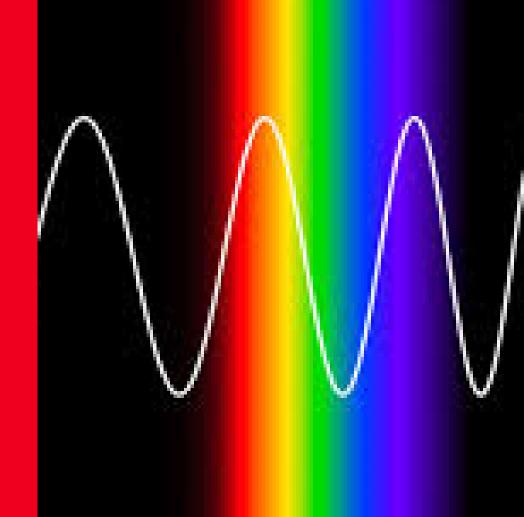


Status update on lower 3 GHz and 7-8 GHz: WInnForum International Spectrum Sharing Workshop

Amit Mukhopadhyay, Ph. D. Technology Standards Planning Verizon



- Introduction
- 3.1-3.45 GHz
- 7.125-8.4 GHz
- Looking ahead

Introduction

Need for spectrum

New spectrum options

Need for spectrum, WRC Agenda Items, National Spectrum Strategy

Spectrum Demand

- •Traffic growth is expected to drive 5x data increase over the next 5 years, fuelled by new devices
- •6G will be introduced while 4G and 5G are still operational
- •Based on Nokia and Qualcomm estimates, channel size of 400-500 MHz will be necessary to deliver expected performance of 6G
- •3GPP is also considering 200 MHz channel size

Band considerations

- Retaining network architecture (including reuse of existing site grid) is a key requirement for new spectrum
- •The likely bands available are lower 3 GHz and 7-8 GHz
- Different propagation characteristics
- Both spectrum ranges have government/military usage

WRC Agenda Items

- Identification of 3.3-3.4 GHz for IMT at WRC-23
- •New IMT/6G Agenda Item for WRC-27 is approved, which gives positive outlook enabling suitable studies to be conducted. Bands agreed for study are:
 - and Asia)
 - 7125-8400 MHz (excluding 7250-7750 MHz in Europe)
- 14.8-15.35 GHz (global)

National Spectrum Strategy

- Following bands were proposed for further study in the NSS:
- 3.1-3.3 GHz: DoD determined that sharing is feasible if certain advanced interference mitigation features and a coordination framework to facilitate spectrum sharing are put in place.
- 7.125 8.4 GHz for mobile broadband studied for coexistence with incumbents;
- 37 37.6 GHz; further studied to implement a co-equal, shared-use framework allowing Federal and non-Federal users to deploy operations in the band

National and International efforts to find new spectrum: 7.125-8.4 GHz is the only common band

Multiple paths to explore new spectrum

NSS Implementation Plan

- Interagency Spectrum Advisory Council (ISAC) band study, in coordination with industry kicked off in summer of 2024
- Band studies for 3.1-3.45 GHz and 7.125-8.4 GHz spectrum to be completed by October 2026
- Coordinated among FCC, NTIA and all federal agencies using spectrum (DoD, FAA, NOAA, NASA etc.)
- Repacking, relocation etc. all options on the table

PATHSS2

- Follow-on to first PATHSS and EMBRSS Report
- Being conducted in parallel with ISAC 3.1-3.45 GHz band study
 - ISAC study informed by engagement with NTIA-managed multistakeholder group
 - Both PATHSS and the multistakeholder group are being conducted under the National Spectrum Consortium

DSS Demo

٠

٠

- Federal government RPP to develop a DSS demo by the NSS target date (Sep 2025) but now moved to November 2025
- Demo is likely to encompass best practices and other technology and policy developments contributed by a variety of fora
- Demo would also be informed by band studies and analysis being conducted by ISAC and PATHSS2

Three parallel activities initiated in 2024

3.1-3.45 GHz

- Incumbencies
- PATHSS 1 scope
- PATHSS1 outcome

Incumbent radar systems have diverse set of characteristics

Ground-based radar systems fixed

- No mobility
- Active 24x7 / episodically

Ground-based radar systems mobile

- Limited/arbitrary
 mobility
- Active episodically

Naval radar systems, including inland

- Fixed/coastal mobility
- Active episodically

Airborne radar systems – AWACS and SKE

- •Contained/arbitrary mobility
- Active episodically

Different solutions needed for various radar systems to coexist with commercial mobile networks

PATHSS1 Study Summary

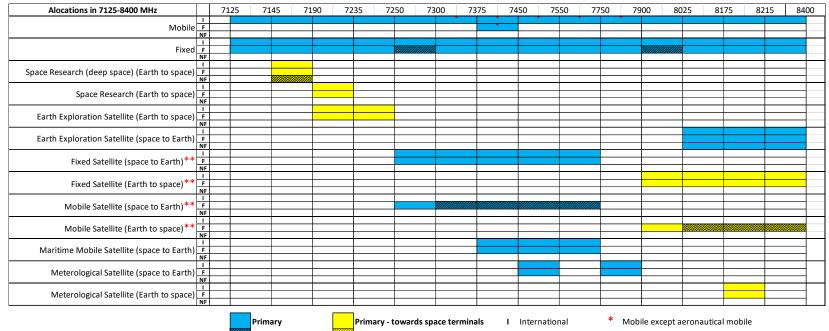
Overview

- The study assessed the baseline protection levels (i.e., separation distances) between DoD radars and 5G base stations, while assessing various interference mitigation techniques
- In addition to separation distances, the main interference mitigation techniques considered were:
 - Active 5G RAN (sensing and action by 5G network)
 - Dynamic Spectrum Management System (SAS/AFCtype)
 - o Digital cancellation of 5G signal (by radar)
- Spectrum sharing principles for DoD:
 - \circ Cannot result in loss of access to spectrum for systems
 - \circ Cannot degrade performance of current/future systems
 - \circ Does not include vacating, compression or repacking

Key Study Results

- Dozens of systems were studied at various locations, most of which resulted in large separation distances from radars
- (DoD concluded that) Without a reliable mechanism for reducing or eliminating 5G emissions, USG systems will experience interference when operating in the same frequency band as 5G systems
- Spectrum sharing in the 3100-3450 MHz band is possible for shipborne and ground-based systems in the 3100-3450 MHz band with the development and implementation of a robust coordination framework
- The framework will maximize availability of spectrum for commercial operations when USG systems are not active in the band.
- USG airborne systems would require sophisticated dynamic spectrum sharing mechanisms.

Spectrum sharing between federal radars and commercial mobile networks would involve innovative solutions


⁸ verizon

7.125-8.4 GHz

- Incumbencies
- Coexistence considerations
- Uncertainty factors

Spectrum allocations in 7.125-8.4 GHz: International, Federal, Non-Federal

** Military systems

NF US Non-Federal

F US Federal

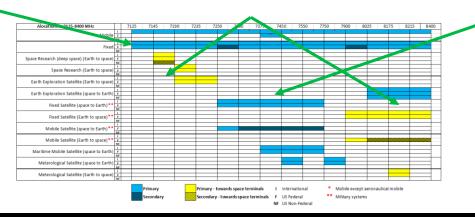
Mostly Fixed Service (FS) and various satellite services (FSS, MSS, EESS, SRS, MMS, etc.)

Secondary - towards space terminals

Secondary

Three main types of allocations

Fixed service


- Allocated over the entire spectrum range
- Band segmentation, if possible, is a more practical option for potential use of this band by IMT
- Possibility of co-existence/sharing depends upon the density of links

Satellite uplink service

- Allocation spread between the lower (7145 -7250 MHz) and upper (7900-8400 MHz) parts
- Studied for coexistence in other bands, no need for dynamic sharing
- Stringent requirements on groundbased equipment on radiation patterns and emitted power

Satellite downlink service

- Allocation mostly in the middle part of the range (7250-7750 MHz) and one in upper part (8025-8400 MHz)
- Small number of EESS Earth
 Stations in the upper part (including
 non-federal)
- Possibility of co-existence/sharing depends upon the extent of MSS

Satellite uplink has been analyzed in other bands, downlink and FS need new approaches

Incumbent allocations

Fixed Services

- The federal agencies use of this band is mostly for fixed point-to-point microwave communication systems.
- This includes the Federal Aviation Administration's (FAA) use of this band for fixed point-to-point microwave communications networks to connect remote long-range aeronautical radio-navigation radars to air traffic control centers.
- Approximately 20% of FS use is by the Department of Defense (DoD).
- However, the use of the band for fixed assignments has been declining.

Satellite downlink

- Federal agencies operate the Defense Satellite Communications Systems (DSCS) series of geostationary satellites in this range. Federal agencies also operate the Wideband Gapfiller Satellite (WGS) here. FSS uses 7.25 – 7.75 GHz as downlink and 7.9 – 8.4 GHz as uplink; this includes both DSCS and WGS.
- DSCS provides the United States with military communications to support globally distributed military users. As of 14 September 2021, six DSCS-III satellites were still operational.
- WGS is an international system, with Australia, Canada, Denmark, Luxembourg, the Netherlands, and New Zealand also investing in the satellite constellation. A group of eleven was set to be completed by 2023.

There are opportunities to pack some incumbents within a smaller part of the spectrum range

Key factors

Fixed Services

- The number and geographical distribution of links is currently unknown; NTIA is expected to provide the data during execution of the NSS Implementation Plan
- Repacking may increase the density of links operating within specific spectrum ranges
- The plan to replace some links with fiber and move some other links in different frequency ranges is still evolving

Satellite downlink services

- It is not known how many earth stations are there and where they are located. Furthermore, EES allocation in 8025-8400 MHz allows non-federal use.
- Maritime Mobile Satellite Service is expected to be most prevalent around ports. But ports are often surrounded by high population density areas where capacity demand will be high.
- It is unknown how widely and where mobile satellite service (MSS) is used.

Re-allocation of some services may allow commercial mobile use of this spectrum

Looking ahead

Comparison of the two bands

Recent developments

Options for new commercial spectrum

Comparison of the two bands

3.1-3.45 GHz

- Good propagation characteristics
- 3.3-3.4 GHz has international allocation for mobile
 - Good possibility of global ecosystem
- · Adjacent to existing bands
 - Re-use of existing deployment grid possible
 - o Likely roadmap to integrated radio
- Federal military incumbents

rizon

- Technical operating conditions expected to be quite restrictive
- · Dynamic sharing may cause uncertainty of availability
 - o Suitable more for secondary connectivity

7.125-8.4 GHz

- Large amount of spectrum may be available
- Aligned with WRC-27 Agenda Item 1.7
- Most incumbents are located in relatively contained geographies (stationary)
 - Few moving terrestrial spectrum users (except for MSS allocation, which is mostly secondary)
- Different propagation characteristics
 - May require revised deployment strategy
- Existing ecosystem only for non-mobile services
 - 6 GHz mobile ecosystem may need to be retuned/repurposed

The two frequency ranges can serve very different sets of deployment objectives

Recent developments

Dynamic Spectrum Sharing Demo

While Pentagon officials generally advocate against allowing commercial use of spectrum currently held by DoD, there are different messages emerging:

• According to an <u>article</u> published (April 23, 2025) by the National Spectrum Consortium (NSC),

"General Guillot, Commander of U.S. Northern Command (NORTHCOM), has warned that an Iron Dome-like system in the U.S. would be unworkable without adequate spectrum. The U.S. cannot afford delays in developing **spectrumsharing** solutions to accommodate both defense and commercial operations..."

- A Defensescoop article (April 23, 2025) mentions that:
- "...the Defense Department is looking to demonstrate emerging **dynamic spectrum-sharing** capabilities before the end of the year."

Proposal for New Commercial Spectrum

According to a recent Light Reading article (May 1, 2025), DoD is proposing the following spectrum to be released for commercial use:

- 100 MHz of CBRS spectrum
- 50 MHz of spectrum in 1.3 GHz range
- 75 MHz of spectrum in 1.8 GHz range
- 75 MHz spectrum in 5 GHz range
- 125 MHz spectrum in 7 GHz range

Notably, there is <u>no</u>mention of releasing 3.1-3.45 GHz or 7.250-8.4 GHz spectrum

DOD's perspectives about sharing spectrum with commercial networks are still evolving

¹⁶ verizon

Options for new commercial spectrum

Dynamic Spectrum Sharing

- Technical Implementations
 - o Incumbent activity detection
 - Sensing: Performance requirements to avoid false positives and false negatives
 - Notification: Operational security, trust
 - $\circ~$ Decision: Which set of commercial radios to take action and what mitigation action
 - Implementation: Confirmation of effectiveness of mitigation action, duration of mitigation action to minimize impact on commercial operation
- Business Case Implications
 - Capital expenses: cost of developing and improving the solution
 - o Operational expenses: cost of operating the solution
 - $\circ~$ Cost recovery: Who pays and how

Traditional spectrum co-existence/Clearing

- Technical Implementations
 - Stationary federal users with continuous operation
 - Separation distances (geographical sharing)
 - Stationary federal users with intermittent operation
 - Time-based usage (geographical plus temporal sharing)
 - o Non-stationary federal users
 - Moving to another band/repacking in smaller spectrum segment resulting in spectrum clearing (even if partial)
 - Tracking planned evolution of federal users even if a few years away
 - Mission specific prioritization Highest priority for (rare) homeland defense, but training, maintenance, testing etc. can be preplanned
 - Business Case Implications: Cost of implementation/ reallocation and reimbursement through auction

A holistic techno-economic analysis should be conducted to decide the best course of action

17 **verizo**i

Key takeaways

- Additional spectrum is essential for the commercial mobile industry to keep up with traffic demand and usher in the era of 6G
- The Administration is studying the 3.1 3.45 GHz and 7.125 8.4 GHz bands for potential commercial use*
- The two bands have very different propagation characteristics, incumbent allocations
- A holistic techno-economic analysis is necessary to determine how much spectrum can be made available and how

* 3.1-3.45 GHz has been "carved out" per House Energy and Commerce Committee budget reconciliation package voted on May 13, 2025 (<u>https://www.insideglobaltech.com/2025/05/14/energy-and-commerce-committee-votes-on-gop-house-spectrum-plan/</u>)