users
• Military
• Civil
• Regulators
• Software distribution channels
• Hardware distribution channels

SDRF Technical Report 2.1 November 1999

6-3

 Rather than producing a set of requirements to cover all military, civil, and commercial requirements, a
list of relevant factors has been proposed. From these factors, listed below, a set of requirements for the
commercial, civil, and military groups may be derived.

• Usability - Who will be the users and how easy will it be for them to download the software
• Implementation complexity
• Protocol support including whether it is recoverable, redefinable, and recognition of the

instruction set
• Capability exchange, i.e., negotiation with the network or other device as to the waveform and

protocol used for communications
• Incremental upgrade. i.e. does all the software have to be replaced or can just one block be

replaced
• Authentication of the software module, the hardware module, the user, and the organization
• Download time
• Roaming support − will the terminal function on other networks with different air interfaces
• Reset and recovery
• Who makes the decision to download the software
• Is plug and play functionality required
• Billing and licensing
• Regulatory − type approval and certification
• Configuration management
• Liability
• Responsibility for maintenance
• Download destination
• Access controls
• Backward compatibility
• Extensible and scaleable
• Energy consumption
• Network capacity − how much software download traffic can the network support
• Memory management
• Compression
• Can the download process be used to deny service
• Low probability of interception and detection

SDRF Technical Report 2.1 November 1999

6-4

6.1.2.4 Methods of Downloading Software

A number of methods of downloading software to a SDRF device can be envisaged, for example:

• Distribution of new software via SIM-card or other removable media
• Downloading software via a modem and fixed network, e.g., telephone or cable service
• From a handheld field device
• From CD-ROM or Internet/Intranet, via a PC;
• From a street side terminal, e.g., download onto SIM card via an Automatic Teller Machine

(ATM)
• Download from a Point of Sale terminal in a shop or service center
• Over-the-air reconfiguration by downloading software over the wireless link. In this case, the

options of point-to-point and point-to-multiple-point are available, allowing forms of broadcast
reconfiguration

6.1.2.5 Download Implementation Issues

With each method of download are an associated set of issues. Some examples:

• Security
• Integrity of downloaded code
• Billing and licensing of downloaded code
• Regulatory Issues: e.g., How will ‘type approval’ be applied to terminals capable of

reconfiguration via software developed by independent third parties? Must all hardware and
software be type approved?

• Technical Capability: Does the destination terminal have the technical capability to correctly run
the software

• Resilience
• Ownership of the software
• Liability for the software
• Maintenance
• Configuration management
• Usability
• Recovery

6.1.2.6 Standardization Issues

The following standards issues are raised by the preceding discussion areas, and will be appended,
expanded, and discussed in future issues of this document. Likelihood and implications of de-facto or
de-jure standardization will also be discussed:

• What is the minimum level of standardization required to ensure that SDRF devices can
communicate (download) within a number of radio environments, yet allow manufacturers,
operators, service providers, and independent software developers the flexibility to innovate
within their field?

SDRF Technical Report 2.1 November 1999

6-5

• How can the API structure be defined such that code updates are permissible by the operator,
service provider, and manufacturer?

• How will a SDRF device detect the local radio environments?
• What modifications will be required to existing standards to permit software download and

multistandard roaming?
• Will a classification of the technical performance of the SDRF device (in terms of transceiver

bandwidth, processing power benchmarks, memory, etc.) be required? Can this be achieved
via a capability exchange as part of the download procedure?

• Will standardization be required to address billing, licensing, ownership, and security issues for
downloaded software?

6.1.2.7 Regulation and Certification Issues

Many issues arise regarding certification and type approval. Historically, type approval has been applied
to specific terminal equipment containing resident fixed software. When software download is
considered, the personality, behavior, and performance of the terminal can be modified. Some issues
are listed below:

• Must all software applications and all hardware platforms be separately type-approved
• How can type approval be guaranteed for any type-approved software application running on

any type-approved platform
• How should billing, licensing (both time-domain and geographical), and ownership of software

be handled
• How can regulation protect against malicious intent (e.g., software viruses)

6.1.3 Software Download Scenarios

An important consideration in designing interfaces and architectures for implementation of a terminal that
is software-definable to some degree, is its ability to support software download. Software download
can be achieved using a number of mechanisms, for example:

• From a smart-card, which contains the software to be downloaded, and which optionally may
contain a pre-paid license for using the software

• From a host computer via a local network
• From a remote host via street-side terminals or modem (e.g., ATM, point-of-sale terminals)
• Over the air, directly from a server, either point-to-point or point-to-multipoint (broadcast). In

a commercial situation, the server would be provided by the service provider, utilizing the
network operator’s air time resources

 As a means of identifying the architectural, implementation, regulatory, and standardization issues posed
by the requirement to support software download, a number of download scenarios have been
developed for both handheld and mobile application areas. The scenarios, detailed in following
subsections, will be expanded through future working sessions, to determine:

SDRF Technical Report 2.1 November 1999

6-6

• Implication on interface (API) design, including capability exchange features;
• Regulatory implications, including network integrity, security, billing, licensing issues;
• Implications on new standards (e.g., 3rd generation cellular) and modifications required to

existing standards (e.g., GSM, AMPS) such that over-the-air software download can be
accommodated;

The scenarios were developed as exercises within the handheld and mobile subcommittees, and do not
represent all options and mechanisms for download: they are point examples. As a result of developing
the scenarios, ongoing work within the download working group will determine whether a generic
download procedure can be developed, covering handheld and mobile requirements, and not precluding
any options. Results will be published in future revisions of this document.

6.1.3.1 Handheld Architecture Download Scenarios

Three scenarios have been developed for handheld (commercial cellular) terminals:

• Download from a smart card
• Over the air download of a single software module (update or bugfix)
• Over the air download of a complete air interface software suite

In each case, the scenario is described as a flowchart indicating the expected information transfer
between the software source device (smartcard or service provider server) and the terminal. In each
case the source device (acting as master) controls the download procedure, although either source or
terminal may initiate download.

Each scenario follows a common general procedure:

1. Initiation: download source device or terminal initiates a download request
2. Mutual Authentication: between source device and terminal
3. Capability exchange: to ensure terminal can be configured to accept, install, and successfully run

the downloaded code
4. Download Acceptance Exchange: Source provides information on type approval of the code,

download procedures and schedules, installation procedures, billing and licensing options, and
procedures. Options are selected by the terminal or terminal user, which are validated by the source
device

5. Download/Integrity test: Code is downloaded from source device to a buffer area within the
terminal according to the agreed download schedule. In-line integrity testing of received data is
performed with retransmission’s requested where errors are detected. Only 100 percent error-free
reception of code is acceptable

6. Installation: Code is appropriately compiled and installed within the terminal, providing billing and
licensing conditions have been met. Because there may be a time delay between download of code
and installation, a capability exchange internal to the SDRF device is required prior to installation, to
ensure that the configuration of the terminal at install time remains acceptable for correct operation
of the downloaded application/entity

SDRF Technical Report 2.1 November 1999

6-7

7. In-situ testing: This is a provision for testing the downloaded code on the terminal platform. Test
vectors downloaded with the program code are used within the test to verify the modified operation.
It is desired that in-situ testing be optional

8. Non-repudiation Exchange: Response from SDRF device to confirm successful installation,
permitting required billing to take place

The desire that in-situ testing remains optional relies upon the following conditions being met:

• Downloaded code was delivered to the terminal error-free
• Downloaded code was compiled within supplied critical constraints
• Downloaded code complies with the terminal logical/physical interface structure

and that these represent the full set of conditions that if met, ensure satisfactory operation of the terminal.

The three scenario flowcharts appear below.

SDRF Technical Report 2.1 November 1999

6-8

6.1.3.1.1 Download from a Smartcard

Figure 6.1.3-1 below describes the communications between smartcard, network, and terminal (SDRF
device) to download one or more software modules into the terminal, and to install the software. The
scenario assumes that the smartcard contains the new software, and describes how that software might
be downloaded and installed in the SDRF device.

SMART CARD (master) SDRF DEVICE

Initiation1

User inserts smartcard

Request a download session

Acknowledge Download Request

Mutual Authentication
Authenticate Terminal

Authenticate Smartcard

Capability Exchange2

Request Capability Data
Capability Response

• Current Terminal Configuration
• SDRF device type-approval

information
• SDRF API revisions supported by

terminal
• Hardware Resource Capabilities

− Program Memory
− Data Memory
− Processing Power
− Installed Peripherals
− Real-time capability, etc.

• Resident Software Profile
− e.g., Program/Data memory

and processing resource
required per resident entity

− Available compilers and/or
interpreters

• Resident software/operator
licenses

 Verify terminal capability against

1 Initiation may be triggered by SDR device, or the download source: this diagram does not attempt to reflect all options.

2 Capability exchange may comprise the exchange of multiple messages

SDRF Technical Report 2.1 November 1999

6-9

application requirements.
 IF application cannot be built to match
terminal capabilities, terminate
download process
ELSE identify optimum application
configuration (using modules resident
on the smart-card) for terminal
capability

Download Acceptance
Exchange

 Send Download Installation Profile
• Download type (mandatory or

optional, etc.)
• Download and installation

procedures, e.g.,
− download complete entity or

incrementally
− download schedule

• Installation options
• Licensing information
• Billing information

 Select installation options. Indicate
acceptance/rejection

 Validate selected options

 Download Software

Module3

 Download Code, including:
• Capability Tables (Resource

Requirements)4

• A delivery wrapper:

− Compilation requirements5

− Real-time constraints
− Installation information

 Integrity Test

 Test code integrity, e.g., via checksums.
Request retransmissions as appropriate.
Code considered installable if:

• Error-free (i.e., bit-exact)
• Type approved to current API

structure (could be assumed if

 3 The software module could be a code segment (application, protocol entity or functional entity), or a set of switches or parameters to reconfigure resident software (remote control).

4 The Resource Requirements must sufficiently describe the requirements of the system configuration to support the module(s) being downloaded, such that local capability exchanges
across APIs within the SDR device can determine whether the module(s) can be successfully installed

5 A compiler resident within the SDR device will be required to support platform independent download. The complexity and feasibility of platform independent download and resident
compilation is very much dependent upon where the downloaded module resides within the SDR architecture (application, protocol entity, signal processing algorithm).

SDRF Technical Report 2.1 November 1999

6-10

downloaded over the air by
approved operator)

 Acknowledge verified receipt
 Terminate download procedure

 Installation6

 Internal capability exchanges: to
ensure device is able to support the

downloaded module7

 IF module(s) cannot be supported by

terminal, terminate.
 ELSE request installation key.

 Initiate billing/licensing negotiation, if

appropriate. Negotiation8 could be
• between terminal and smartcard,

e.g. to check expiration of paid-up
license.

• between terminal and network, e.g.,
if geographical constraints exist

 Billing/licensing response, e.g.,
• Acceptance of terms
• On-line payment (if required)

IF unacceptable, deny installation key
request
ELSE
send installation key and in-situ test
program/data (if appropriate)

Deliver and install code
Update capability descriptor
Signal successful installation

In-situ testing9 (if
appropriate)

Figure 6.1.3-1: Software Download from a Smartcard

 6 This stage assumes that the new module(s) (and their capability tables) are accessible by the SDR device

 7 See note 4: Further changes to the software and/or hardware configuration of the SDR device may have taken place between download and installation. This capability exchange/resource
management operation determines whether the module(s) can still be successfully installed.

 8 Licensing issues may include validation of geographical position, time and network operator and/or service provider.

9 Regardless of whether a formal in-situ test is performed, it may be desirable to retain the ability to switch back to the previous software configuration (prior to installation) if the new
configuration fails.

SDRF Technical Report 2.1 November 1999

6-11

6.1.3.1.2 Over the Air Download: Single Module or Entity
Figure 6.1.3-2 below describes the communications between network and terminal to implement over the
air download of a single functional entity or software module. An example might be the replacement of a
software-implemented speech codec to improve speech reproduction quality, or to fix a bug.

SERVICE
PROVIDER/NETWORK
OPERATOR (master)

SDRF DEVICE

Initiation10

Initiate Download Request:
Page terminal

Acknowledge Download Request

Mutual Authentication
Authenticate Terminal

Authenticate source

Capability Exchange11

Request Capability Data
Capability Response

• Current Terminal Configuration
• SDRF device type-approval

information
• SDRF API revisions supported by

terminal
• Hardware Resource Capabilities

− Program Memory
− Data Memory
− Processing Power
− Installed Peripherals
− Real-time capability, etc.

• Resident Software Profile
− e.g., Program/Data memory and

processing resource required per
resident entity

− Available compilers and/or
interpreters

• Resident software/operator licenses

10 Initiation may be triggered by SDR device, or the download source: this diagram does not attempt to reflect all options.

11 Capability exchange may comprise the exchange of multiple messages

SDRF Technical Report 2.1 November 1999

6-12

 IF an appropriate software module
exists, which can be configured to
comply with the current terminal
capability and configuration: select
the appropriate software module
and open a download channel.
 ELSE Terminate download.

Download Acceptance
Exchange

 Send Download Installation Profile
• Download type (mandatory or

optional, etc.)
• Download and installation

procedures, e.g.,
− download complete entity or

incrementally
− download schedule

• Installation options
• Licensing information
• Billing information

 Select installation options. Indicate
acceptance/rejection

 Validate selected options

 Download Software

Module12

 Download Code, including:
• Capability Tables (Resource

Requirements)13

• A delivery wrapper:

− Compilation requirements14

− Real-time constraints
− Installation information

 Integrity Test

 Test code integrity, e.g., via
checksums. Request retransmissions
as appropriate. Code considered
installable if:

• Error-free (i.e., bit-exact)
• Type approved to current API

structure (could be assumed if
downloaded over the air by approved
operator)

 Acknowledge verified receipt

 12 The software module could be a code segment (application, protocol entity or functional entity), or a set of switches or parameters to reconfigure resident software (remote control).

13 The Resource Requirements must sufficiently describe the requirements of the system configuration to support the module(s) being downloaded, such that local capability exchanges
across APIs within the SDR device can determine whether the module(s) can be successfully installed

14 A compiler resident within the SDR device will be required to support platform independent download. The complexity and feasibility of platform independent download and resident
compilation is very much dependent upon where the downloaded module resides within the SDR architecture (application, protocol entity, signal processing algorithm).

SDRF Technical Report 2.1 November 1999

6-13

 Terminate download procedure

Installation15

 Internal capability exchanges: to ensure

device is able to support the

downloaded module16

 IF module(s) cannot be supported by

terminal, terminate.
 ELSE request installation key.

 Initiate billing/licensing negotiation,

if appropriate. Negotiation17 could
be

• between terminal and
smartcard, e.g., to check
expiration of paid-up license.

• between terminal and network,
e.g., if geographical constraints
exist.

 Billing/licensing response, e.g.,
• Acceptance of terms
• On-line payment (if required)

IF unacceptable, deny installation
key request
ELSE
send installation key and in-situ
test program/data (if appropriate)

Deliver and install code
Update capability descriptor
Signal successful installation

In-situ testing18 (if
appropriate)

Figure 6.1.3-2: Over the Air Software Download of a Single Module Update

 15 This stage assumes that the new module(s) (and their capability tables) are accessible by the SDR device

 16 See note 13: Further changes to the software and/or hardware configuration of the SDR device may have taken place between download and installation. This capability
exchange/resource management operation determines whether the module(s) can still be successfully installed.

 17 Licensing issues may include validation of geographical position, time and network operator and/or service provider.

18 Regardless of whether a formal in-situ test is performed, it may be desirable to retain the ability to switch back to the previous software configuration (prior to installation) if the new
configuration fails.

SDRF Technical Report 2.1 November 1999

6-14

6.1.3.1.3 Over the Air Download: Complete Air Interface

Figure 6.1.3-3 below describes the communications between network and terminal to implement over
the air download of a complex set of software modules, which might define for example, the complete
protocol stack and signal processing software for a new standard.

SERVICE
PROVIDER/NETWORK
OPERATOR (master)

SDRF DEVICE

Initiation19

Initiate Download Request:
Page terminal

Acknowledge Download Request

Mutual Authentication
Authenticate Terminal

Authenticate source

Capability Exchange20

Request Capability Data
Capability Response

• Current Terminal Configuration
• SDRF device type-approval information
• SDRF API revisions supported by

terminal
• Hardware Resource Capabilities

− Program Memory
− Data Memory
− Processing Power
− Installed Peripherals
− Real-Time capability, etc.

• Resident Software Profile
− e.g., program/data memory and

processing resource required per
resident entity

− Available compilers and/or interpreters
• Resident software/operator licenses

 IF an appropriate set of software
modules exists, which can be
configured to comply with the
current terminal capability and
configuration: Select and configure
the appropriate software modules

19 Initiation may be triggered by SDR device, or the download source: this diagram does not attempt to reflect all options.

20 Capability exchange may comprise the exchange of multiple messages

SDRF Technical Report 2.1 November 1999

6-15

and open a download channel.
 ELSE Terminate download.

Download

Acceptance
Exchange

 Send Download Installation Profile
• Download type (mandatory or

optional, etc.)
• Download and installation

procedures, e.g.,
− download complete entity or

incrementally
− download schedule

• Installation options
• Licensing information
• Billing information

 Select installation options. Indicate
acceptance/rejection

 Validate selected options

 Download Software

Module21

 Download Code, including:
• Capability Tables (Resource

Requirements)22

• A delivery wrapper:

− Compilation requirements23

− Real-time constraints
− Installation information

 Integrity Test

 Test code integrity, e.g., via checksums.
Request retransmissions as appropriate.
Code considered installable if:

• Error-free (i.e., bit-exact)
• Type approved to current API structure

(could be assumed if downloaded over
the air by approved operator)

 Acknowledge verified receipt
 Repeat ‘download software module’
and ‘integrity test’ according to the
agreed download schedule

 Terminate download procedure

 Installation24

 21 The software module could be a code segment (application, protocol entity or functional entity), or a set of switches or parameters to reconfigure resident software (remote control).

22 The Resource Requirements must sufficiently describe the requirements of the system configuration to support the module(s) being downloaded, such that local capability exchanges
across APIs within the SDR device can determine whether the module(s) can be successfully installed

23 A compiler resident within the SDR device will be required to support platform independent download. The complexity and feasibility of platform independent download and resident
compilation is very much dependent upon where the downloaded module resides within the SDR architecture (application, protocol entity, signal processing algorithm).

SDRF Technical Report 2.1 November 1999

6-16

 Internal capability exchanges: to ensure
device is able to support the downloaded

module25

 IF module(s) cannot be supported by

terminal, terminate.
 ELSE request installation key.

 Initiate billing/licensing negotiation,

if appropriate. Negotiation26 could
be

• between terminal and
smartcard, e.g., to check
expiry of paid-up license.

• between terminal and network,
e.g., if geographical constraints
exist

 Billing/licensing response, e.g.,
• Acceptance of terms
• On-line payment (if required)

IF unacceptable, deny installation
key request
ELSE
send installation key and in-situ
test program/data (if appropriate)

Terminate call and shut down terminal
communications.

Deliver and install code
Update capability descriptor
Signal successful installation

In-situ testing27 (if appropriate)

Figure 6.1.3-3: Over the Air Software Download of a Set of Control, Functional, and/or
Protocol Entities

 24 This stage assumes that the new module(s) (and their capability tables) are accessible by the SDR device

 25 See note 22: Further changes to the software and/or hardware configuration of the SDR device may have taken place between download and installation. This capability
exchange/resource management operation determines whether the module(s) can still be successfully installed.

 26 Licensing issues may include validation of geographical position, time and network operator and/or service provider.

27 Regardless of whether a formal in-situ test is performed, it may be desirable to retain the ability to switch back to the previous software configuration (prior to installation) if the new
configuration fails.

SDRF Technical Report 2.1 November 1999

6-17

6.1.3.2 Mobile Architecture Download Scenarios

6.1.3.2.1 Over the Air Download: Single Module or Entity

Figure 5.1.3-4 below describes the communications between network and terminal to implement over
the air download of a single functional entity or software module. An example might be the replacement
of a software-implemented speech codec to improve speech reproduction quality, or to fix a bug.

SERVER/LOCAL RADIO SDRF DEVICE (REMOTE
RADIO)

Initiation28

Initiate Download Request:
Page remote radio

Acknowledge Download Request

Mutual Authentication
Authenticate Terminal

Authenticate source

Capability Exchange29

Request Capability Data
Capability Response

• Current Terminal Configuration
• SDRF device ID/version
• SDRF API revisions supported by

terminal
• Hardware Resource Capabilities

− Program Memory
− Data Memory
− Processing Power
− Installed Peripherals
− Real-time capability, etc.

• Resident Software Profile
− e.g., Program/Data memory and

processing resource required per
resident entity

− Available compilers and/or
interpreters

• Resident software/operator licenses

28 Initiation may be triggered by SDR device, or the download source: this diagram does not attempt to reflect all options.

29 Capability exchange may comprise the exchange of multiple messages

SDRF Technical Report 2.1 November 1999

6-18

• Server evaluates remote radio

needs
• Formulates download actions

 IF an appropriate software module
exists, which can be configured to
comply with the current terminal
capability and configuration: Select
the appropriate software module
and open a download channel.
 ELSE Terminate download.

Download Acceptance
Exchange

• The server seeks authorization
to proceed with the download.
This authorization process will
likely vary from system to
system, but may include such
factors as cost, capability or
capacity, availability,
geography/positional status,
supporting infrastructure, etc. In
other cases, such as when a
charge is incurred, further
authorization may be required.

• The server proceeds with the
download by establishing a
download session with the
remote reference point. This
includes any handshaking,
certificate exchange or passing
of download key to the remote
radio reference point.

 • Select installation options. Indicate
acceptance/rejection

• Certificate exchange
• Validate download certificates or

keys
• Accept download session

establishment
 Validate selected options

 Download Software

Module30

 30 The software module could be a code segment (application, protocol entity or functional entity), or a set of switches or parameters to reconfigure resident software (remote control).

SDRF Technical Report 2.1 November 1999

6-19

 Download Code, including:
• Capability Tables (Resource

Requirements)31

• A delivery wrapper:

− Compilation requirements32

− Real-time constraints
− Installation information

 Integrity Test

 Test code integrity, e.g., via
checksums. Request retransmissions
as appropriate. Code considered
installable if:

• Error-free (i.e., bit-exact)
• Type approved to current API

structure (could be assumed if
downloaded over the air by approved
operator)

 Acknowledge verified receipt
 Terminate download procedure
 Installation33

 • Acknowledge receipt of download to
server

• Execute internal update process

• Terminate session
• Update configuration files

In-situ testing34 (if
appropriate)

Figure 6.1.3-4: Over the Air Software Download of a Single Module Update (Mobile)

6.1.4 Preliminary API Messaging Requirements

This section of the report describes a framework for a tier 1 SDRF API which supports the previously
developed download process (section 6.1). Message exchanges between download server and terminal
are explored in order to identify whether new control messages are required to implement the download
process, in addition to the previously defined generic API messages and formats (section 4.4). Also,
necessary refinements to the SDRF API methodology are extracted and discussed.

Detailed message syntax, data structures, passed parameters, status information, capability/configuration
table structure and content are not yet defined.

31 The Resource Requirements must sufficiently describe the requirements of the system configuration to support the module(s) being downloaded, such that local capability exchanges
across APIs within the SDR device can determine whether the module(s) can be successfully installed

32 A compiler resident within the SDR device will be required to support platform independent download. The complexity and feasibility of platform independent download and resident
compilation is very much dependent upon where the downloaded module resides within the SDR architecture (application, protocol entity, signal processing algorithm).

 33 This stage assumes that the new module(s) (and their capability tables) are accessible by the SDR device

34 Regardless of whether a formal in-situ test is performed, it may be desirable to retain the ability to switch back to the previous software configuration (prior to installation) if the new
configuration fails.

SDRF Technical Report 2.1 November 1999

6-20

This process represents a top-down approach to defining the API, and is likely to require revision as
more detail is developed. This section of the report represents the first phase of the ‘human API
definition’ described in the SDRF API definition process.

6.1.4.1 Objectives

The objectives of this piece of work are:
• To establish a framework to support the top-down development of the API;
• To identify any new command messages which may be required in addition to the generic

messages previously defined
• To identify any refinements to the process and data structures described in the SDRF API

design guide
With these objectives in mind, it should be noted that the ladder diagrams and examples described in
this discussion are illustrative, and do not necessarily represent the definitive approach.

6.1.4.2 Download API Context

The Download API illustrated in figure 6.1.4.2-1 forms the interface across which all programmable
functionality of the terminal is defined: this applies either to functional definition at the time of
manufacture, or in the field by an authorized user – for example a service engineer, or indeed the end
user downloading new applications or functionality.

In this sense, the Download API forms the highest-level terminal API, and can be visualized as
‘surrounding’ the terminal.

Figure 6.1.4.2-1 Location of the Download API

The three-tier API model [see SDRF API Design Guide] applies to the download API:
Tier 1: Functional (Messaging)

Describes the messages and associated parameters and expected responses
required to initiate and effect download from server to terminal. It will also
describe all possible solicited status responses and unsolicited status messages.

Download Server

Download
API

Terminal

SDRF Technical Report 2.1 November 1999

6-21

Tier 2: Transport
Describes the mechanism by which the messages are transferred. In the case of
the ‘download’ message, this would describe the protocol used for the download
of code, including scheduling, the error detection/correction scheme and any
fail/retry mechanism employed.

Tier 3: Physical
Defines the physical interface between download server and terminal, for
example, the connector specification for download from smartcard.

6.1.4.2.1 Assumptions

The download process described herein assumes that a registered connection exists between the
‘server’ device (supplying the downloaded code) and the device set to receive the downloaded code.
In this sense, the tier 1 API control messages described here may be embedded into the information
passing along that connection, and will require delimiting such that they are recognized as SDRF
messages within that information stream. This might be accomplished, for example, by preceding each
message with an escape character, recognized globally as ‘SDRF message follows’.

It is also assumed that the download link is point-to-point. The point-to-multipoint (broadcast) case will
be addressed as a future work item.

6.1.4.3 The Download Protocol Framework

Figure 6.1.4.3-1 illustrates the download process developed through the study of various download
scenarios. A clear partition exists between the download process (initiation, mutual authentication,
capability exchange, download acceptance exchange, download) and the installation process, the
latter assuming that code is locally stored in the terminal and is accessible (but possibly compressed
and/or encrypted). There could be a time lapse between completing the download process and initiating
the installation process, requiring the need for an internal capability exchange prior to actual installation,
to insure that the downloaded module(s) is still compatible with the current terminal configuration and
capability.

The download API described in this section of the report defines the interface and messaging
requirements for the download process. The installation process is handled separately by the API
through which the downloaded module(s) will be accessed. This installation process will use previously
defined generic API messages such as:

place_module (dest,info) ← (status, parameters)
which replaces, modifies or augments a module accessed by the API with another module that is stored
locally.

SDRF Technical Report 2.1 November 1999

6-22

Figure 6.1.4.3-1: Download Protocol

Acknowledge
downloadrequest

Initiate
downloadrequest

Initiation

Authenticate
terminal Authenticate

serviceprovider and network
operator

Request capability
data Transmit theCapability

Response
Capability Response includes: current

terminalconfiguration; type-approval data; API
revisionsupported; resident hardware resources;
residentsoftware profile; resident compilers and
operatingsystems; resident licences. The
capabilityexchange may comprise the transfer of
severalmessages
.

Capability Exchange

Mutual
Authentication

Select
appropriatesoftware entitiesand
parameter sets
tomatch capability
andopen
downloadchannel. Terminate if
nomatching set
exists.

Download Acceptance
Exchange

TransmitDownload
Installation
Profile

Validate
selectedoptions

Select
installationoptions. Accept or
rejectterms

Software
Download

Downloadcode
modules

includingcapability
tables

 and
delivery
wrappers

 for
each entity

Test delivery
integrity.Request
retransmissions
asappropriate

Acknowledge
safereceipt

Terminate
downloadprocedure

InstallationInternal
capabilityexchanges.
Terminateinstallation if
capabilitymismatch
occurs.

Request
installationkey.Initiate

billing/licensingnegotiation if
necessary

Billing/licensin
gacceptance

responseTransmit installation
keyand in-situ test vectors
ifrequired. Deny key if
billing/licensin
gconditions not
accepted.

Deliver and install
code.

Update
internalcapability
descriptors

Signal
successfulinstallatio
n

In-situ testing (if
appropriate)

SDR server SDR terminal

Download may be initiated by the MMITS
terminalor the server: the diagram does not
reflect all
options.

Download Installation Profile includes:
whetherdownload is mandatory or optional;

downloadprocedure (incremental or complete);
downloadschedule; installation options; licensing and
billinginformation and
options

Code modulesOne or more code
segments(application, protocol entity or functional entity)

or aset of parameters to reconfigure resident
software.Capability Table sufficiently describes

theresource requirements of the terminal
configurationto support the downloaded
software.Delivery wrapper includes:

compilationrequirements, real-time constraints and
installationinformation. Note: resident compilers
arenecessary for platform independent
download.

Downloaded code is assumed to be
accessible bythe terminal at this stage. Further changes to
thesoftware or hardware configuration of the
terminalmay have occurred since the code
wasdownloaded, hence
the

requirement for an
internalcapability exchange before

installation.Acceptance Response includes acceptance
ofterms and, if appropriate, on-line

payment
Installation may be initiated by the MMITS
terminal or the server: for clarity, the diagram
does not reflect all options

SDRF Technical Report 2.1 November 1999

6-23

6.1.4.4 API Framework

6.1.4.4.1 Example Download Sequence

In order to relate the download protocol in Figure 6.1.4.3-1 with the tier 1 download API messages,
consider figure 6.1.4.4.1-1 where the download sequence is illustrated as a flowchart, with suggested API
messages. This represents an initial framework for developing the API. Note that figure 6.1.4.4.1-1 is
stylized and does not show messages flowing between the parties – it simply illustrates how an outline
sequence of messages begins to implement the protocol described in figure 6.1.4.3-1.

The sections following the flowchart take each main action separately, and begin to develop the
messaging requirements in more detail. Detailed syntax, parameter definitions and data structures are to
be developed.

SDRF Technical Report 2.1 November 1999

6-24

get_mmits_id
()
enable()

capability_exchange
()
get_config()
set_config()
select_config()

authenticate

Capability_exchange

get_config
()
set_config

get_config
()
set_config

select_config

capability_exchange

get_config()
set_config()
select_config

Start(

‘tier 2 API’: invoke underlying transport

stop(
authenticated

disable(

Is suitable
software
available?

Correct
respons

Y

Establish terminal
capacity

Configure
software

Y

Run download
acceptance

Terms & conditions
acceptable?

Does terminal support
 suitable download

service?

Establish mutually acceptable
download service, transport
mechanism & session

Download code
and

Authenticate correct
receipt

STOP

Run
authentication

Set up
authentication

Initiate
downloa

Y

Y

SDRF Technical Report 2.1 November 1999

6-25

Figure 6.1.4.4.1-1: Download flowchart example with example API message

SDRF Technical Report 2.1 November 1999

6-26

6.1.4.4.2 Initiate Download Process

Figure 6.1.4.4.2-1: Messaging to initiate download

The download process could be initiated by either the server party or the client (terminal) party. It is
proposed that a new message get_SDRF_id() is issued by the initiating party to begin the
process, permitting the remote device to identify itself as supporting the SDRF download API.
The response to the get_SDRF_id() message will be either:

• The SDRF_ID, which includes a simple go/no-go indication of the other party’s ability to
support SDRF Download. Status information will also be returned. See section 5.4.6 ‘New

• No response, in which case a locally employed time-out will be triggered. The assumption
would be that the device is not SDRF compliant if, after a number of get_SDRF_id()
attempts, no response is received within the time-out period.

The exact format and content of the SDRF_ID has not been defined here. Any regulatory or SDRF_ID
maintenance/control issues have not been addressed here.

The enable() message could arguably appear before or after the get_SDRF_id() message: the optimum
sequence will be determined when the next level of detail is examined. The suggested sequence is to
place the enable() after get_SDRF_id(). In this case, get_SDRF_id() identifies whether the terminal is
SDRF download compliant (go/no-go), and the following enable() indicates a request to allocate
resources for a download session.

enable()

statsssu

Acknowledge download
request

Initiate download request

Initiating device Remote device

get_SDR_id()

SDR_ID, status

status

SDRF Technical Report 2.1 November 1999

6-27

6.1.4.4.3 Authentication Process

A very general framework is described within which many standard authentication schemes may be
supported.

A mutual authentication is required prior to download. By virtue of the mechanism described in figure
6.1.4.4.3-1, mutual authentication gives access to each other’s detailed capability tables necessary for
assessing capabilities to successfully download, install and run the desired new code. Prior to
authentication, only a very limited set of information may be accessible through a capability exchange –
enough to permit the authentication to take place.

Figure 6.1.4.4.3-1 Messaging required for authentication

It should be noted that the procedure described here is sufficiently generalized to allow either existing
standardized authentication mechanisms to be applied, or indeed new or updated mechanisms.
Furthermore, authentication of the user (SIM card or equivalent) will have already taken place at
registration, prior to the download request. This scenario represents an additional mutual authentication
of SDRF devices relating to download.

By providing correct
authentication to DEVICE A,
DEVICE B now has access to
DEVICE A’s full capability tables

DEVICE A has not yet been
authenticated by DEVICE B. It
therefore only has access to
capability/configuration
information required for
authentication.

Interrogate for supported
authentication processes

DEVICE A DEVICE B

get_config()

statsssuset_config()

status

status,params

Transfer required
authentication keys and
algorithms

Apply the new
authentication keys and
algorithms

select_config()

status

authenticate()
response, status

Request to run
authentication Run authentication

algorithms and return result,
OR

Return null response and ‘in
progress’ status AND.

Write result to config table
when ready.

Get result from
configuration table. If
authenticate generated
correct response,grant
access to lower levels of
capability tables (set
‘hierarchy’ flag)

USI:
status

capability_exchange(
)

statsssu
status,params

get_config()

status,params

SDRF Technical Report 2.1 November 1999

6-28

Figure 6.1.4.4.3-1 illustrates the likely process required for one device (DEVICE A) to authenticate the
other (DEVICE B). Using the appropriate authentication scheme (algorithmic, biometric, etc.),
algorithm(s) and key(s) negotiated during a prior capability and configuration exchange, the newly
defined authenticate() message causes execution of the algorithm by the remote device, which
returns the result as a response to the message.

The get_config() and set_config() transfers show with dotted arrows (indicating optional)
represent the setting up of a new authentication configuration in device B. They are therefore only
required if that configuration does not already exist (determined by the preceding capability exchange).

If additional information is required by the authentication procedure specific to the current authentication
process (for example, a random data sequence) this could be accommodated by an information field in
the authenticate() message, thus:

authenticate(destination, info)

Figure 6.1.4.4.3-1 illustrates the option to continue whilst the authentication process completes: in this
case the response to the authenticate() message is a null response accompanied by solicited status
information indicating ‘in progress’. A USI (unsolicited status information) is returned asynchronously
when the authentication has been completed, indicating the ID of the configuration table which contains
the result. DEVICE A may then interrogate DEVICE B for the result via a get_config()
message.

If DEVICE B is successfully authenticated, DEVICE A may permit DEVICE B full access to its
capability information if previously restricted to that required for authentication.
The process may be repeated by the other device (DEVICE B) to achieve mutual authentication. The
new API message, authenticate() is defined in section 5.4.6 ‘New API Messages for Download’.

Multiple Authentication

The declaration of a specific authentication message allows that message to be invoked at any time if
required, even during a download session – the diagrams in this section of the report simply depict
examples of when the message is likely to be used.
For example, authenticate()may be applied (with different parameters) after the download has
taken place, to verify that the complete module received was that which was authorized to be received,
and that it was received without corruption.

SDRF Technical Report 2.1 November 1999

6-29

6.1.4.4.4 Encryption

This process requires a negotiation between SDRF devices to establish and set up an agreed set of
encryption algorithms and parameters. Encryption then needs to be switched on and off, possibly on a
packet-by-packet basis. These tasks can all be achieved using the previously defined generic API
messages. This is illustrated in figure 6.1.4.4.4-1 It should be noted that the encryption referred to here
pertains to the download sequence only, and may be different than any encryption already applied to
other information flowing across the registered connection.

Figure 6.1.4.4.4-1 Messaging required for encryption

Examples
Like the authentication process, this illustrates a general process for setting up and invoking encryption.
Exactly how all the requirements will be supported within the framework is yet to be defined.

For example, to apply encryption to selected packets might require definition of a configuration table
entry, coupled with an ‘encrypt enable’ flag attached to each packet (defined in a tier 2 API).

SERVER TERMINAL

get_config()

statsssu
set_config()

status

status,params

Capability exchange to
establish encryption
options supported

Set up new encryption
parameters if required

select_config()

status

Switch to new
configuration, including
new encryption scheme

capability_exchange(
)

statsssu
status,params

enable()

statsssu
status

Select the encryption
mechanism

SDRF Technical Report 2.1 November 1999

6-30

Other examples of encryption requirements:
Extensions to standard encryption mechanisms: define through configuration tables
Confirmation of encryption on/off: through SSI status responses
Change of key attributes or resetting/synchronizing key: through configuration tables

It should also be noted that the encryption mechanism (if used) should be selected via
select_config() prior to authentication. This provides some protection against the situation of
the download being ‘hijacked’ by a rogue device after the legitimate device was authenticated.

6.1.4.4.5 Capability Exchanges

The download server must establish the capabilities of the terminal in two senses:

• To determine which software modules and associated parameters to download
so as to match the capabilities of the terminal.

• To understand the download modes and associated attributes supported by the
terminal, such that a download channel may be successfully established between
download server and terminal (see ‘Code Download mechanism’ below).

Both of these exchanges may be accomplished using the previously defined
capability_exchange() message.
The chosen download process attributes and parameters may then be set up using the
set_config() message, and the new information selected using select_config(). This
process is very similar to the encryption example in figure 6.1.4.4.4-1.

SDRF Technical Report 2.1 November 1999

6-31

6.1.4.4.6 Download Acceptance Exchange Process

It is suggested that negotiation via capability exchanges and configuration tables be used to implement
the download acceptance exchange as illustrated in figure 6.1.4.4.6-1.

Figure 6.1.4.4.6-1 Download Acceptance Exchange Messaging

From Figure 6.1.4.4.6-1, the download acceptance exchange essentially involves the delivery of:
• Fixed terms and conditions for installation
• An ‘options form’ (Download Installation Profile) from the download server to the terminal, to

be ‘filled-out’ and returned to the server.

Examples of the information to be exchanged are:
• Whether the download is mandatory or optional
• A schedule for the download process
• Installation and configuration options
• Terms and conditions, including licensing and billing options

DEVICE A DEVICE B

get_config()

statsssu

set_config()

status

status,params

Capability exchange to
establish capability to
receive and install the
code

Resolve capability
exchange and write
installation options
(Download Installation
Profile) to a configuration
table.

Read and validate the
user-selected options

capability_exchange(
)

statsssu
status,params

Indicate that user-
selected options are
ready for interrogation by
server

USI status

Establish responses to
user-selected options

select_config()

status

get_config()

status,params

Further configuration as
a result of user selected
options

Apply the configuration
resulting from the
Download Acceptance
Exchange

set_config()

status

This may include billing methods
supported, memory available for
downloaded code, compression
techniques supported, etc.

� User selected
responses are written to a local
configuration table. An
asynchronous status message
(USI) is issued to indicate
completion.

SDRF Technical Report 2.1 November 1999

6-32

Because this process may require user responses to complete some of the options it may be preferable
to allow the server to progress while waiting, implying the use of asynchronous status messages (USIs)
to indicate that the response to the download installation profile is ready for interrogation.

SDRF Technical Report 2.1 November 1999

6-33

6.1.4.4.7 Code Download Process

The download process itself may be considered as the invocation of a transport mechanism to transfer
downloaded code from server to terminal. The preparation for opening a download data channel and
selecting a download data transfer mechanism and integrity checking mechanism might be accomplished
by capability exchange (described above) and then setting parameters in configuration tables. The
download would begin upon the issue of a start() message, and successful completion or failure would
be signaled by a USI status response. This is a tier 1 API, and is illustrated by the example exchanges in
figure 6.1.4.4.7-1

Figure 6.1.4.4.7-1 Download Messaging

The get_config() and set_config() transfers show with dotted arrows (indicating optional) represent the
setting up of a new download mechanism. They are therefore only required if that configuration does not
already exist (determined by the preceding capability exchange).

SERVER TERMINAL

get_config()

statsssu
status,params

Capability exchange to
establish download
mechanisms supported

Set up a mutually
acceptable download
channel and mechanism

capability_exchange(
)

statsssu
status,params

set_config()

status

End of session USI could be
triggered by successful completion
of download with no errors; or
unresolved errors after ‘n’ retrys;
or no response timeout, etc.

select_config()

status

start()

status

stop()

status

USI status

Establish the download
session and transfer the
code

Return a USI status at
end of session

Might include selected transport
mechanism (tier 2 API), amount
of data to be transferred,
integrity/error correction
schemes, bounds on timeouts an
number of retry attempts, etc.

Establish the download
session; receive and
integrity check the code

End the download session

SDRF Technical Report 2.1 November 1999

6-34

The detailed messaging required to implement the transfer, that is the chosen transport mechanism (for
example, TCP), is a tier 2 API and is not addressed here. The tier 2 API would define messages used
by the chosen transport mechanism (send, receive, retry, abort, flush, etc), and any integrity testing
employed (error correction codes, check-sums, retransmission requests, etc.). The transport mechanism
may describe a point-to-point or broadcast stream transfer, or a packet-transfer.

SDRF Technical Report 2.1 November 1999

6-35

6.1.4.5 API Implications

6.1.4.5.1 Hierarchical Capability Tables

Working group discussions revealed the need to support hierarchy (nested lists) within capability tables,
such that the required information could be accessed economically from the potentially vast lists.

For download, it may also be necessary to limit access to the capability tables until the devices have
been mutually authenticated.

Together, these requirements imply the option of a hierarchical capability table structure across the
download API, whose highest level only contains sufficient capability information to permit SDRF ID
exchange and mutual authentication.

One approach is that the response to a capability_exchange() message includes flags to indicate
whether there is accessible hierarchy beneath the values returned, and that the flags are set so as to
deny access to any lower levels of hierarchy until mutual authentication is successfully established. This
scheme is illustrated in figure 6.1.4.5.1-1

Figure 6.1.4.5.1-1 Hierarchical Capability Tables

Details of the exact structure of the capability table and how the structure is accessed are not described
here.

01

01

01

11

01

01

01

01

01

11

01

01

01

01

01

01

01

01

01

01

01

11

Processing

CPU

DSP
100MHz

DSP56301

McoreRISC

100MHz

SDR ID

Authentication info (1)

Authentication info (2)

LOCKED OUT PRIOR TO AUTHENTICATIONAVAILABLE PRIOR TO
AUTHENTICATION

SDRF Technical Report 2.1 November 1999

6-36

6.1.4.6 New API Messages for Download

This section describes the new messages required by the download API to implement the download
protocol described in figure 6.1.4.3-1 This represents an initial set of messages which are likely to
require augmentation as the API details are developed. Furthermore, other more generic messages
described in section 4.4 of the Technical Report will also be required (for example, start_module,
stop_module, enable_module, disable_module, place_module, etc.). Detailed parameter listings for the
messages have yet to be developed and are not described here.

 get_SDRF_id(destination) ←← (SDRF_id, status)

destination: Destination identifier of download target below the download API

SDRF_id: Header assigned to each SDRF compliant terminal or download
server.

Examples: Version numbers; unique identifier; download capability

status: This is returned to indicate the success or otherwise of the
message and the current status of the device/module. Included in
the status word will be the destination module/device ID to
indicate that it was sent to the correct location.

Description: This message is sent to the Download API by the device initiating
download (in a cellular system this could be either the basestation
or the mobile terminal). The response indicates a simple ability of
the target device to send/receive downloaded code by the given
means (examples: over the air, smartcard).

Other actions: If there is no response from the target SDRF device within a time-
out period it may be assumed that the device is not SDRF
compliant and download cannot take place. It may be preferable
to attempt to send this command a number of times before making
this assumption.

Issues: The exact format of the SDRF ID, the information it contains,
how it is issued and controlled and associated regulatory issues
are yet to be established.

SDRF Technical Report 2.1 November 1999

6-37

authenticate(destination, info) ←← (response, status)

destination: Destination ID of device to be authenticated.

info: Additional information required by the authentication process
unique to this authentication.

Example: A random number sequence

response: Result from remote execution of authentication algorithm.
Example: This could be a null, accompanied by an ‘in progress’ status flag,

permitting the initiating device to continue whilst the authentication
process is completed. In this case a USI would be issued upon
completion, indicating ‘authenticate complete’.

status: This is returned to indicate the success or otherwise of the
message and the current status of the device/module. Included in
the status word will be the destination module/device ID to
indicate that it was sent to the correct location. An ‘in progress’
flag may be necessary if the initiating device is to be alerted
asynchronously of completion of the authentication.

Description: Using the authentication algorithm and key negotiated during a
prior capability exchange, this message causes execution of the
algorithm by the remote device, which returns the result as a
response to the message.

Issues: If the authenticate() message returned the expected response,
access may be granted access to lower levels of hierarchy within
the capability tables of the device which issued the message.

6.2 Mode switcher API example specification

6.2.1 Introduction

This section builds on the API design guide and the example APIs to provide a more detail
implementation for a mode switcher function for a multi-function i.e. multi-mode and multi-band SDRF
device.

6.2.2 Requirements

The requirements for a mode switcher are dependent on the type and design of the phones that are used
in the handset. In practice, a multi-function phone can be viewed as a single physical entity containing
several virtual phones. This view of the multi-functional provides the widest scope for implementation
and introduction of the technology. The virtual phone model can be implemented using several physical

SDRF Technical Report 2.1 November 1999

6-38

discrete phones — the velcro phone model — or with a single phone with switchable modes and
bands. A SDRF device can use either of these techniques in its implementation.

• Capabilities

• Low level control

6.2.3 Levels of detail

If the mode switcher is to have a consistent API, it needs to be able to provide different levels of control
over the configuration, depending on how the multi-function SDRF device has been implemented. In this
section, three levels are defined and are referred to collectively as levels of detail (LoD). For a simple
high level mode switcher that is used to select from a variety of SDRF devices velcro’d together, the
level of control and therefore API detail needed will be less than with a true software definable radio
where the actual RF waveform, channel coding and power control could be configured.

It is important therefore to have an API that supports these different levels of control without imposing a
large overhead or need for detailed knowledge on systems that cannot support it, either because they
were never designed to or because the design does not warrant it.

Given that there is a need for different levels of detail within the mode switcher, what else is needed? It
should be remembered that the API simply defines the connection information between two entities and
does not define how the information is processed within each entity except to supply the responses as
defined. In other words, when a command is sent to configure the SDRF device to a specific state, the
mode switcher and the rest of the system above it do not know anything about the implementation
below it.

6.2.3.1 Regulatory

This is a very high level view of the capabilities of the SDRF device and are in line with a model number
or type approval level of functionality as approved and defined by regulatory bodies. In this case, the
multiple modes and bands are effectively treated as a set of separate entities as far as the mode switcher
is concerned. This greatly simplifies the interface and allows virtually any type of lower level
implementation to exist.
It also assumes that all other messaging and control information, including configuration is handled
outside the mode switcher API. This is useful for working with existing handsets and thus provides an
upgrade path.

6.2.3.2 Non-regulatory

At this level, some high-level configuration information is used to enhance the higher level choices. This
may include the choice of voice encoder and other similar information that can configure the SDRF
device’s capabilities.

SDRF Technical Report 2.1 November 1999

6-39

6.2.3.3 Detailed

At this level, there is the low level configuration information which can allow the complete set up and
definition of a waveform, modem coding and so on. This will need to be extremely detailed to provide
the breadth of support that is necessary.

In practice, this level of support is initially of immediate interest to mobile radios rather than commercial
handhelds simply because of the technology required to implement this high level of configurablility is not
yet available or cost effective for all markets.

SDR
device A

Regulatory
Type approval #1
Type approval #2

Type approval # n
Operator #1
Operator #2

Operator # n

SDR
device B

Non-regulatory
Model #1
Model #2

Model # n

SDR
device C

Non-regulatory
detailed

Model #1
Model #2

Model # n
Equaliser

Channel decoder
Freq control

etc
• • •

etc

Equaliser
Channel decoder

Freq control
etc

• • •
etc

Equaliser
Channel decoder

Freq control
etc

• • •
etc

• • •
• • •• • •

• • •

Figure 6.2.3-1 Levels of detail for SDRF device capability and configuration tables

It is possible for a SDRF device to support several different levels simultaneously. For example, it could
support a regulatory level and a detailed level. While possible, this may not make much sense because
the detailed access could allow changes that break the type approval. This assumes that the regulatory
and detailed levels are interlinked and that the subsequent resource management issues are resolved.

It is feasible for a SDRF device to support several different levels with each level controlling a particular
aspect of its facilities. For example, cellular handset networks can be accessed via a regulatory level
while a detailed level can be used to configure the SDRF device in other parts of the RF spectrum.

6.2.4 Describing the configuration

The API design examples provide a framework for describing this information. It uses two basic
concepts: a set of simple commands and the idea of configuration tables. The commands allow the
different modes to be selected and the actual configuration is controlled by entries in configuration
tables. These tables are available in two forms: one provides the information for capability exchanges
and the other for controlling the actual configuration.

SDRF Technical Report 2.1 November 1999

6-40

By combining these tables with the commands described in the API control message section, a
complete API for the mode switcher function can be created to work at the three levels previously
defined.

The tables should be assumed to be fixed in size in that there is no provision for their extension directly
except by using the place_module command to replace or augment a module. This will force a
capability exchange and a new configuration to be used. The new capability and configuration tables
may be smaller or larger when compared to the original module. Previous services may have been
removed to allow the new service to be supported, for example and vice versa.

The table definitions in this section may be expanded to support new revisions and non-standard
information, however. This allows backward compatibility as the APIs are further extended and the
provision of non-SDRF specified support. Suitable techniques for this are described in section 4.1.2
API design guide.

Resource management is carried out through the use of configuration tables. This means that the
capability tables are a source of reference information to allow the configuration tables to be correctly
set up and used. Thus the capability tables are shown as read only and cannot be modified through this
API, except by using the place_module command, as previously mentioned. This facility to directly
modify the capability tables may be added in the future — along with a command to make the
modifications — to allow a higher level of resource management to be implemented.

SDRF Technical Report 2.1 November 1999

6-41

6.2.5 API definitions

The rest of this section describes some suggestions for the contents of the capability and configuration
tables that are used within the APIs for the three levels earlier identified. The contents are illustrative of
the type and detail of information that would needed for the three levels. It should not be assumed that
the facilities described in these tables are a definitive representation of the final APIs. They simply
provide examples to enable a better understanding of how the concept of capability and configuration
tables will work. It should also be remembered that the advantage offered by capability tables is the
declaration of what facilities are supported and, perhaps more importantly, what are not supported.
For example, an equaliser may not support parameter changes. In this case, the parameter section
within the capability table would declare such changes are not supported. This does not mean that the
ability to change these parameters are not needed either for future expansion or to support future
products. It is clear that additional work will be required to evaluate and define the exact contents of
these tables.
These examples will be refined in future document revisions. Some of the issues to be addressed will
include:

• Unique identifiers within each structure

• Graphical representations

• Application of this approach to other SDRF models

• Implementation within a formal description language.

SDRF Technical Report 2.1 November 1999

6-42

6.2.6 Regulatory capability exchange

Parameter Definition Read/write
status

Capability ID A unique value that is used to identify a set of
capabilities. The ability to support multiple sets is
included for future expansion but it is anticipated
that only one set of capability exchange
information will be supported currently.

Read only

Capability size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of type
approvals

The number of type approvals that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Type approval #1 The first type approval reference Read only
Type approval #1
support

The first type approval support definition.
Declares whether this mode is an exclusive one
or capable of simultaneous operation with
another service provided by a different type

approval.1

Read only

Type approval #n The n th type approval reference Read only
Type approval #n
support

The n th type approval support definition.
Declares whether this mode is an exclusive one
or capable of simultaneous operation with
another service provided by a different type
approval.

Read only

Number of operator
approvals

The number of operator approvals that the
SDRF device can support. It is also used to help
decode the tables. This differs from the type
approvals in that it provides an additional level
of qualification if needed which relates a type
approval to a specific operator. This could be
used to define additional/optional services by the
operator that provides them.

Read only

Operator approval #1 The first operator approval reference Read only
Operator approval #1
support

The first operator approval support definition.
This will declare whether this mode is an
exclusive one or capable of simultaneous
operation with another service provided by a

Read only

1 This support may have to be restricted initially because it can rapidly become quite cumbersome to implement and declare when many potential combinations are available. By having a
parameter in this set of examples it acts as a reminder that such support may be required in the future. It is likely that the first implementations will declare this parameter to be ‘exclusive’.

SDRF Technical Report 2.1 November 1999

6-43

different operator approval.
Operator approval #z The z th operator approval reference Read only
Operator approval #z
support

The z th operator approval support definition.
Declares whether this mode is an exclusive one
or capable of simultaneous operation with
another service provided by a different operator
approval.

Read only

SDRF Technical Report 2.1 November 1999

6-44

6.2.7 Regulatory configuration

Parameter Definition Read/write
status

Configuration ID A unique value that is used to identify a set of
configuration parameters. The ability to support
multiple sets is made possible by this parameter.

Read only

Configuration size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of type
approvals

The number of type approvals that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Type approval #1 This is the first type approval reference. This
should be the same as the entry in the capability
table.

Read only

Type approval #1
status

The first type approval status. Declares whether

this mode is enabled or disabled. 2
Read/write

Type approval #n The n th type approval reference Read only
Type approval #n
status

The n th type approval status Declares whether
this mode is enabled or disabled.

Read/write

Number of operator
approvals

The number of operator approvals that the
SDRF device can support. It is also used to help
decode the tables. This differs from the type
approvals in that it provides an additional level
of qualification if needed which relates a type
approval to a specific operator. This could be
used to define additional/optional services by the
operator that provides them.

Read only

Operator approval #1 The first operator approval reference Read only
Operator approval #1
status

The first operator approval status. Declares
whether this mode is enabled or disabled.

Read/write

Operator approval #z The z th operator approval reference Read only
Operator approval #z
status

The z th operator approval status. Declares
whether this mode is enabled or disabled.

Read/write

6.2.7.1 Approval coding

For a simple multi-band SDRF device such as a GSM phone operating at 900 MHz and 1800 MHz,
the control structure could be constructed in one of several different ways:

2 This support may have to be restricted initially because it can rapidly become quite cumbersome to implement and declare when many potential combinations are available. By having a
parameter in this set of examples it acts as a reminder that such support may be required in the future. It is likely that the first implementations will declare this parameter to be ‘exclusive’.

SDRF Technical Report 2.1 November 1999

6-45

• It can be defined by using a separate type approval entry for each band.

• It can be defined using a single type approval entry to define the GSM support and two
operator entries for the two different bands.

• It could be defined with no type approval entries and two operator entries for the two different
bands.

To expand this to support an analog channels as well, an additional type approval and/or operator entry
could be added. If the SDRF device could support both channels simultaneously, the entries would
need to be marked as simultaneous instead of exclusive.

At some point, recommendations will be needed to clearly define the recommended way of choosing
the preferred method of configuring these tables.

This example uses a combination of type and operator approvals to identify exactly the level and type of
services that can be supported. It assumes that this information can be derived from a type approval or
operator reference and this can be facilitated through the use of coded serial or reference numbers. This
would, of course, require the co-operation and agreement of the regulatory bodies and operators. This
would at a minimum be at a regional level but ideally should be at an international level.

SDRF Technical Report 2.1 November 1999

6-46

6.2.8 Non-regulatory capability exchange

Parameter Definition Read/write
status

Capability ID A unique value that is used to identify a set of
capabilities. The ability to support multiple sets is
included for future expansion but it is anticipated
that only one set of capability exchange
information will be supported currently.

Read only

Capability size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of model
definitions

The number of model definitions that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Model #1 ID The first model ID Read only
Model #1 standard Contains the communications standard(s) that

the SDRF device supports .e.g.
GSM or IS-95 or AMPS and so on. This
should be a single standard. If the SDRF device
supports multiple standards, this should be
represented as separate model entries with each
model supporting a standard. It should not be
assumed that an entry here means that the
SDRF device has approval to use the standard.

Read only

Model #1 Voice
coding

Defines the different voice coding that can be
used. e.g. half rate, full rate, enhanced full rate
and so on.

Read only

Model #1 Data support Defines the data rates and data types that can be
supported. e.g. GSM 9600, GSM high speed
circuit switched, GPRS and so on.

Read only

Model #1 contents
support

Defines the contents support. E.g. email, fax,
video, mixed

Read only

• • •
Model #n ID The n th model ID Read only

These are the model parameters. Read only
Read only

END OF CAPABILITY TABLE Read only

SDRF Technical Report 2.1 November 1999

6-47

6.2.9 Non-regulatory configuration

Parameter Definition Read/write
status

Configuration ID A unique value that is used to identify a set of
configuration parameters. The ability to support
multiple sets is made possible by this parameter.

Read only

Configuration size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of model
definitions

The number of model definitions that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Model #1 ID The first model ID Read only
Model #1 standard
status

Contains the communications standard(s) that
the SDRF device supports .e.g.GSM or IS-95
or AMPS and so on. This should be a single
standard. If the SDRF device supports multiple
standards, this should be represented as
separate model entries with each model
supporting a standard.

Read/write

Model #1 Voice
coding status

Defines the different voice coding that can be
used. e.g. half rate, full rate, enhanced full rate
and so on.

Read/write

Model #1 Data support
status

Defines the data rates and data types that can be
supported. e.g. GSM 9600, GSM high speed
circuit switched, GPRS and so on.

Read/write

Model #1 Contents
support status

Defines the contents support. e.g., email, fax,
voice, video and so on.

Read/write

• • •
Model #n ID The n th model ID Read/write

These are the model parameters. Read/write
Read/write

END OF CONFIGURATION TABLE

At this level, the identification method has been expanded to operate at a slightly lower level. The
example uses a concept of a SDRF device that allows the system level functions to be configured in
terms of several different virtual models. Each model is a different configuration. For example, model #1
could be a GSM phone. Model #2 could also be a CDMA phone and so on. This can be developed
further to create models where lower level differences are used: model #2 could be a GSM data phone,
model #3 could be GSM voice and so on.

SDRF Technical Report 2.1 November 1999

6-48

6.2.10 Detailed capability exchange

Parameter Definition Read/write
status

Capability ID A unique value that is used to identify a set of
capabilities. The ability to support multiple sets is
included for future expansion but it is anticipated
that only one set of capability exchange
information will be supported currently.

Read only

Capability size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of model
definitions

The number of model definitions that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Model #1 ID The first model ID Read only
Model #1 coding
standard

Contains the communications standard(s) that
the SDRF device supports .e.g.
GSM or IS-95 or AMPS and so on. This
should be a single standard. If the SDRF device
supports multiple standards, this should be
represented as separate model entries with each
model supporting a standard.

Read only

Model #1 Frequency
band

Contains the frequency bands that can be
supported by the standard.

Read only

Model #1 Voice
coding

Defines the different voice coding that can be
used. e.g. half rate, full rate, enhanced full rate
and so on.

Read only

Model #1 Data support Defines the data rates and data types that can be
supported. e.g. GSM 9600, GSM high speed
circuit switched, GPRS and so on.

Read only

Model #1 Messaging
support

Defines the messaging support. Read only

Other parameters To be defined
Model #1 Equaliser The ID to identify the equaliser for the model Read only
Version number Used for version control. Read only
Equaliser scheme e.g. DFE, MLSE, RAKE Read only
Correlator parameters To be defined Read only
Number of multipaths Defines the minimum and maximum values. Read only
PN codes To be defined. Read only
Soft/hard decision
support

Indicates the if either or both decision schemes
are supported.

Read only

SDRF Technical Report 2.1 November 1999

6-49

Acquisition time Defines the minimum and maximum values that
the model is capable of supporting.

Read only

Training scheme To be defined. Read only
Other parameters To be decided
Model #1 Modulator The ID to identify the modulation for the model Read only
Version number Used for version control. Read only
Modulation scheme Defines the modulation schemes that are

supported.
Read only

Modulation parameters These are to be defined but would encompass
the modulation schemes described in the
previous parameter.

Read only

Clock frequency Self-explanatory. Read only
Bit error rate To be defined. Some modulation schemes will

change depending on the fed back bit error rate.
Read only

Channel framing
structure

To be defined. This may need expanding to
provide sufficient detail.

Read only

Analog/digital in Defines whether the input is analog or digital. Read only
Analog/digital out Defines whether the output is analog or digital. Read only
Digital in word size Defines the supported input word size in the

digital domain. If digital input is not supported,
this field is blank.

Read only

Digital in sample rate Defines the supported input sample rate for the
digital conversion. If digital input is not
supported, this field is blank.

Read only

Digital out word size Defines the supported output word size in the
digital domain. If digital input is not supported,
this field is blank.

Read only

Digital out sample rate Defines the supported output sample rate for the
digital conversion. If digital input is not
supported, this field is blank.

Quality To be defined. Read only
Resolution To be defined. Read only
Channel level To be defined Read only
Other parameters To be defined
Model #1 Radio
Tuning

The ID to identify the radio tuning module for
the model.

Read only

Version number The version number. Read only
Synthesis parameters To be defined. Read only
Frequency Defines the minimum and maximum frequency

that can be used.
Read only

Step size Defines the frequency step sizes that can be Read only

SDRF Technical Report 2.1 November 1999

6-50

supported. This may require some expansion to
cope with different step/frequency combinations.

Jitter To be defined. Read only
Phase noise To be defined. Read only
Settling time To be defined. Read only
Delay to implement
change

To be defined. This may also vary with the
frequency or size of change and therefore be a
set of values.

Output power To be defined. This may also vary with the
frequency therefore be a set of values.

Read only

Frequency description The equivalent to the waveform description. Read only
Oscillator source To be defined. Read only
Synthesiser source To be defined. Read only
Other parameters To be defined
Model #1 Channel
encoder

The ID to identify the channel encoder module
for the model.

Read only

Version number The version number. Read only
Training sequence To be defined. Read only
Tail bit sequence To be defined. Read only
Framing structure To be defined. Read only
Clock frequency To be defined.
Interleaving To be defined. Read only
Reed-Solomon
parameters

To be defined. Read only

Viterbi parameters To be defined. Read only
Convolutional codes To be defined. Read only
Block codes To be defined. Read only
Processing delay To be defined. Read only
Other parameters To be defined
Model #1 Channel
decoder

The ID to identify the channel decoder module
for the model.

Read only

Version number The version number. Read only
Training sequence To be defined. Read only
Tail bit sequence To be defined. Read only
Framing structure To be defined. Read only
Clock frequency To be defined. Read only
De-Interleaving To be defined. Read only
Convolutional codes To be defined. Read only
Block codes To be defined. Read only
Processing delay To be defined. Read only
Other Parameters To be defined

SDRF Technical Report 2.1 November 1999

6-51

END OF CAPABILITY TABLE

6.2.11 Detailed configuration

Parameter Definition Read/write
status

Configuration ID A unique value that is used to identify a set of
configuration parameters. The ability to support
multiple sets is made possible by this parameter.

Read only

Configuration table size The number of bytes that is contained in the
table and is used to decode the information.

Read only

Number of model
definitions

The number of model definitions that the SDRF
device can support. It is also used to help
decode the tables.

Read only

Model #1 ID The first model ID Read only
Model #1 coding
standard

Contains the communications standard(s) that
the SDRF device supports .e.g.
GSM or IS-95 or AMPS and so on. This
should be a single standard. If the SDRF device
supports multiple standards, this should be
represented as separate model entries with each
model supporting a standard.

Read/write

Model #1 Frequency
band

Contains the frequency bands that can be
supported by the standard.

Read/write

Model #1 Voice
coding

Defines the different voice coding that can be
used. e.g. half rate, full rate, enhanced full rate
and so on.

Read/write

Model #1 Data support Defines the data rates and data types that can be
supported. e.g. GSM 9600, GSM high speed
circuit switched, GPRS and so on.

Read/write

Model #1 Messaging
support

Defines the messaging support. Read/write

Other parameters To be defined
Model #1 Equaliser The ID to identify the equaliser for the model Read only
Version number Used for version control. Read only
Equaliser scheme e.g. DFE, MLSE, RAKE Read/write
Correlator parameters To be defined Read/write
Number of multipaths Defines the minimum and maximum values. Read/write
PN codes To be defined. Read/write
Soft/hard decision
support

Indicates the if either or both decision schemes
are supported.

Read/write

Acquisition time Defines the minimum and maximum values that Read/write

SDRF Technical Report 2.1 November 1999

6-52

the model is capable of supporting.
Training scheme To be defined. Read/write
Other parameters To be defined
Model #1 Modulator The ID to identify the modulation for the model Read only
Version number Used for version control. Read/write
Modulation scheme Defines the current modulation scheme. Read/write
Modulation parameters These are to be defined but would are

dependent on the current modulation scheme.
Read/write

Clock frequency Self-explanatory. Read/write
Bit error rate To be defined. Some modulation schemes will

change depending on the fed back bit error rate.
Read/write

Channel framing
structure

To be defined. This may need expanding to
provide sufficient detail.

Read/write

Analog/digital in This defines whether the input is analog or
digital.

Read/write

Analog/digital out This defines whether the output is analog or
digital.

Read/write

Digital in word size This defines the supported input word size in the
digital domain. If digital input is not supported,
this field is blank.

Read/write

Digital in sample rate This defines the supported input sample rate for
the digital conversion. If digital input is not
supported, this field is blank.

Read/write

Digital out word size This defines the supported output word size in
the digital domain. If digital input is not
supported, this field is blank.

Read/write

Digital out sample rate This defines the supported output sample rate
for the digital conversion. If digital input is not
supported, this field is blank.

Read/write

Quality To be defined. Read/write
Resolution To be defined. Read/write
Channel level To be defined Read/write
Other parameters To be defined
Model #1 Radio
Tuning

The ID to identify the radio tuning module for
the model.

Read only

Version number The version number. Read only
Synthesis parameters To be defined. Read/write
Frequency Defines the minimum and maximum frequency

that can be used.
Read/write

Step size Defines the frequency step sizes that can be
supported. This may require some expansion to

Read/write

SDRF Technical Report 2.1 November 1999

6-53

cope with different step/frequency combinations.
Jitter To be defined. Read/write
Phase noise To be defined. Read/write
Settling time To be defined. Read/write
Delay to implement
change

To be defined. This may also vary with the
frequency or size of change and therefore be a
set of values.

Read/write

Output power To be defined. This may also vary with the
frequency therefore be a set of values.

Read/write

Frequency description The equivalent to the waveform description. Read/write
Oscillator source To be defined. Read/write
Synthesiser source To be defined. Read/write
Other parameters To be defined
Model #1 Channel
encoder

The ID to identify the channel encoder module
for the model.

Read/write

Version number The version number. Read/write
Training sequence To be defined. Read/write
Tail bit sequence To be defined. Read/write
Framing structure To be defined. Read/write
Clock frequency To be defined. Read/write
Interleaving To be defined. Read/write
Reed-Solomon
parameters

To be defined. Read/write

Viterbi parameters To be defined. Read/write
Convolutional codes To be defined. Read/write
Block codes To be defined. Read/write
Processing delay To be defined. Read/write
Other parameters To be defined
Model #1 Channel
decoder

The ID to identify the channel decoder module
for the model.

Read only

Version number The version number. Read only
Training sequence To be defined. Read/write
Tail bit sequence To be defined. Read/write
Framing structure To be defined. Read/write
Clock frequency To be defined. Read/write
De-Interleaving To be defined. Read/write
Convolutional codes To be defined. Read/write
Block codes To be defined. Read/write
Processing delay To be defined. Read/write
Other parameters To be defined

END OF CONFIGURATION TABLE

SDRF Technical Report 2.1 November 1999

6-54

SDRF Technical Report 2.1 November 1999

6-55

6.2.12 Mode Switcher Scenario Flow Charts

The remainder of this section describes three scenarios through the use of flow charts which are
examples of the how the Mode switcher API and messages can be used to initiate power-on, module
download and cross-technology or air interface roaming.

6.2.13 Power-on

Power on
Handset

Is there a default
Configuration?

Set up using
standard

"switcher"
commands

Is
there a service

available?

Can the
configuration be

changed?

Power on
Operation
complete

Change
Configuration

Can a
new service be

selected

Capability
Exchange to

determine
option

Select new
Service and
configuration

END:
No service
available

NO
NO

NO

NO

Help!

Beyond current
Implementation

YES

YES

YES YES

Figure 6.2.13-1 The power-on flow chart

The flow chart essentially consists of two loops that try and register with a service. The first loop will
change the configuration parameters for the selected service until either a successful connection has been

SDRF Technical Report 2.1 November 1999

6-56

made or all the possibilities have been exhausted. At this point an alternative service is selected (if
available) and the process repeated. This flow chart does not include the possibility of downloading
further software for untried services.

6.2.13.1 Power-on Start

This is the event that brings up the SDRF device from a dormant state. It need not be assumed that it is
locally created although this will probably be the main route. Examples include switching the SDRF
device on or receiving a remote command to power up from an external source. This can be the result
of a warm or cold start. Within the scope of the example, this is not explicitly defined.

6.2.13.2 Is There a Default?

This question asks if there is a default configuration that is known. This data is not part of the Mode
switcher capability exchange information and is assumed to be available from elsewhere in the system.

If the answer is yes, this information is used to identify which of the Mode switcher configurations to use
as the default. This may involve either selecting a configuration or configuring one as required.

If the answer is no, then some intelligence is required to resolve this situation. This is beyond the scope
of this example. Without a default start-up configuration, the system may simply choose one. This could
then create difficulties with existing services if the chosen service is unsupported and interferes with the
existing services. In this case, listening to a pilot channel or scanning the frequency bands may be the
only solution.

6.2.13.3 Standard Mode Switcher Set Up

This is the procedure as defined earlier in the API section that uses the Mode switcher API commands
to enable, start and set the configuration of the required virtual capability.
The configuration is selected and set-up based on the information that defines the default.
It may use the regulatory, non-regulatory or detailed level of details

6.2.13.4 Is There a Service?

This checks to see if the set-up procedure described in the previous box has resulted in a service
registration and connection

If the answer is yes, then the power on operation has been successful and the operation terminates with
a successful completion.

If no, then the next stage is to modify the current configuration to see if this will create a successful
connection. This starts a loop process that will cycle through different configurations.

SDRF Technical Report 2.1 November 1999

6-57

6.2.13.5 Can The Configuration Be Changed?

This reflects the ability of the power-on module to determine if and how the current configuration can be
changed.

It will need the virtual capabilities through the capability exchange facility.

If yes, this will cause the current configuration to be modified. If no, then modification of the current
configuration is not possible and an alternative virtual capability must be used.

6.2.13.6 Change Configuration

This is where the current configuration is modified on the basis of the changes identified in the previous
decision diamond.

The modified configuration information is then fed back into the Mode switcher set-up to create a new
configuration and to see if this is successful in gaining a valid connection.

6.2.13.7 Choose Another Service?

This decision is reached if no modification of the current configuration can be done. At this point a
decision has to be made concerning which new service is to be tried.

If no, it will terminate.

If yes, then further work to determine which service and configuration will be used next.

6.2.13.8 Capability Exchange

This will interrogate the virtual capabilities via the Mode switcher’s capability exchange. This information
is needed for the next stage.

6.2.13.9 Select Service

This is where the next service is selected based on the information supplied from the capability
exchange.
Again this assumes that a suitable algorithm has been developed for the Power On module.
Once a selection has been made, this information is used to set-up the service (yet again) to try and get
a successful connection.

SDRF Technical Report 2.1 November 1999

6-58

6.2.14 Download and Installation

This scenario describes the basic process for downloading and installing a new module. It has a basic
loop that chooses and downloads a module and then adjusts the module configuration till it can fit and
run in the system. The download process is described in section 5.2.1 Download API.

The diagram has an additional entry point B and an exit point A. These fit into the roaming scenario
described in the next section.

Start download
process

Can we select a

new
module?

YES

Is

there a
 module locally

available?

Can the

module run
in this system?

END
No modules

available for use!

Change
configuration

Can the

module be
changed to make

it fit?

Place module Prepare target
for new module

Yes NO

NO

B

YES
YES

No

Select target

A
Download

process to move
module locally

Can we download a
new module?

No

Yes

Figure 6.2.14-1 The download scenario

SDRF Technical Report 2.1 November 1999

6-59

The select target stage is where a decision is made concerning where the module is to be placed, and
perhaps more importantly, which module, if any, is replaced.

6.2.15 Cross-technology Roaming

The roaming scenario is started either by detecting that a service is degrading sufficiently to warrant
roaming to a replacement or via an instruction from the infrastructure.

Is there a default
configuration?

Set up using
standard
"switcher"
commands

Is
there a service

available?

Can the

configuration be
changed?

Cross technology
roaming complete

Change
configuration

Can a

new service be
selected

Capability
exchange to
determine

option

Select new
service and
configuration

B

Is

cross technology
roaming

supported?

END! No call

transfer possible!

NO

NO
NO

NO

YES

YES

YES

YES YES

NO

Is this a

request to roam
to another service

Is

the
current service

 OK?

Check service
quality

Process base
station

messages

NO

YES

YES

NO

Figure 6.2.15-1 The roaming scenario

In either case, a check is then performed to ensure that cross-roaming is supported. The flow chart then
moves into a flow similar to that of the power-on sequence in that different configurations/services are
repeatedly tried until a successful replacement is made.

The scenario can be expanded by adding the download support using points A and B to allow modules
to be downloaded to access the replacement service if the necessary software to support the
connections is not available in the SDRF device.

SDRF Technical Report 2.1 November 1999

7-1

7.0 Form Factor

7.1 Handheld Form Factor

Specific physical interfaces that could be candidates for handheld form factor recommendations will be
compliant with the guidelines for functional interfaces and physical modularity as defined by SDRF
approach to open system standards recommendations.

Handheld devices are continuously being aggressively driven towards higher levels of integration and
hence smaller form factors by the highly competitive commercial marketplace.

The physical modularity is continuously varying across functional interfaces internal to the handheld
device. Physical modularity is most stable at the external interfaces and the following interfaces have
been identified as potential candidates for form factor recommendations:

• Antenna to RF

• RF to Modem

• User I/O to locally attached machine

• Battery connection

• SIM connection

7.2 Mobile Form Factor
Specific recommendation for form factor and interconnects are still under development and will be
included in a later revision to this document.

7.3 Interconnect Options
Appendix E provides examples of common interconnect standards that are appropriate for
consideration in establishing an open architecture for SDRF. Then, based on requirements in the
handheld and mobile areas, a subset will be recommended. A process and criteria for selecting this
subset will be developed and published.

SDRF Technical Report 2.1 November 1999

8-1

8.0 Plan for Future Work

It is the intention of SDRF in the process of developing standards recommendations to start with a very
broad approach to describing the general architecture of the solution set, the modularization of the
solution, and the identification of those items that will be standardized as well as those that will not be
standardized. Successive iterations will refine those definitions and will become more focused. Figure
8.0-1 provides a view of the focusing of the standards recommendations development process. It is
shown as a funnel to graphically illustrate the intention of the SDRF to start with very broad definitions
and architectures and proceed down levels of detail only to the point where the needs of the industry are
met with the minimum limitation on innovation. This graphical representation served the SDRF well
through the TR 1.X series. The activities of the Forum have become too complex to fit in this graphical
representation going forward. Therefore with TR 2.0, Figure 8.0-2 was introduced. It shows the
relationship of vertical Working Groups focused on one application area with horizontal Task Groups
that cut across all of the application areas. With TR 2.1 a textual description approach is used.

Hand Held Base Station / Satellite Mobile

Working Groups

Technical Report 1.0:

Technical Report 1.1
Refinement of Architecture;

Dec 1997

Control API’s
Refine Download

Initial API’s
Function Definitions

June 1998

Download API’s
RF/BB Interface

API
Refinement

Dec 1998

Jun 1997

Technical Report 2.0: Restructured

June 1999

Dec 1999

Conceptual Formulation (Work Flow, Standards Recommendations Flow)

Base Station / Satellite
Group Established

Base Station / Satellite
Workplans Established

Initial Release
of SDRF Architecture

Added sections on API’
 and Software Download

Figure 8.0-1 Standards Recommendations Development Overview

SDRF Technical Report 2.1 November 1999

8-2

Figure 8.0-2 Relationship of SDRF Vertical Working Groups to Horizontal Task Groups

Handheld
Working Group

Switcher /
Download

Task Group

API
Task Group

Antenna API
Task Group

Base Station
Working Group

Mobile
Working Group

SDRF Technical Report 2.1 November 1999

8-3

8.1 Mobile Working Group Work Plan - 2000

Goal: To have some member companies implement a SDRF architecture that executes a common
software radio application.

1. Define interfaces to the SDR services.
§ Identify and define the API’s (Feb 2000)

2. Define the management structures for SDR control (April 2000)
3. Finalize Domain profile (May 2000)
4. Finalize POSIX profiles (Feb 2000)
5. Define at least one common software radio application for the November 2000 test of submitted

SDRF architecture implementations. (Sep 2000)
6. Update the SDRF architecture based on lessons learned from the real implementations. (Dec 2000)
7. Finish off addressing the 11 work items from Stockholm. (Jan 15/2000)
8. Post on the web site an overview on the SDRF architecture. (Feb 2000)
9. Add Glossary to define CF objects (Feb 2000)
10. Create a rationale document for CF (May 2000)
11. Socialize the CF to other SDR groups and outside to OMG?
12. Framework accepted by other SDRF groups esp. Base-station. (June 2000)

8.2 Base Station Working Group Work plan - 2000

• By the end of the February meeting the group will finalize the description of Use Cases with
priority number 1. It will evaluate the TR 2.1 reference architecture with respect to these Use
Cases and consider changes as needed to support them (e.g. time criticality, data path utilization,
memory efficiency and organization). It will define and develop a specification (methods and
control signals) for a Base station with Type I and II Antenna sub-systems with respect to input
and output parameters (gain, frequency etc) in UML or XML. At the April meeting the group will
vote Use Cases with priority number 1 with the Technical committee and begin description of Use
Cases with priority 2. It will work with the mobile group to recommend changes to the reference
architecture for base station application. It will vote the specification for a Type I and II Antenna
sub-systems.

• In June the group will vote Use Cases with priority numbers 1 and 2 as ready to deploy in a
request for comments form on the Forum web site, and begin description of Use Cases with
priority 3. It will vote an update to the reference architecture to support base station application. It
will begin an evaluation of the specification for a Base station with Type III and IV Antenna sub-
systems with respect to inputs and outputs. At the September meeting the group will vote Use
Cases with priority 3 and develop Use Cases with priority 4. It will vote the specification for a

SDRF Technical Report 2.1 November 1999

8-4

Type III and IV Antenna sub-systems. In November the group will vote Use Cases with priority
number 4 with the Technical committee.

8.3 Handheld Working Group Work Plan – 2000

The Handheld Working Group will review the handheld architecture in the context of the mobile
framework. It will revise the handheld architecture as appropriate. Then the group will define a subset of
interfaces to document. These interfaces will be specified to the level of detail required to be useful to an
implementor by June 2000.

8.4 Switcher / Download Working Group Work Plan - 2000

November Meeting Follow-up:
• Complete and post (SDR Forum website) TR2.0, Ch. 6 revisions
• Complete and submit overview document to WAP, MexE

February Meeting:
• Complete voting on TR2.0, Ch. 6.
• Initial Work plans back from WAP and MexE

April Meeting:
• Joint meeting with MexE prior to Korea meeting
• Initiate discussions with SUN on JAVA

June Meeting:
• Joint meeting with WAP prior to Seattle meeting

September Meeting:
• Vote SDR Forum contribution to WAP/MexE out of Forum

November Meeting:
• Download protocol Version 1 completed and introduced in MexE requirements and WAP

8.5 Antenna API Task Group

The Antenna API Task Group will be organized by June of 1999 and it will publish its initial work plan
and objectives.

SDRF Technical Report 2.1 November 1999

9-1

9.0 Glossary

DEFINITIONS
Applets An applet is a small program that is not intended to be run on its own, but to

be embedded inside another application.
Architecture The design principles, physical configuration, functional organization,

operational procedures, and data formats used as the bases for the design,
construction, modification, and the operation of a product, process, or
element.

Economies of Scale 1) Decreasing unit costs when the scale of operation is increased; and 2)
decreasing costs associated with joint production.

Extensibility The ability to readily permit an addition of a new element, function, control,
or capability within the existing framework. In SDRF, this may be new,
evolving wireless services.

Feature A specific element of a service that provides a desirable result. Examples are
encryption and authentication.

Function An operation or algorithm. Examples are down conversion and
demodulation.

Functional Partitioning A logical grouping of functions into identifiable functional blocks for the
purpose of implementing a service or mode within an architecture comprised
of these functional blocks.

Mode A specific implementation type of a service. Examples are AMPS, GSM, or
GPS.

Module 1) An interchangeable subassembly that constitutes part of, i.e., is integrated
into, a larger device or system. 2) In computer programming, a program unit
that is discrete and identifiable with respect to compiling, combining with
other modules, and loading.

Multi-Function Capable of operating in a number of different communications services with a
single piece of equipment.

Multimode Support multiple modulation formats and modulation bandwidths
QAM, PSK, FSK, MSK, DSSS various bit rates and symbol rates

Multiband Support Multiple frequency Bands of Operation
Cellular 800 MHz
PCS 1.9 GHz
ISM .9, 2.4, 5.8 GHz
Private Land Mobile Radio (PLMR)
Multiple bands: 30- 900 MHz

Multi-Standard Specific Standard Supported
CellularAMPS, IS-54, IS-95
PCS
APCO - 25 (Public Safety)

SDRF Technical Report 2.1 November 1999

9-2

MIL-STD-188-XYZ
Open system A system with characteristics that comply with specified, publicly maintained,

readily available standards and that therefore can be connected to other systems
that comply with these same standards. (Open Architecture)

Paging A one-way communications service from a base station to mobile or fixed
receivers that provide signaling or information transfer by such means as tone,
tone-voice, tactile, optical readout, etc.

Refarming The process of moving incumbent authorized users out of one frequency band into
another. It is likely to be extended to the process of moving users from one mode
to another mode.

Scalability The ability to extend the functionality of the SDRF device to include multiple
channels and networking or additional local connectivity and processing.

SDRF Software Defined Radio uses adaptable software and flexible hardware platforms
to alter or change its functional characteristics.

Service (OSI) In the Open Systems Interconnection Reference Model (OSI RM), a capability of
a given layer, and the layers below it, that (a) is provided to the entities of the next
higher layer and (b) for a given layer, is provided at the interface between the
given layer and the next higher layer.

Service (SDRF) Capability or a defined and interrelated set of capabilities structured to meet a
specific requirement.

Service Access In personal communications service (PCS), the ability for the network to provide
user access to features and to accept user service requests specifying the type of
bearer services or supplementary service that the users want to receive from the
PCS network.

Service Domain Association of a service to a particular implementation domain. Examples are
cellular and satellite voice.

Upgradeability The ability to get more or better work from the SDRF device through the insertion
of improved hardware and software technologies.

User Service Service designed to meet a user requirement. Examples are voice and data user
services.

ACRONYMS

AAW Anti-Air Warfare
ACELP Algebraic Code Excited Linear Prediction
ADNS Automated Digital Network System
ADPCM Adaptive differential pulse-code modulation: a method of digitally encoding

speech signals
AGC Automatic Gain Control
ALE Automatic Link Establishment
ALOHA A simple multiple access protocol invented at the University of Hawaii in which

users transmit whenever they have something to send. A variant that offers

SDRF Technical Report 2.1 November 1999

9-3

greater throughput is "slotted" ALOHA, in which transmissions are synchronized
to a universal clock.

AMPS Advanced mobile phone system: the American analog cellular telephone system
ANSI American National Standards Institute
APCO Associated Public Safety Communications Officers, Inc.
API Application Program Interface
ARDIS Motorola wireless two-way data network
ASuW Anti-Surface Warfare
ASW Anti-Submarine Warfare
ATM Asynchronous transfer mode: a packetized digital transfer system, adopted for the

B-ISDN. (Beware: the same abbreviation is used for automated teller machines,
i.e., "hole-in-the-wall" bank cash machines.)

BB Base Band
BER Bit error ratio
B-ISDN Broadband integrated services digital network
BPSK Binary phase shift keying
C/I Carrier-to-interference ratio, usually expressed in dB
CCITT Comite' Consultatif International de Radio: formerly the ITU body responsible for

radio standards (now the responsibility of ITU-R). Comite' Consultatif
International Te1egraphique et Te1ephonique: formerly the ITU body responsible
for nonradio standards (now the responsibility of ITU-T).

CDCS Continuous dynamic channel selection: a channel management technique used in
DECT

CDF Cumulative distribution function: the integral of the PDF
CDMA Code Division Multiple Access
CDPD Cellular Digital Packet Data
CELP Code-excited linear prediction
CISC Complex Instruction Set Computer
CNI Communication, Navigation, and Identification (CNI)
COMSEC Communication Security
COTS Commercial-off-the-shelf Systems (Software)
CSE Cross Standards Extensions
CSMA Carrier sense multiple access: a multiple-access protocol that offers improved

performance over ALOHA, users being required to listen for a quiet channel
before transmitting.

CT2 Second-generation cordless telephone
CT3 Third-generation cordless telephone
CT0, CT1 Early cordless telephone standards
CTR Common technical regulations: the basis for type-approval of, for example, GSM

handsets
CUG Closed user group
CW Carrier wave, that is, a constant, unmodulated radio carrier
DAMA Demand Assignment Multiple Access

SDRF Technical Report 2.1 November 1999

9-4

DAMPS Digital AMPS: a digital cellular system having some compatibility with the (analog)
AMPS system (U.S.)

DARPA Defense Advanced Research Project Agency
DCS1800 Digital communication system: a variant of the GSM standard providing for

operation in the 1800-MHz band, initially required by the United Kingdom for its
PCN service.

DECT Digital European Cordless Telecommunications: the second-generation cordless
system standardized by ETSI

DIN Deutsche Industrie-Norm(enaussxhuss) (German Industrial Standards Authority,
equivalent of EIA, BSA etc.)

DLC Data link control (layer)
DOD Department of Defense
DQPSK Differential Quadrature Phase Shift Keying
DS Direct sequence: a form of spread-spectrum system, using a pseudorandom

binary stream to spread the signal
DTMF Dual-tone multi-frequency: system of low-speed signaling in telephone systems,

for example, for dialing, using paired audio tones
DWTS Defense Wide Transmission Systems
EISA Enhanced Industry Standard Architecture
EPLRS Enhanced Position Location Reporting System
ES Emergency Service
ESMR Enhanced Specialized Mobile Radio
ETS European Telecommunications Standard
ETSI European Telecommunications Standards Institute
EU European Union
EW Electronic Warfare
FCC Federal Communications Commission: U.S. Government regulatory body
FD Full Duplex
FDD Frequency Division Duplexing
FDDI Fiber distributed data interface: a U.S. standard for high-rate fiber optic token-

ring LAN systems
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
FH Frequency hopping: a form of spread-spectrum system
FPLMTS Future public land mobile telecommunication system: the ITU name for third-

generation systems. Since this name is neither memorable nor pronounceable in
any language, the name IMT-2000 has been proposed.

FSK Frequency Shift Keying
GFSK Gaussian-minimum Frequency Shift Keying
GHz Gigahertz
GMSK Gaussian minimum shift keying: a form of constant-envelope binary digital

modulation
GoS Grade of service: in telephony, the probability that a call will not succeed. Note

that a high GoS is worse than a low one. Also used loosely to mean service
quality.

GPS Global Positioning System
GSM Groupe Special Mobile: originally, the CEPT (later, ETSI) committee responsible

for the pan-European digital cellular standard. Also, used as the name of the

SDRF Technical Report 2.1 November 1999

9-5

system and the service. Global System for Mobile (Communication): the name
for the GSM system and service, invented by a group of European operators, to
fit the abbreviation "GSM."

HD Half Duplex
HMI Human-Machine Interface
HMMWV High Mobility Multi-purpose Wheeled Vehicle
I/O Input / Output
IBCN Integrated broadband communications network
IEEE Institute of Electrical and Electronic Engineers (U.S.). IEEE-802 is a committee

responsible for developing standards for LANs.
IF Intermediate Frequency
IFF Identification Friend or Foe
IMT-2000 International mobile telecommunications-2000: a name proposed within ITU for

their third-generation concept, otherwise known as FPLMTS
IN intelligent network
INFOSEC Information Security
IPR Intellectual property rights, including patents, trademarks, copyrights
ISA Industry Standard Architecture
ISDN Integrated services digital network
ISM Industrial, Scientific, Medical
ISO International Standards Organization
ITU International Telecommunication Union
JMCOMS Joint Maritime Communications Strategy
JTIDS Joint Tactical Information Distribution System
kHz Kilohertz
LAN Local area network
LED Light-emitting diode
LEO Low earth (satellite) orbit
LOS Line of sight (radio path)
LPD Low Probability of detection
LPI Low probability of intercept: a property of spread-spectrum systems
MAC Medium access control (protocol layer)
MAN Metropolitan area network
MAP Mobile application part: an extension of signaling system number 7, providing

support of mobile systems.
MBLT Multiplexed Block Transfer
MCM Mine Countermeasure
MCN Microcellular network
MEO Medium earth (satellite) orbit
MHz Megahertz
MMI Man-Machine Interface
MPMLQ Multipulse maximum likelihood quantized
MSK Minimum Shift Keying

SDRF Technical Report 2.1 November 1999

9-6

NATO North Atlantic Treaty Organization
NET Norme Europeenne de Te1ecommunications: formerly, the specification for type-

approval, produced by CEPT, later replaced by CTRs. Thus, NET-10 was the
type-approval spec for GSM, now replaced by CTR-5 and CTR-9.

NMT Nordic mobile telephone (system): cellular telephone system prevalent in the
Nordic countries.

NOS Network Operating System
NPRM Notice of Proposed Rule Making: an official pronouncement by the FCC (U.S.)
NTDR Near-Term Digital Radio
NTT Nippon Telegraph and Telephone Corporation (Japan)
OFTEL Office of Telecommunications: U.K. official body created to protect the interests

of consumers of telecommunication services.
OKQPSK Offset-keyed quadrature phase-shift keying: digital modulation system in which in-

phase and quadrature components carry bit-streams offset by half a bit, resulting
in desirable spectral and envelope characteristics.

OS Operating System
OSI Open systems interconnection: the ISO layered protocol model
OSS Operating Support System
PABX Private automatic branch exchange
PACS Personal Access Communications System, Licensed Band
PAD Packet assembler/disassembler: device used to interface with a packet network
PBX Private Branch Exchange
PCI Peripheral Component Interconnect
PCIA Personal Communications Industry Association (U.S.).
PCMCIA Personal Computer Memory Card Industry Association
PCN Personal communications network: used as a general term for such networks, and

specifically for the UK systems licensed for operation in the 1800-MHz band and
using the DCS 1800 standards

PCS Personal Communication System
PDA Personal digital assistant: a name coined to describe a portable, screenbased

communication-oriented data terminal or organizer.
PDC Personal Digital Cellular
PDF Probability distribution function
PDH Plesiochronous digital hierarchy: transmission system standard (plesiochronous =

near-synchronous)
PHS Personal handy phone system: a RCR standard for cordless telephony
PICMG PCI Industrial Manufacturers Group
PIN Personal identification number: a (typically four-digit) secret number to be input by

the user to obtain service
PLMN Public Land Mobile Network
PMR Private mobile radio
POCSAG Post Office Code Standardization Advisory Group
POTS Plain old telephone service
PSI-CELP Pitch Synchronous Innovation Code Excited Linear Prediction
PSK Phase-shift keying
PSPDN Packet-switched public data network
PSTN Public-switched telephone network
PTO Public telecommunications operator
PTT Post, telephone and telegraph (authorities): an old name for the (usually state-

monopoly) operators of telecommunication and postal services
QAM Quadrature amplitude modulation

SDRF Technical Report 2.1 November 1999

9-7

QCELP Qualcomm proprietary CELP
QoS Quality of service: an ill-defined term covering various measures of "quality" in

telecommunication systems
QPSK Quadrature phase-shift keying
RAM A wireless mobile data system
RES Radio equipment and systems: a technical committee of ETSI, responsible for

terrestrial radio standards other than GSM
RF Radio Frequency
RP-CELP Regular pulse-code excited linear prediction
RPE-LTP Regular-Pulse Excitation Long-Term Prediction
RTK Real-Time Kernel
SCI Scaleable Coherent Interconnect
SCSA Signal Computing System Architecture
SCSI Small Computer System Interface
SDH Synchronous digital hierarchy: a transmission system standard
SDO Standards development organization
SDR Software defined radio
SDRF Software Defined Radio Forum
SEM-E Standard Electronic Module, Defined by Mil Std 1389 Appendix E
SFH Slow frequency hopping
SIM Subscriber Identification Module - derived from GSM
SINCGARS Single-Channel Ground and Airborne Radio System
SMG Special Mobile Group: the name adopted by ETSI for the (former) GSM

committee, for consistency with other ETSI Technical Committees, which all had
English names. There are numerous subgroups: SMGI, SMG2, etc. The SMG5
subgroup has responsibility for work on third-generation systems.

SNR Signal-to-noise ratio, usually expressed in dB
S-PCN Satellite personal communications system
SS7 Signaling system number 7: an ITU standard for telecommunications network

signaling
T1 U.S. standards committee, active in personal communications area
TACAN Tactical air navigation
TACS Total access communication system: an analog cellular phone system based on

AMPS, used in the United Kingdom and elsewhere. Technical basis for
regulation.

TCM Trellis coded modulation
TCP/IP Transmission Control Protocol/Internet Protocol
TDD Time-division duplex: two-way communication using synchronized alternate

transmission on a single carrier
TDHS Time domain harmonic scaling
TDMA Time Division Multiple Access
TEMPEST Transient Electromagnetic Pulse Standard

SDRF Technical Report 2.1 November 1999

9-8

TETRA Trans-European trunked radio: second-generation digital PMR system
standardized by ETSI

TGMS Third-generation mobile systems
TIA Telecommunications Industry Association (U.S.)
TRANSEC Transmission Security
TTM Time to Market
UAV unmanned aerial vehicle
UHF Ultra high frequency: usually defined as 0.3 to 3 GHz
UMTS Universal mobile telecommunication system (or service): the concept of third-

generation systems developed in Europe, particularly by the RACE program.
UPT Universal personal telecommunication
VA Voice activation
VERSA Motorola defined micro-computer bus (1979)
VLF Very Low Frequency
VME VERSA Module Eurocard
VRC-99 Packet Radio
VSB VME Subsystem Bus
VSELP Vector Sum Excited Linear Prediction
WAN Wide area network
WARC World Administrative Radio Conference
WLLAN Wireless local area network
WSS Wide-sense stationary

SDRF Technical Report 2.1 November 1999

A-1

Appendix A. The SDRF Charter

The following is the SDRF charter. It is also available on the SDRF web site:
URL http://www.sdrforum.org

Version 1.0 5/6/96
__

SDRF Vision

The SDRF vision is to provide high quality, ubiquitous, competitively priced wireless networking
systems equipment and services with advanced capabilities. This vision includes a view of seamlessness
across diverse networks and integration of capabilities in an environment of multiple standards and
solutions.

Ease of use, mobility, enhanced productivity, and support for lifestyle choices are all wanted by the
communications systems users. Convergence among wireless and wired services such as educational,
entertainment, and information services requires improved interworking and interoperability.

Consequently, consumers of communications services, communications service providers, equipment
suppliers and maintainers can benefit from open architecture coupled with the software definable
networking radio systems developments espoused within SDRF. This community of interest not only
includes the needs of the general public, but also includes governments, and their requirements for
defense, law enforcement, and emergency services, including National Security and Emergency
Preparedness.

SDRF Definition

The Software Defined Radio Forum (SDRF) presents an open architecture for wireless networking
systems. Major considerations in networking systems include software defined radio waveform
hardware and software, security, source coding, and networking protocols.

Software defined radios use adaptable software and flexible hardware platforms to address the
problems that arise from the constant evolution and technical innovation in the wireless industry
particularly as waveforms, modulation techniques, protocols, services, and standards change.

A software defined radio in the SDRF context goes beyond the bounds of traditional radio and extends
from the radio terminal of the subscriber or user, through and beyond the network infrastructures and
supporting sub-systems and systems. SDRF is a concept that spans numerous radio network

SDRF Technical Report 2.1 November 1999

A-2

technologies and services, such as cellular, PCS, mobile data, emergency services, messaging, paging,
and military and government communications.

SDR Forum Mission

The mission of the Open Architecture Software Defined Radio Forum (SDRF) is to accelerate
development, deployment and use of software definable radio systems consistent with the objectives of
the above wireless vision.

The SDR Forum will work toward the adoption of an open architecture for advanced wireless systems
that includes the requisite functionality in terminals, networks, and systems to provide multiple capability
and multiple mission flexibility for voice, data, messaging, image, multimedia, and future needs.

The SDR Forum shall establish requirements related to the definition of internal and external system
interfaces, modules, software, and functionality that the industry can use as guidelines in building
modules, products, and systems.

Further, the SDR Forum will promote the development of standards for SDR, including those focused
on SDR equipment and those in supporting service application areas, in areas of interoperability and
performance, and in underpinning core technologies, either directly or through appropriate liaison to
other industry associations and standards bodies. The SDR Forum will pursue industry wide acceptance
of these standards.

To assist the wireless and supporting industries in understanding the value and benefit of software
definable radio and in particular the SDRF vision, the SDR Forum will also address market
requirements, quantify the market, and develop timelines relative to the use of multi-mode, multi-band,
and multi-application wireless communications systems.

The SDR Forum membership shall include telecommunications users, equipment suppliers, and
developers of technology, products, systems, hardware, and software as well as service providers and
system operators or any other individual, organization, or entity who has interest in furthering the
objective of SDRF.

SDRF Technical Report 2.1 November 1999

B-1

Appendix B. List of Chairs and Co-chairs

OFFICE NAME PHONE E-MAIL

TECHNICAL COMMITTEE (as of November, 1999)

Technical Comm. Chair Vacant

Technical Comm.
Co- Chair Szelc, Dawn +1-703-883-7770 The Mitre Corp dszelc@mitre.org
Technical Comm.
Co-Chair Dr. Kohno, Ryuji +81-3-5448-4380 Advanced Telecom. Lab.,

Sony Computer Science
Laboratories, Inc.

kohno@csl.sony.co.jp

Handheld WG Chair Cummings, Mark +1-408-777-4802 enVia markcummings@envia.com

Mobile WG Co-Chair Cook, Pete +1-602-441-1300 Motorola SSTG p25359@email.mot.com

Mobile WG Co-Chair
Mobile WG Co-Chair

Williams, Larry
Fuchs, Alden

+1-219-487-6154
+1-978-256-0052
x1788

ITT A/CD
Mercury Computer
Systems, Inc.

ljwillia@itt.com

afuchs@mc.com
Basestation / Smart
Antenna WG Chair Murotake, Dave

+1-978-256-0052
x1129

Mercury Computer
Systems, Inc. dmurotak@mc.com

Basestation / Smart
Antenna WG Co-Chair Meyer, Ron +1-972 344 2367 Raytheon r-meyer1@collins.rockwell.com
Download Task Group
Co-Chair Ralston, John +1-408- 369-

7227 x3108
Morphics Technology, Inc. jralston@morphics.com

SDR FORUM OFFICERS
and Steering Committee (as of November, 1999)

Forum Chair Blust, Stephen +1-404-249-5058 BellSouth Cellular. blust.stephen@bwi.bls.com

Vice Chair

Treasurer

Ralston, John

Fette, Bruce

+1-408-369-7227
 x 3108
+1-480-441-8392

Morphics Technology

Motorola SSTG

jralston@morphics.com

P11693@email.mot.com
Secretary, Operations
Chair Margulies, Allan +1-315-336-4966 The MITRE Corp asm@mitre.org
Steering Committee
Chair Williams, Larry +1-219-487-6154 ITT Aerospace ljwillia@itt.com
Technical Committee
Chair (Vacant)
Markets Committee
Chair Watson, John +1-408-573-6353 QuickSilver Technology johnw@qstech.com
Large Company Rep. Hacker, Henry +1-219-429-6629 Raytheon hjhack@ftw.rsc.raytheon.com

Medium Company Rep. Adams, Mark +1-703-329-9707 Exigent Int’l mark_adams@alx.sticomet.com

Small Company Rep. Cummings, Mark +1-408-777-4802 enVia markcummings@envia.com

Non-profit
Representative Szelc, Dawn +1-703-883-7770 The MITRE Corp dszelc@mitre.org
At Large Member Cook, Peter +1-480-733-8225 Motorola pgcook@uswest.net

At Large Member Uhrig, Nalini +1-973-386-7071 Lucent Technologies nuhrig@lucent.com

SDRF Technical Report 2.1 November 1999

C-1

Appendix C. Other Organizations Contacted by SDR Forum

The following is a partial list of organizations, including standards bodies, that have been contacted by
the SDR Forum for the purpose of providing an introduction to the objectives of the MMTS program
and to solicit cooperative participation as appropriate.

AeroSense '97

CTIA

European Commission DG XIII-B Software Radio Workshop

European Commission DG XIII-B ACTS Concertation Meeting

Federal Telecommunications Standards Committee

GloMo

GSM-MOU Association Third Generation Interest Group

IEEE - Microcomputer Workshop

IEEE Wearable Computer Conference

Interdepartmental Radio Advisory Committee

Multiband, Multimode Terminals Workshop

National Association of Broadcasters

PCIA

T1P1/TR46

Telecommunications Industry Association Mobile Communications Systems Division

WAP

MexE

IEICE SDR Study Group

SDRF Technical Report 2.1 November 1999

C-2

FCC (USA)

MPT (Japan)

Reg TP (Germany)

ITU

ARIB

SDRF Technical Report 2.1 November 1999

D-1

Appendix D. Bus/Interconnect and Form Factor Technologies

The following section will briefly discuss the technologies that have been considered for implementation
in software radio architectures. There are two terms that we need to define, Backplane and Backbone.
Backplane is an embedded data transfer bus where modules plug into the backplane and transfer data
between the modules. The system backbone is a larger data transfer pipe and is usually connected to
another blackbox or chassis within a weapons platform or in a wide area network.

The next section will discuss the backplanes that industry is using.

D.1 EISA

Enhanced Industry Standard Architecture (EISA) was generated in 1988 by nine companies, AST
Research, Compaq Computer Corp., Epson, Hewlett-Packard, NEC, Olivetti, Tandy, Wyse, and
Zenith Data Systems. The group was frustrated with the extent of IBM’s market share of the PC
industry and its attempt to capture an even greater market with its new Microchannel architecture.
Compaq originally headed up the effort, however, the standard now resides with BCPR services, which
officiates the EISA standard.

EISA was designed as an enhancement to the very popular AT bus standard. EISA is a 32 bit
backplane bus architecture that would be the successor to the ISA 16 bit standard. EISA features
included new advanced data transfer modes that would trim the number of required clock cycles
needed to move each byte of data. The theoretical maximum that the 32 bit bus can reach with a
defined 8.2 MHz clock is 33MB/sec. This was a 50 percent increase in the proposed Microchannel
backplane bus throughput. EISA, Microchannel, and specific processor local bus structures make up
the very large and dynamic PC industry.

D.2 PCI Local Bus

The Peripheral Component Interconnect (PCI) local bus could be called the bus of tomorrow. This
was designed by Intel and adopted by a consortium which includes Compaq, IBM, Intel, Apple, Digital,
and Motorola to name a few. Most of today’s high speed processors have PCI local bus interfaces
built into the silicon interface. There are a series of I/O controllers, memory controllers and memory
devices that have this PCI local bus built into their silicon. PCI holds the best chance of replacing the
ancient Industry Standard Architecture (ISA) bus. PCI local bus is a 32 bit, or 64 bit, bus with
multiplexed address and data lines. It is intended for use as an interconnect mechanism between highly
integrated peripheral controller components (i.e., Ethernet, Serial, SCSI), processor memory systems,
and peripheral add-in boards. The motivation for developing this consortium standard is the new
graphics-oriented operating systems such as Windows and OS/2. These new graphic user interfaces

SDRF Technical Report 2.1 November 1999

D-2

and object oriented operating systems are creating bottlenecks between the processor and its display
peripherals in the standard PC architecture.

The new features and benefits of the PCI local bus include higher performance over the processor local
bus (132MBps), and lower cost, because it is designed for direct silicon interconnection, requiring no
glue logic or electrical drivers. The ease of use enables full auto configuration support of the PCI local
bus add-in boards and components. The PCI devices contain registers with device information required
for dynamic reconfiguration. Another benefit is longevity, because it is processor independent and can
migrate to 64-bit architectures, and it uses the new 3.3V and old +5V signaling voltages providing a
smooth transition to the new industry standard.

However, PCI as a backplane will have its limitations. Currently the PCI local bus is able to reach its
high performance because it dictates what the loading on the bus can be. This means that for a
backplane running at 33MHz we can have a load factor of 10 but for the same bus running at 66MHz
we can only support a load factor of four. The average 64-bit processor available today has a load
factor of two. There is work being done in standards bodies and trade associations that will soon
provide solutions to this loading problem for a backplane solution. However, if the PCI local bus was
used on the modules or boards plugging into the backplane of embedded system architecture, this
would provide an additional factor of modularity and upgradability. We could then see the use of the
IEEE 1396.1 PCI local bus Mezzanine Card standard. This standard can be used on Futurebus+,
Multibus II, and VMEbus modules that have a PCI local bus installed on their boards.

The other problem that PCI has is that it was originally designed as a motherboard solution.
Multiprocessors and multiprocessing are not clearly defined by the standard or by any implementation of
the standard currently available off the shelf.

The variations of the PCI local bus are given below.

PCI

Desktop environment and is built on current EISA 12 inch by 4 inch boards (32 and 64 bit options
33MHz and 66MHz).

Compact PCI

Compact PCI was initially designed by seven companies; AMP, DEC, I-Bus, Gespac, Hybricon, Pro-
Log, and Ziatech to improve PCI for industrial applications. Compact PCI combines the 3U x 160 mm
and 6U x 160 mm board sizes of VMEbus with a 2 mm pin-and-socket connector and a passive
backplane. The high density 2 mm connector provides good signal integrity and minimizes noise. The
standard was approved by the PCI Industrial Manufacturers Group (PICMG) in November 1995, and
there are now about 100 products on the market.

SDRF Technical Report 2.1 November 1999

D-3

PC/104

The PC/104 architecture developed by Ampro became an open standard, IEEE-P996.1, in February
1992 and the PC/104 Consortium became its custodian. PC/104 is essentially a stackable PC
architecture using the 5MBps Industry Standard Architecture (ISA) bus. The card dimension is 3.775”
x 3.55”. Its small size makes it useful for embedded applications, and it is compact and rugged.

Enhancement

PC/104-Plus is fully compliant with the PC/104 form factor, but uses the PCI bus taking the backplane
throughput from 5 MBps to 133 MBps. ISA and PCI modules can stack together. Currently it is a
preliminary specification in the PC/104 Consortium. There are numerous products available for both
PC/104 and PC/104-Plus.

High Reliability Enhanced PCI Bus

This bus will be developed by IEEE Project 1996 for transportation, telecommunications, and process
control industries to provide high availability, fault tolerant systems that support harsh environments and
extended temperature ranges. The module sizes include 6SU (4.53”), 12SU (10.43”), 18SU
(16.34”), and 24SU (22.24”) in height, and 225mm depth preferred for 6SU and 300mm depth
preferred for 12SU as well as 175mm and 250mm. It is a 32 bit and 64 bit bus that accommodates
Hot Swap and is self configurable.

CardBus

CardBus, also known as PC Card 32, started out as the PCMCIA card (see section F.3) which
became popular for adding peripheral I/O and memory to mobile computers. The PCMCIA card is
known as PC Card 16 (or R2, for revision 2), and PC Card 32 is the enhanced version. CardBus adds
PCI bus performance to the PC Card 16. The PC Card Standard 95 replaces versions 2.0 and 2.1 of
the earlier PCMCIA standard and covers both PC Card 16 and PC Card 32. The standard specifies a
68-pin interface between cards and socket host. There are three different form factors, Type I, Type
II, and Type III. The only difference between them is the thickness of the cards with Type I being the
thinnest. They all plug into the same socket. Three different pin assignments use the same 68-pin
interface: PC Card 16, PC Card 32, and zoomed video (ZV). ZV is a recent addition which allows
mobile PCs to deliver full-screen, broadcast quality video directly from a PC Card to a system’s VGA
controller without using the PCI bus. The PC Card Standard also specifies PCMCIA software
interfaces. The software architecture specifies Socket Services (SS) and Card Services (CS) modules.

SDRF Technical Report 2.1 November 1999

D-4

Small PCI

Small PCI was developed as a small-form-factor implementation of the PCI bus. It implements the
same performance and electrical characteristics as standard PCI but only the 32 bit option. Small PCI
has the same physical form factor as PC Card and CardBus and connects parallel to the system board
via a 108-pin header mounted on the system board. See the chart below for a comparison of the Small
PCI and the PC Card bus.

Table D-1 Small PCI and Card bus Comparison

Description Small PCI Card bus
Form Factor PCMCIA type II and III PCMCIA type I, II, III plus

RF extensions
Socket Keying 3.3v, 5v Universal and will

reject JEIDA, DRAM and
PCMCIA cards

Rejects all PCI & Japanese
Electronic Industry
Association (JEIDA) DRAM
cards

Applications (Market Place) low profile desk top SAME
Environment Under system PnP compatible External PnP for Dynamic

insertion & removal
Market Built to order PCI only Dynamic expansion &

reconfiguration - bus
independent

Cost Low, direct attached to PCI Higher cost -
PCMCIA/CardBus controller
required

Card Cover Not required Encapsulated
Connector 108 pin 68 pin
Connector Reliability 100 cycle (tested higher) 10,000 cycles
Performance 33MHz 33 MHz
Topology Bus oriented Point to Point
Voltage 3.3V, 5V 3.3V
Power 2.5, 5, 10 Watts

SDRF Technical Report 2.1 November 1999

D-5

Table D-2 Comparison of Example PCI Options

Desktop PCI Passive
Backplane PCI

PMC Compact PCI Card Bus Small-PCI PC/104-Plus

Dimensions
(in.)

Long: 12.3 x
3.9
Short: 6.9 x 3.9

12.3 x 3.9 5.9 x 2.9 6.3 x 3.9 3.4 x 2.1 3.4 x 2.1 3.8 x 3.6

Area (sq in) Long: 48
Short: 24

48 17 25 7 7 13

Bus Connector Edge-Card Edge-Card Pin & Socket Pin & Socket Pin & Socket Pin & Socket Pin & Socket
Includes ISA
Bus

No Yes No No No No Yes

Installation
Plane

Perpendicular Perpendicular Parallel Perpendicular Parallel Parallel Parallel

Expands
Without
Additional
Slots (Self
Stacking)

No No No No No No Yes

Positive
Retention

No No Yes Yes No No Yes

Standards
Body

PCI-SIG PICMG IEEE PICMG PCMCIA PCI-SIG PC/104

Primary
Application
Area

Desktop:
motherboard
expansion

Industrial:
backplane
expansion

Industrial:
VME
mezzanine

Industrial:
backplane
expansion

Laptop:
end user
additions

Laptop:
factory options

Embedded:
SBC expansion

SDRF Technical Report 2.1 November 1999

D-6

D.3 PERSONAL COMPUTER MEMORY CARD INDUSTRY ASSOCIATION
(PCMCIA)

PCMCIA was driven by the new PC market demands for smaller personal computers. These markets
are laptops, Notebooks, and Palmtop computers. Since the late 1980s there have been many attempts
to reduce the size and power requirements of Random Access Memory (RAM). In 1987 Mitsubishi
had a popular memory card the size of a credit card. However, it used a proprietary 60 pin package.
Fujitsu also had a memory card with a proprietary 68 pin package. POQUET, a new company
investing in memory cards as an alternative to disk drives, was driving the market for a standard. In
June 1988 the PCMCIA was established and work began on a standard memory card. In September
1990 the first release was accepted and products were available to users. In September 1991 release
two was accepted as a standard and backwardly compatible to release one. This standard identifies
both mechanical and electrical interfaces. It deals with file formats, data structures, and methods
through which the card can convey its configuration and capabilities to the host.

PCMCIA type II or release two provide the user with 5.0 mm spacing for the case, a printed circuit
card and all the components. This is the price we pay for the convenience of a credit card size memory
board. However, PCMCIA has not been limited to memory board applications. PCMCIA is
becoming the de facto expansion standard for mobile communications. However, component height,
component footprint, component power, and data conversion are still issues that have to be solved
when designing a PCMCIA card.

D.4 The VMEBUS Backplane

History

In 1979 Motorola defined a micro-computer bus called the VERSAbus. This bus was designed to
build multiprocessing systems using the new Motorola 68000 32 bit processor. In 1981, Motorola,
working with Mostek and Signetics modified the VERSAbus specification and called it VERSA Module
Eurocard (VME), named from the location of the labs where the specification was modified. These
companies released the specification to the world calling it the VMEbus. In 1987, the Institute of
Electrical and Electronics Engineers (IEEE) published ANSI (American National Standards Institute)
and IEEE 1014-1987, the standard that defined both the electrical and mechanical characteristics of the
VMEbus backplane and module.

The VMEbus is defined by ANSI/IEEE 1014-1987 which defines both the electrical and mechanical
characteristics of backplane and module. There are two acceptable board sizes 3U x 160mm (3.9
inches x 6.2 inches) with one connector and 6U x 160mm (9.2 inches x 6.2 inches) with two connectors
(P1, P2). The standard defines a convection or forced air cooling method of the modules. The
theoretical transfer rate of a module over the backplane bus is 40 Megabytes (MBps) per second at
32-bit wide transfers. It is a multiprocessor, asynchronous parallel bus architecture.

SDRF Technical Report 2.1 November 1999

D-7

There are a number of military and commercial users who have developed their products based on the
VMEbus. They range from military avionics and industrial control systems, to medical imaging systems.
The spectrum of VMEbus products available today covers a wide variety of environments. Today's
military programs will require equipment to meet programmatic concerns as well as performance
requirements. The programmatic concerns deal with cost, performance, development time, proof of
concept, and development of the application software. There are five equipment styles into which
today's VMEbus products can be categorized. These styles are applicable to 90 percent of military
application platforms and include commercial, ruggedized air cooled, ruggedized conduction cooled,
military air cooled, and military conduction cooled. These equipment styles cover environmental and
programmatic requirements from commercial systems to mission-critical applications.

The VMEbus migration with technology

Since 1980 the VMEbus has found its way into many commercial, industrial, and military applications.
The VMEbus has become many corporations’ internal research and development backplane bus which
evolved to actual commercial products based on the VMEbus. The VMEbus is in a wide variety of
commercial applications, from billing and controlling systems for the telecommunication industry to
medical imaging and manufacturing floor applications. VMEbus technology follows the PC market
advances in silicon and Input/Output (I/O) application techniques.

The VMEbus has migrated from single boards acting as processor, memory, and I/O control to single
boards containing all three elements. Recently the backplane industry has seen a new trend in
multiprocessor technology. Specialty processors like the Intel I860, the Texas Instruments
TSM320C040 digital signal processor, and Transputers are showing up 2, 4, 8 processors to a
VMEbus board. These processors in combination with the new 32 bit and 64 bit Complex Instruction
Set Computer (CISC)- based processors from Intel, Motorola, Hewlett Packard, and Digital provide
an unique modular capability for embedded applications.

To meet the data throughput demands of these new processors and I/O controllers, the VMEbus has
added new high speed data bus structures to its current VME Subsystem Bus (VSB) P2 alternate data
bus. Raceway, SkyChannel, and Signal Computing System Architecture (SCSA) all provide unique
solutions to moving data from processor to processor to memory or I/O controller.

With new technologies emerging like Personal Computer Memory Card Industry Association
(PCMCIA), Peripheral Component Interconnect (PCI) local bus, and Scaleable Coherent Interconnect
(SCI) the VMEbus is providing solutions for these technologies. There are PCMCIA type three
memory expansion boards, PCI local bus processors and even mezzanine bus cards, as well as
Scaleable Coherent Interconnect I/O controllers.

Despite its age the VMEbus has been able to adapt to the changing commercial marketplace expanding
the role it plays in development, research, and production. It is also expanding its market industry by
addressing Fault Tolerance, Live Insertion, High Availability, and Testability. Below are sections that
discuss some of the enhancements to the VMEbus since 1980.

SDRF Technical Report 2.1 November 1999

D-8

D.5 VME64

VME64 is an ANSI standard, ANSI/VITA-1 1995, and increases the VMEbus throughput to 80
Mbps from the 32-bit version of 40. VME64 is 100 percent backward compatible to ANSI/IEEE
1014 (32-bit VMEbus). VME64 provides 64/32/24/16/08 data it transfers with 16/32/64 bit
addressing. VMEbus 6U x 160mm boards will be capable of 80 Mbytes/sec. 3U x 160mm boards
will provide their users with 40 Mbytes/sec. VME64 adds new capabilities such as:

• Rescinding DTACK
• Lock commands
• Retry signal
• Auto slot ID
• Auto system controller
• Control and Status registers

Rescinding DTACK provides users and integrators with quicker and cleaner data transfers. LOCK
commands aid the integrator and user in sectioning off specific system resources. The RETRY signal
provides a mechanism to retry a data or address transfer if an error or read modify write cycle is in
process. Auto Slot ID provides the system integrator with board identification and location in the
VMEbus system configuration. Along with the Auto system controller the VMEbus system can now, on
power up, identify who the slot one controller is and what other resources are in the system
configuration. The Control and Status registers will provide faster access to faults and health monitoring
capabilities.

Products Availability

Currently there are four manufacturers of VMEbus Silicon that have VME64 compliant silicon.
Newbridge Technology, Force Computers, Motorola, and Cypress Semiconductor. The majority of
products that are available with VME64 enhancements are processor boards. I/O and memory boards
are still in development with the VME64 enhancements. To find what company is supporting VME64,
check the VITA World Wide Web site for their on-line product catalog (http://www.vita.com).

Integration Techniques

The VMEbus boards that do support VME64 enhancements may have little or no effect on the
throughput of a system when the new Multiplexed Block Transfer (MBLT) of VME64 is integrated.
The reason for this is simply that many I/O and memory boards are still transferring 32 bit data instead
of the MBLT 64 bit data transfers. Also some of the processors that offer MBLT 64-bit transfers still
have 32-bit local bus structures requiring two local bus accesses for every one VMEbus MBLT 64 bit
data transfer. Therefore if you have a VME64 processor who will transfer 32 bit data over the
VMEbus at a rate of 10 MBytes a second (BLT) you may find that same processor transferring 64 bit
data over the VMEbus at a slower rate of 7 MBps. This is because to the processor’s local bus is 32
bits wide and the processor has to move the data into or out of the VMEbus interface chip’s internal

SDRF Technical Report 2.1 November 1999

D-9

File In, File Out (FIFO) or register. Look to the 64-bit processors and their 64-bit local bus structures
for maximizing the MBLT feature of the VMEbus. PCI local bus is still currently only 32-bits wide.
However it can move data at a very high rate (130MBps). Thirty-two-bit processors like the Power
PC may not have the MBLT slow down with this combination local bus and VMEbus interface.

D.6 VME64 Extensions

The VME64 Extensions are a group of optional capabilities or enhancements that will help the integrator
tailor a VMEbus-configured system to meet specific needs of his or her application. VME64
Extensions have sought solutions to providing the VMEbus user with additional I/O through the P1 and
P2 connectors. They have looked at ways to improve signal integrity and provide higher availability of
the configured system through fault management and testability techniques.

Enhancements

The VME64 Extensions provide VMEbus users and system integrators with the hardware and software
tools to meet the new generation of applications. VME64 Extensions provide new voltage pins like
3.3V and 48V with additional ground signals to improve signal integrity. VME64 Extensions provides
the user with a new high speed serial bus designed to be an alternate data path for the VMEbus. There
is a new test and maintenance bus (IEEE 1149.5) defined for use with the VME64 Extensions. Live
Insertion pins have been defined to allow hot swap of boards. There are also additional I/O pins on the
new connectors and a space defined for an optional P0 connector. The VME64 Extension also defines
a new EMI protection front panel, that will reduce the emissions of VMEbus processor boards so that
they can meet UL and CE (European) standards.

Products Availability

Currently this standard is in a working committee and has not been released for ANSI accreditation.
Therefore, there are no products available with all of the features described in the paragraphs above.
However, there are boards that have been produced by major VMEbus board manufactures and
Backplane vendors have tested the new connector and backplane solutions.

Integration Techniques

When these products do become available in the VMEbus market, care should be given to configuring
systems with VME64 Extension products. Because these enhancements are options within the
document not all companies will produce all options. This could cause a problem with interoperability.

SDRF Technical Report 2.1 November 1999

D-10

D.7 VME320

Enhancements

At a recent press conference, Bustronic Corporation and Arizona Digital announced their development
of a new enhancement to the VMEbus, VME320. This is a new type of VME backplane that transfers
data at 320 Mbytes/sec. This is 4 times faster than the existing VME64 and unlike the VME64
Extensions, will be completely backwardly compatible with all existing VMEbus boards. It uses the
existing 96-pin DIN connectors and is also available in a 160 MBps version, VME160.

Products Availability

Currently this standard is in a working committee and has not been released for ANSI accreditation.

Integration Techniques

Because this new technique provides cleaner transitions than traditional VMEbus backplanes, the
integration of products into new or existing systems should provide no change in performance or an
improvement in electrical performance as well as data transfer rate.

D.8 SEM-E on VME

Enhancements

SEM-E has been a popular form factor used in the military for a number of years. It is based on
conduction cooled technology, a small form factor, and a blade-and-fork style connector that provides
high reliability in high shock and vibration environments. This technology under standardization uses the
SEM-E form factor with the VMEbus backplane and protocol.

Products Availability
Currently this standard is in a working committee and has not been released for ANSI accreditation.

Integration Techniques

Once products become available using this form factor/backplane combination the utility of SEM-E will
be greatly enhanced by the inclusion of a standardized protocol.

SDRF Technical Report 2.1 November 1999

D-11

D.9 VMEbus P2 Sub-bus Data Transfer Architectures

This section will discuss a sub-bus or sub-backplane data transfer bus. These buses have been added
to meet the rising need to move larger amounts of data in greater speeds.

D.9.1 RACEway

The ANSI Board of Standards Review officially approved the VITA 5-1994, RACEway Interlink as a
standard on July 31, 1995. RACEway is a crossbar-switch technology integrated onto a P2 backplane
for the VMEbus. RACEway provides the VMEbus user with up to six bi-directional data paths with a
maximum throughput of 160 MBps.

Enhancements

The development of RACEway Interlink was motivated by the desire to provide high bandwidth
communication while maintaining compatibility with the VMEbus. RACEway Interlink is a scaleable
interconnection fabric based on a network of crossbar-switch devices that provide 1.6 gigabytes per
second (Gbps) throughput. The RACEway Interlink specification was brought to the VSO for
standardization by Mercury Computer Systems, Inc..

The RACEway Interlink standard is targeted at multiprocessor and high-speed I/O applications. I/O
devices such as A/D, D/A, frame stores, graphic displays, LAN/WAN connections, and storage
devices. RACEway Interlink enhances VMEbus performance in existing VMEbus systems by enabling
concurrent communication between multiple processors.

Product Availability

Numerous RACEway Interlink design projects are underway in the VMEbus community with
developers using the new standard to link I/O subsystems with off-the-shelf VME boards. Also
underway is the design of chip-level products to support this standard. Mercury and Cypress
Semiconductor Corporation will be working together to develop semiconductors that will help
proliferate RACEway technology.

D.9.2 VSB

The VME Subsystem Bus (VSB) is the son of VMX and VMX32 memory expansion buses that were
developed by Motorola to move data to and from the processor board’s local bus. VMX and VMX32
were local bus expansions in the days when only 256K and 512K DRAM or SRAM fit onto a single
board computer. The VME community saw that a separate data transfer bus would increase the system
throughput and expanded the VMX concept to include arbitration and interrupts.

SDRF Technical Report 2.1 November 1999

D-12

Enhancements

The VSB uses all the user defined pins of the VMEbus P2 connector. It defines a complete
asynchronous backplane data transfer bus. The VSB is a full 32-bit address, data bus with a single
level arbiter and single level interrupt. The VSB supports dynamic bus sizing, read-modify write cycles,
and block transfers as does the VMEbus. The throughput of the VSB is currently 30-40 MBps. There
is work going on at VITA/VSO that is exploring how to increase the speed and data size of the current
VSB standard.
Products

The VSB has been available off-the-shelf since 1987. There are many processors, I/O controllers, and
memory cards that support this P2 bus. There are even processors that are available in five
environmental build standards that support this 32 bit subsystem bus.

D.9.3 Skychannel

SKYchannel is a 200 MBps packet bus architecture developed by SKY computers. This architecture
provides the VMEbus user a higher throughput and alternate data transfer path from the standard
VMEbus backplane architecture. SKYchannel connects multiple single board computers on the
VMEbus through an active P2 backplane connection. This concept is similar to the RACEway
crossbar P2 active backplane solution.

Enhancements

The SKYchannel packet bus architecture provides yet another P2 backplane communications path.
This new packet mode architecture uses a series of FIFOs, DMA controllers and packet controllers at
each SKYchannel interface to ensure that packets are built continuously and data pipelines are filled.
SKYchannel can be a backplane or a point to point connection. The current proposed specification
allows the user up to ten ports and five simultaneous 320Mbps per level for an aggregated data
bandwidth of 1600Mbps (200MBps).

Products Availability

SKYchannel is still in working group draft. Products are available from SKY, but they do not meet the
current configuration of the draft standard.

D.9.4 SCSA

The ANSI Board of Standards Review officially approved the VITA 6-1994, SCSA as a standard on
July 24, 1995.

Enhancements

SDRF Technical Report 2.1 November 1999

D-13

SCSA is a comprehensive, open software and hardware architecture that streamlines the process of
building computer telephony systems.

SCSA offers a standard way of dealing with the many levels and inter relationships that come into play
when developing and building computer telephony systems. It provides standard interfaces that satisfy
the demands of application program developers, hardware component developers, software algorithm
developers, platform developers, and end users.

This new ANSI/VITA 6-1994 SCSA standard allows the VMEbus architecture to move firmly into
telephony. SCSA enables VMEbus manufacturers to develop products that bring SCSA's high signal
capacity and VME performance and robust packaging to a growing, global CTI market.

Product Availability

Currently there are no board level products available with VMEbus and SCSA. However, there are
many turnkey systems that integrate VMEbus and SCSA in digital switching systems.

D.10 Backbone or System Bus Structures

In this section we will be discussing current system backbone structures and how they are implemented
or going to be implemented in the software radio and to the software radio system architectures.

D.10.1 MIL-STD-1553B

During the late 1960’s the military aircraft industry reached a level of performance complexity such that
simple point-to-point interconnection was no longer cost effective. Nor did it meet the requirements of
the applications. The need to share information and resources grew as size, weight, and space
requirements became critical in smaller faster aircraft. In 1968 the SAE A2K Committee in cooperation
with the TRI-Services was formed to generate military standard for multiplexing. The Military Standard
Aircraft Internal Time Division Command, Response Multiplexed Data Bus was issued in 1973. The
current MIL-STD-1553B standard was adopted in 1978. This serial bus had a transfer rate of 1 Mbps
in 20-bit frames. However, with the processor overhead and response required throughputs of 7.125
Kbps is what is seen on today’s MIL-STD-1553B backbone bus standards. The data bus travels a
shielded twisted pair cable. The data bus transmissions are serial time division multiplex messages in
pulse code modulation form. The data bus traffic is half duplex, hence it travels in one direction at a
time over one of the dual redundant cables. The MIL-STD-1553B data bus network functions in a
command, response sequence. Access to the data bus is provided only when a command is received
and acknowledged by the data bus controller. The MIL-STD-1553B data bus is found in many
commercial and military Avionics system architectures as well as in the military Vetronics industry. We
have seen a great push to have the black box chassis connect to this standard serial bus to provide a
cost effective mechanism to pass data within our system application.

SDRF Technical Report 2.1 November 1999

D-14

D.10.2 MIL-STD-1773A

The MIL-STD-1773A is the optical equivalent of the MIL-STD-1553 bus. The MIL-STD-1773 was
developed to realize the optical technology advantages for the Avionics community. Optics provide
solutions with higher bandwidth, lighter weight, and reduced space. Optics also provides immunity to
electromagnetic interference. MIL-STD-1773 is implemented to replace MIL-STD-1553 and
therefore the standard is implemented at the same speed of 1 Mbps. Since MIL-STD-1773 deals with
optical rather than electrical signals there were changes required in the Manchester II coding. A logical
one begins with optical energy present and a logical zero begins with no optical energy present.

D.10.3 FDDI

Fiber Distributed Data Interface (FDDI) is a 100 Mbps Local Area Network (LAN) standard. The
topology of the FDDI is a point to point connection of links connected in a logical ring. There are two
such rings that circle each other connecting to the same links in the ring. To govern who will be in
control the FDDI bus a token is passed between all the nodes on the FDDI bus. This topology lends
itself to fault tolerance. In a dual attached LAN a break in the ring will automatically switch the data to
the other ring. There can be up to 500 links or stations with the maximum size of the rings or LAN as
200 kilometers. The maximum distance between each link or station can be up to 2 kilometers squared.
The Open System Interconnect reference model identifies FDDI as a physical layer or layer one and
part of the data link layer two. FDDI and Ethernet (IEEE 802.3) are considered very similar.
However, FDDI is more related to the (IEEE 802.5) token ring. The first FDDI standard was available
from ANSI X3T9 committee in early 1983. It officially was completed in the year 1988 as the ANSI
standard X3.148-1988

D.10.4 N-ISDN

Narrowband Integrated Services Digital Network (N-ISDN) provides end-to-end digital connectivity
with access to voice and data services over the same digital transmission and switching facilities. N-
ISDN provides two core interfaces Basic Rate Interface (BRI) and Primary Rate Interface (PRI). N-
ISDN also provides the user with three channel types B, D, and H. BRI is a set of two bearer channels
(B) which carry data or voice. Each B channel is a 64 K bits per second (bps) pipe. This pipe or
channel can carry any type of digitized voice, data, and video information. BRI also carries one D
channel for signaling and switching data. The D channel is a 16 Kbps digital channel that carries the
information for the network switches to set up, connect, monitor, and tear down connections or calls.
PRI is a larger set of channels that includes 23 B channels at 64 Kbps and one D channel. The D
channel in the PRI mode is different than BRI. The difference is the amount of data required in the D
channel for the switching information. This channel is 64 Kbps. In Europe, primarily, the H channel is
used to carry user information relating to video teleconferencing, high speed data, and high audio or
sound programs and images. The H channel has variable throughput capabilities at 384 Kbps, 1.536
Mbps, or 1.920 Mbps. These throughput capabilities allow video teleconferencing, high-quality audio

SDRF Technical Report 2.1 November 1999

D-15

and images to be passed between users. It is the signaling channel that allows N-ISDN to carry
multiple integrated digital services over a switched circuit.

D.10.5 ATM

Asynchronous Transfer Mode (ATM) is the formal International Telecommunication Union (ITU)
standard for cell based voice, data, and multimedia communication in a public network. ATM is a high
bandwidth, low delay switching and multiplexing technology that uses a 53 byte cell (one byte is eight
bits) for transmitting information. Each cell consists of an information field that is transported
transparently by the network (Similar to the signal channel D of N-ISDN) and a header containing
routing information. The obvious benefits of ATM include high speed, low latency, and increased
network availability through automatic and guaranteed assignment of network bandwidth. This is ideal
for time sensitive data like voice and video. For the military it could carry synchronous channels with
cryptographic data. Current ATM data rates are 45Mbps, 51Mbps, 100Mbps, 155Mbps, and
622Mbps. ATM is a connection oriented process, although it is designed for either connectionless and
connections-oriented services. ATM supports a number of applications using the ATM Adaptation
Layers (AAL). ATM is an evolving standard and there are currently three AALs presently defined with
a fourth AAL2 under development.

AAL1: Timing required, constant bit rate, connection oriented. This ATM Adaptation Layer
provides the details for connection oriented circuit emulation of a point to point line.
T1, E1 or T3, E3 leased circuits could be emulated with the use of this AAL.

AAL2: Designed to support variable bit rate applications such as compressed motion video
traffic generated by the MPEG, MPEG2 algorithms.

AAL3/4: Timing not required, variable bit rate, connectionless. This supports fast packet
services such as Switched Multi-megabit Data Service (SMDS).

AAL 5: Unrestricted (variable bit rate, connection oriented or connectionless), also known as
"Class X." This AAL supports a fast packet service such as cell-relay. This AAL is
being implemented in the Local Area Network emulation for ATM

ATM information is sent between two points over a media comprised of virtual channels. Each channel
can be transmitted over the network in a manner consistent with the needs of the data or subscriber.
The user's data is associated with a specified virtual channel. In ATM the virtual channel is used to
describe unidirectional transport of ATM cells associated by a common unique identifier value called a
virtual channel identifier. A virtual path is used to describe unidirectional transport of ATM cells
belonging to virtual channels that are associated by a common identifier value called virtual path
identifier. The ATM switch reads the virtual channel identifier and virtual path information from an
incoming cell and based on the information makes a routing decision and sends the cell out through the
proper switch port.

SDRF Technical Report 2.1 November 1999

D-16

D.10.6 FIBREChannel

In 1988 the ANSI standards body, X3T9.3 committee, formed a FibreChannel working group to
develop a practical, inexpensive yet expandable method for achieving high speed data transfers among
workstations, mainframes, supercomputers, desktop computers, storage devices, and display devices.
FibreChannel was started to address the need for fast transfers of large volumes of data while at the
same time relieving system manufacturers from the burden of supporting the variety of channels and
networks currently in place throughout the Information Technology market.

In 1994 ANSI X3.230-1994 was approved for optimizing large volumes of data, not for low-latency
dynamic interactive usage. The throughput of the standard allows for multiple architectures, point-to-
point and Local Area Network configurations at 265,531 and 1062 MBps to 2 and possibly 4 GBps.

The current market that the FibreChannel solutions appear to be addressing is in the area of mass
storage devices. SCSI-3 is a FibreChannel-like serial connection.

D.10.7 FireWire

FireWire, IEEE Std. 1394-1995, was originally intended as an interconnection method between PC
peripherals and consumer electronic devices. The throughput speeds are 100 Mbps and 200 Mbps
with 400 Mbps in development. The distance over which it operates is bounded at 10s of meters.
Some FireWire products are available, and Microsoft has announced its intention to support it in future
versions of Windows. FireWire, IEEE Std. 1394-1995, was originally intended as an interconnection
method between PC peripherals and consumer electronic devices. The throughput speeds are 100
Mbps and 200 Mbps with 400 Mbps in development. The distance over which it operates is bounded
at 10s of meters. Some FireWire products are available, and Microsoft has announced its intention to
support it in future versions of Windows. FireWire, IEEE Std. 1394-1995, was originally intended as
an interconnection method between PC peripherals and consumer electronic devices. The throughput
speeds are 100 Mbps and 200 Mbps with 400 Mbps in development. The distance over which it
operates is bounded at 10s of meters. Some FireWire products are available, and Microsoft has
announced its intention to support it in future versions of Windows.

SDRF Technical Report 2.1 November 1999

E-1

Appendix E. Members of the Software Defined Radio Forum

Advanced Communications Technologies
Agilent Technologies
Algorex
AMP - M/A-COM
BellSouth Cellular
Blue Wave Systems
Boeing
CCL/Industrial Technology Research Institute
CommLargo
COMSAT
Raytheon Systems
Ditrans
Department of National Defence/Defence
 Research Establishment Ottawa
enVia
Ericsson
ETRI, Korea
Exigent International
General Dynamics
IIT Research Institute
ITT Industries
Kokusai Electric Company
Kyocera DDI
LG Corporate Institute of Technology
LOGIC Devices, Inc.
Lucent Technologies
Mercury Computer
The MITRE Corporation (Center for Air Force
 C2 Systems)
The MITRE Corporation (Washington C3
 Operations)

Mitsubishi Electric
Morphics Technology
Motorola SSTG
NEC America
NTT
Nokia Telecommunications, Inc.
Omron
Personal Telecomm Technologies
Quicksilver Technology
Rockwell Collins, Inc.
Roke Manor Research
Samsung
Samuel Neaman Institute (Technion)
Sangikyo
SK Telecom
Sonera
Sony Computer Science Lab
Southwestern Bell Technology Resources
SPAWAR Systems Center
Titan/Linkabit
Toshiba
Triscend
Tropper Technologies
University of Oulu
US Air Force Research Laboratory
US Army - PMTRCS
USWest
Vanu, Inc.
Visteon
Yokohama National University

